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Abstract. The paper deals with the analysis of BMAP/G/1 vacation models. We

apply a formerly introduced two-step methodology separating the analysis into service

discipline independent and service discipline dependent parts. In this paper we investi-

gate the later analysis part for the binomial-gated and the binomial-exhaustive service

disciplines, for which a specific form functional equation can be established for the vec-

tor probability generating function of the stationary number of customers at start of

vacations. We provide new results for the model with these disciplines. These are the

closed-form expressions of the vector probability generating function of the stationary

number of customers at start of vacations, which are applied to express the mean of the

stationary number of customers at an arbitrary moment.

1. Introduction

Queueing models with server vacation have been intensively studied in the

past. These models are applied in the analysis of computer and manufacturing

systems as well as in telecommunication models. In these models the server

occasionally takes a vacation period, in which no customer is served. For details
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on vacation models and for their analysis we refer to the comprehensive survey

of Doshi [1] and to the excellent book of Takagi [2].

The batch Markovian arrival process (BMAP) introduced by Lucantoni [3]

enables more realistic and more accurate traffic modeling than the (batch) Pois-

son process. Consequently analysis of queueing models with BMAP attracted a

great attention. The vast majority of the analyzed BMAP/G/1 queueing models

exploit the underlying M/G/1-type structure of the model, i.e., that the embed-

ded Markov chain at the customer departure epochs is of M/G/1-type [4], in

which the block size in the transition probability matrix equals to the number of

phases of the BMAP. Hence most of the analysis of BMAP/G/1 vacation models

are based on the standard matrix analytic-method pioneered by Neuts [5] and

further extended by many others (see e.g., [6]).

Chang and Takine [7] applied the factorization property (presented by

Chang et al. [8]) to get analytical results for the vector probability generating

function (vector GF) of the stationary queue length and its factorial moments for

models with exhaustive discipline.

Due to the complexity of these models the results have usually a numeric

part, i.e. no closed-form solutions are given.

The principal goal of this paper is to provide closed-form solution for

BMAP/G/1 vacation model with binomial-gated and binomial-exhaustive service

disciplines.

Our analysis is based on a two-step methodology introduced formerly by

the authors [9]. This methodology separates the analysis into service discipline

independent and service discipline dependent parts. In this paper we are dealing

with the service discipline specific part of the analysis.

The contributions of this paper are the discipline specific analysis and the new

results for the model with binomial-gated and binomial-exhaustive disciplines. To

the best knowledge of the authors there are no results available for these models.

For the model with binomial-gated and binomial-exhaustive disciplines a spe-

cific form functional equation can be established for the vector GF of the station-

ary number of customers at start of vacations. We give a closed-form solution

of this vector GF by applying a recursive method. This method is based on a

convergence property of a class of matrix probability generating function (matrix

GF) series, which we show in the Appendix. This property is a generalization of

the corresponding convergence property of series of scalar probability generating

functions (PGFs), see Kim, Chang and Chae [10]. Applying the closed-form

solution in our previous result [9] leads to the expression for the mean of the

stationary number of customers at an arbitrary moment.
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The rest of this paper is organized as follows. In Section II we introduce the

model and the notations. The summary of the necessary part of previous results

follows in Section III. The system equations for the model with both binomial-

gated and binomial-exhaustive disciplines are established in Section IV. The

closed form solution for the model with binomial-gated and binomial-exhaustive

disciplines are derived in Section V and Section VI, respectively. The considera-

tion on the special case of the model with exhaustive discipline closes the paper

in Section VII.

2. Model and notation

2.1. BMAP process. We give a brief summary on the BMAP related defini-

tions and notations. For more details we refer to [3].

Λ(t) denotes the number of arrivals in (0, t]. J(t) is the state of a background

continuous-time Markov chain (CTMC) at time t, which is referred to as phase

and phase process, respectively. The BMAP batch arrival process is characterized

by {(Λ(t), J(t)); t ≥ 0} bivariate CTMC on the state space (Λ(t), J(t)); where

(Λ(t) ∈ {0, 1, . . .}, J(t) ∈ {1, 2, . . . , L}). Its infinitesimal generator is:




D0 D1 D2 D3 . . .

0 D0 D1 D2 . . .

0 0 D0 D1 . . .

0 0 0 D0 . . .
...

...
...

...
. . .




,

where 0 is an L × L matrix and {Dk; k ≥ 0} is a set of L × L matrices.

D0 and {Dk; k ≥ 1} govern the transitions corresponding to no arrivals and

to batch arrivals with size k, respectively. The irreducible infinitesimal generator

of the phase process is D =
∑

∞

k=0 Dk. Let π be the stationary probability vector

of the phase process. Then πD = 0 and πe = 1 uniquely determine π, where e is

the column vector having all elements equal to one. D̂(z), the matrix generating

function of Dk is defined as

D̂(z) =
∞∑

k=0

Dkzk, |z| ≤ 1.

The stationary arrival rate of the BMAP,

λ = π
d

dz
D̂(z)

∣∣∣
z=1

e = π

∞∑

k=0

kDke,

is supposed to be positive and finite.
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2.2. The BMAP/G/1 queue with server vacation. Batch of customers ar-

rive to the infinite buffer queue according to a BMAP process described by D̂(z).

The service times are independent and identically distributed. B, B(t), b denote

the service time r.v., its cumulated distribution function and its first moment,

respectively. The mean service time is positive and finite, 0 < b < ∞.

The server occasionally takes vacations, in which no customer is served. After

finishing the vacation the server continues to serve the queue. If the server finds

the queue empty upon return from vacation then it immediately takes the next

vacation. The vacation periods are independent and identically distributed. V ,

V (t), v denote the vacation time r.v., its cumulated distribution function and its

mean, respectively. The mean vacation time is positive and finite, 0 < v < ∞.

We define the cycle time as a service period and a vacation period together. The

server utilization is ρ = λb and the system is stable. On the vacation model we

impose the following assumptions:

A.1 Independence property: The arrival process, the customer service times

and the length of the vacation periods are independent.

A.2 Nonpreemtive service property: The service is nonpreemtive. Hence the

service of the actual customer is finished before the server goes to vacation.

In the following [Y]i,j stands for the i, j-th element of matrix Y. Similarly

[y]j denotes the j-th element of vector y.

We define matrix Ak, whose (i, j)-th element denotes the conditional prob-

ability that during a customer service time the number of arrivals is k and the

final phase of the BMAP is j, given that the initial phase of the BMAP is i. That

is, for k ≥ 0, 1 ≤ i, j ≤ L,

[Ak]i,j = P{Λ(B) = k, J(B) = j|J(0) = i}.

The matrix GF Â(z) is defined as Â(z) =
∑

∞

k=0 Akzk and it can be expressed

explicitly as ([3])

Â(z) =

∫
∞

t=0

e
bD(z)tdB(t). (1)

Matrix GF Â(z) has the following properties:

• the matrices Ak are nonnegative,

• Â(1)e = e, i.e. Â(1) is stochastic,

• πÂ(1) = π, which can be shown by the help of Taylor expansion of (1) at

z = 1.

Similar to the quantities associated with the service period, we define ma-

trix Uk, whose elements, for k ≥ 0, 1 ≤ i, j ≤ L, are

[Uk]i,j = P{Λ(V ) = k, J(V ) = j|J(0) = i}.
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We also define the matrix GF as

Û(z) =

∞∑

k=0

Ukzk =

∫
∞

t=0

e
bD(z)tdV (t),

which has the following properties:

• the matrices Uk are nonnegative,

• Û(1)e = e, i.e. Û(1) is stochastic,

• πÛ(1) = π, which can be shown by the help of Taylor expansion of Û(z) at

z = 1.

Vacation models are distinguished by their (service) discipline that is the set

of rules determining the end of the service. Commonly applied service disciplines

are, e.g., the exhaustive, the gated, the binomial-exhaustive, the binomial-gated,

the limited-N , etc. In case of exhaustive discipline, the server continues serving

the customers until the queue is emptied. Under gated discipline only those cus-

tomers are served, which are present at the beginning of the service period. In

case of binomial-gated discipline, which was introduced by Levy [11], every cus-

tomer present at the beginning of the service period is served with probability p,

for 0 < p ≤ 1. In the binomial-exhaustive discipline (Boxma [12]) the binomial

limitation is applied on the busy periods associated to the customers presents at

the beginning of the service period, and hence each of them occurs with proba-

bility q, for 0 < q ≤ 1. In case of limited-N discipline at most N customers are

served among the customers, which are present at the beginning of the service

period.

2.3. Embedding matrix GFs. Let X̂(z) =
∑

∞

k=0 Xkzk, |z| ≤ 1 be L × L

matrix GF with the following properties

• matrices Xk are nonnegative,

• X̂(1)e = e, i.e. X̂(1) is stochastic.

Let ĥ(z) =
∑

∞

k=0 hkzk, |z| ≤ 1 be 1×L vector GF such that vectors hk are

nonnegative and ĥ(1)e = 1. We introduce the notation

ĥ
(
X̂(z)

)
=

∞∑

k=0

hkX̂(z)k, |z| ≤ 1. (2)

Each element of ĥ(X̂(z)) is also power series of z as in case of a scalar

probability generating function. Therefore for the convergence of ĥ(X̂(z)), for

|z| ≤ 1, it is enough to show that |ĥ(X̂(z))| is upper limited. This can be seen as
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follows:

|ĥ
(
X̂(z)

)
|e ≤ ĥ

(
X̂(|z|)

)
e =

∞∑

k=0

hkX̂(|z|)ke ≤

∞∑

k=0

hkX̂(1)ke = 1.

Additionally ĥ(X̂(z)) is also a 1 × L vector GF having the same properties

as vector GF ĥ(z).

Similarly let Ĥ(z) =
∑

∞

k=0 Hkzk, |z| ≤ 1 be an L × L matrix GF with the

following properties

• the matrices Hk are nonnegative,

• Ĥ(1)e = e, i.e. Ĥ(1) is stochastic.

We introduce the notation

Ĥ
(
X̂(z)

)
=

∞∑

k=0

HkX̂(z)k, |z| ≤ 1. (3)

Note that each element of Ĥ(X̂(z)) is also power series of z as in case of a

scalar probability generating function. Therefore for the convergence of Ĥ(X̂(z)),

for |z| ≤ 1, it is enough to show that |Ĥ(X̂(z))| is upper limited. This can be

seen as follows:

∣∣∣Ĥ
(
X̂(z)

)∣∣∣ e ≤ Ĥ
(
X̂(|z|)

)
e =

∞∑

k=0

HkX̂(|z|)ke ≤

∞∑

k=0

HkX̂(1)ke = e.

Furthermore Ĥ(X̂(z)) gives an L×L matrix GF having the same properties

as matrix GF Ĥ(z).

3. Service discipline independent stationary relations

In this section we present general relations which do not depend on the

specific service discipline.

Let N(t) denote the number of customers in the system at time t. We define

q̂(z) as the vector GF of the stationary number of customers by its element as

[q̂(z)]j = lim
t→∞

∞∑

n=0

P{N(t) = n, J(t) = j}zn, |z| ≤ 1.

Furthermore, tmk denotes the start of vacation in the k-th cycle. We define

m̂(z) as the vector GF of the stationary number of customers at start of vacations
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by its elements as

[m̂(z)]j = lim
k→∞

∞∑

n=0

P{N(tmk ) = n, J(tmk ) = j}zn, |z| ≤ 1.

Additionally we introduce the notations D(i), A(i), U(i), q(i) and m(i), i ≥ 1

for the i-th derivatives of D̂(z), Â(z), Û(z), q̂(z) and m̂(z) at z = 1, respectively.

We also use the notations A = Â(1), U = Û(1) and m = m̂(1).

As usual, I stands for the identity matrix.

Theorem 1. In the vacation model the following service discipline indepen-

dent relations hold:

• the vector GF of the stationary number of customers at an arbitrary instant

can be expressed as

q̂(z)D̂(z)
(
zI− Â(z)

)
=

m̂(z)(Û(z) − I)

v
(1 − ρ)(z − 1)Â(z), (4)

• the mean of the stationary number of customers at an arbitrary instant is

given by

q(1) =
m(1)

λv

(
U(1)eπ + (U − I)

(
A(1) − A(D + eπ)−1D(1)

)
eπ

)

+
m

λv

(
1

2
U(2)eπ +

1

2
(U − I)A(2)eπ + U(1)A(1)eπ

)

−
m

λv

(
U(1)A + (U − I)A(1)

)
(D + eπ)−1D(1)eπ

+
m

λv

(
U(1)Aeπ + (U − I)A(1)eπ

) (
C2eπ

λ
+ (1 − ρ)C1

)

+
m

λv
(U − I)A(D + eπ)−1

(
λI − D(1)eπ

)(
C2eπ

λ
+ (1 − ρ)C1

)

+ π

(
A(2)eπ

2(1 − ρ)
−

(
I − A(1)

)
C1

)
, (5)

where matrices C1 and C2 are defined as

C1 = (I − A + eπ)−1

(
A(1)eπ

(1 − ρ)
+ I

)
, C2 = D(1)(D + eπ)−1D(1) −

1

2
D(2).

Proof. The proof of the theorem can be found in [9]. �

Note that the contribution of the concrete service discipline to relations (4)

and (5) is incorporated by the quantities m̂(z), m(1) and m.



366 Zsolt Saffer and Miklós Telek

4. System equations

To obtain the unknowns m̂(z), m, m(1) in (4) and (5), we setup the system

equations for the model with binomial-gated and binomial-exhaustive disciplines.

Let tfk denote the end of vacation in the k-th cycle. The 1 × L stationary

probability vector fn is defined by its elements as

[fn]j = lim
k→∞

P
{
N(tfk) = n, J(tfk) = j

}
.

The corresponding vector GF, f̂(z), is defined as

f̂(z) =
∞∑

n=0

fnzn, |z| ≤ 1.

Theorem 2. In the vacation model with binomial-gated discipline

(0 < p ≤ 1) the following system equation holds:

m̂(z) = m̂
(
pÂ(z) + (1 − p)Iz

)
Û

(
pÂ(z) + (1 − p)Iz

)
. (6)

Proof. In the binomial-gated discipline each customer, who is present at

the end of the vacation, gets service with probability p (0 < p ≤ 1) independently

from the other ones. Assuming, that the number of customers present at the end

of the vacation is n, for n ≥ 0, the probability that 0 ≤ k ≤ n customers get

service is
(
n

k

)
pk(1 − p)n−k. Each of the k customers getting service generates a

random population of customers arriving during its service time, whose matrix

GF is Â(z). Each of the other n−k customers remains present at start of the next

vacation, thus each of them can be described by matrix GF Iz. Since I and Â(z)

commute, independently of the selection order of the customers the matrix GF

of the number of customers at start of the next vacation is Âk(z)(Iz)n−k. Using

it and applying the binomial theorem yields to the matrix GF of the number of

customers at start of the vacation, given that there is n customers present at end

of the previous vacation, as

n∑

k=0

(
n

k

)
pk(1 − p)n−kÂk(z)(Iz)n−k =

(
pÂ(z) + (1 − p)Iz

)n
.

Unconditioning gives the the governing relation for transition f → m of the

vacation model as

m̂(z) =
∞∑

n=0

fn
(
pÂ(z) + (1 − p)Iz

)n
= f̂

(
pÂ(z) + (1 − p)Iz

)
. (7)
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The number of customers at end of the vacation equals the sum of those

present at start of the vacation and those who arrived during the vacation period.

Utilizing the independence property A.1 the governing relation for transition

m → f of the vacation model can be expressed as

f̂(z) = m̂(z)Û(z). (8)

Combining (7) and (8) results in the statement. �

We define matrix G as the minimal non-negative solution of G=
∑

∞

k=0 AkG
k.

To give the stochastic interpretation of this matrix we introduce the homoge-

nous bivariate Markov chain {(N(tdℓ ), J(tdℓ )); ℓ ∈ {1, . . . }} on the state space

{0, 1, . . .} × {1, 2, . . . , L}, where tdℓ denotes the ℓ-th customer departure epoch of

the corresponding BMAP/GI/1 queue (having the same arrival and departure

processes as the vacation model) for ℓ ≥ 1. N(tdℓ ) is referred to as level of the

process, for ℓ ≥ 1. Then the (i, j)-th element of matrix G is interpreted as the

probability that starting from state (n+1, i) at the first passage to one level down

the Markov chain hits the state (n, j), n ∈ 0, 1, 2, . . ., 1 ≤ i, j ≤ L. Matrix G can

be computed from its defining equation G =
∑

∞

k=0 AkG
k, e.g., by applying the

standard algorithm (Lucantoni [3]). Matrix G is stochastic if ρ < 1. For more

details on matrix G we refer to Neuts [4].

Theorem 3. In the vacation model with binomial-exhaustive discipline (0 <

q ≤ 1) the following system equation holds:

m̂(z) = m̂(qG + (1 − q)Iz)Û(qG + (1 − q)Iz). (9)

Proof. In the binomial-exhaustive discipline busy period can be associated

to each customer, who is present at end of the vacation. Each busy period occurs

with probability q (0 < q ≤ 1) independently from the other ones. If a busy

period occurs the above introduced Markov chain goes one level down. It can

be described by a matrix (GF) G, since none of the customers belonging to the

busy period remains at start of the next vacation. We apply a similar argument

as in case of the binomial-gated discipline. Thus assuming, that the number of

customers present at end of the vacation is n, for n ≥ 0, the matrix GF of number

of customers at start of the vacation is given as

n∑

k=0

(
n

k

)
qk(1 − q)n−kGk(Iz)n−k = (qG + (1 − q)Iz)n.
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Unconditioning gives the the governing relation for transition f → m of the

vacation model as

m̂(z) =

∞∑

n=0

fn(qG + (1 − q)Iz)n = f̂(qG + (1 − q)Iz). (10)

The governing relation for transition m → f of the vacation model is the same

as for the binomial-gated discipline, since it is discipline independent. Therefore

it is given by (8) again. Combining (10) and (8) results in the statement. �

5. Closed form result for vacation model

with binomial-gated discipline

In order to express the unknowns m̂(z), m, m(1) in (4) and (5) we solve the

system equation (6).

Let ei stand for the row vector, whose i-th element equals to 1 and its other

elements are 0. In addition let Y || x denote the matrix Y with the last column

replaced by the column vector x.

Theorem 4. In the stable vacation model with binomial-gated discipline

(0 < p ≤ 1) the closed-form expression of the vector GF of stationary number of

customers at start of vacations, m̂(z), is given as:

m̂(z) = m̂(G)
∞∏

r=1

Û

( r−1∑

l=0

(1 − p)lpÂ(∆̂r−1−l(z)) + (1 − p)rIz

)
, (11)

where m̂(G) is a solution of a system of linear equation

m̂(G) = eL

(
(I − Û(G)) || e

)
−1

, (12)

and the series of matrix GFs ∆̂k(z) is defined recursively as

∆̂0(z) = Iz, |z| ≤ 1,

∆̂k+1(z) = pÂ(∆̂k(z)) + (1 − p)I∆̂k(z), k ≥ 0. (13)

Proof. Due to the convergence of (2) and (3) for |z| ≤ 1 system equation

(6) remains valid when z is substituted by a matrix GF X̂(z).

Now we apply the series of matrix GFs, ∆̂k(z), for k ≥ 0, defined in (13).
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Substituting z by matrix GF ∆̂k(z), for k ≥ 0 in (6) leads to

m̂(∆̂k(z)) = m̂
(
∆̂k+1(z)

)
Û(∆̂k+1(z)), k ≥ 0. (14)

Solving (14) by recursive substitution for k ≥ 0 yields

m̂(z) = m̂
(

lim
k→∞

∆̂k(z)
) ∞∏

r=1

Û(∆̂r(z)). (15)

Applying recursive substitution in (13) results in

∆̂1(z) = pÂ(z) + (1 − p)Iz,

∆̂2(z) = pÂ(∆̂1(z)) + (1 − p)pÂ(z) + (1 − p)2Iz,

...

∆̂k(z) =

k−1∑

l=0

(1 − p)lpÂ(∆̂k−1−l(z)) + (1 − p)kIz. (16)

We apply lemma 1 (see in Apendix) for determining limk→∞ ∆̂k(z), since

the properties of Â(z), 0 < p and due to stability of the model ρ < 1 ensure that

its assumptions hold. Note, that matrix G in (34), in the context of the vacation

model with binomial-gated discipline (in the whole Section 5), is the minimal

non-negative solution of G = pÂ(G) + (1 − p)G and it can be computed from

this defining equation. Applying (34) and (16) in (15) gives (11).

Next we determine the term m̂(G) in (11). Taking the limit k → ∞ on (14)

results in

m̂
(

lim
k→∞

∆̂k(z)
)

= m̂
(

lim
k→∞

∆̂k(z)
)
Û

(
lim

k→∞

∆̂k(z)
)
. (17)

Applying (34) in (17) and rearranging yields

m̂(G)(I − Û(G)) = 0. (18)

The same system of linear equation holds for the phase probability vector

at start of vacations (m) in the corresponding vacation model with exhaustive

discipline (see (30)). Due to stability of the model, (30) and me = 1 uniquely

determine m, which implies that matrix (I− Û(G)) has rank L − 1.

Therefore an additional relation is required to make the system of linear

equation (18) complete. For this purpose we add the normalization condition

m̂(G)e = 1. (19)

The solution of system of linear equation (18) and (19) for m̂(G) is given

by (12), which completes the proof. �
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We point out here that the essence of the method of series of matrix GFs,

which is applied in the proof of Theorem 4, is the use of the argument of m̂( ) on

the r.h.s. of the system equation (6) in the recursive definition of ∆̂k+1(z) in (13).

This appropriate definition implies that m̂(∆̂k(z)) can be expressed in terms of

m̂(∆̂k+1(z)) (for k ≥ 0 in (14)), which allows the recursive solution of m̂(z).

The unknowns m, m(1) in (5) can be determined by setting z = 1 in (11)

and taking the first derivative of (11) at z = 1, respectively, which result in

m = m̂(G)

∞∏

r=1

Û

( r−1∑

l=0

(1 − p)lpÂ
(
∆̂r−1−l(1)

)
+ (1 − p)rI

)
,

m(1) = m̂(G)

∞∑

i=1

i−1∏

k=1

Û

( k−1∑

l=0

(1 − p)lpÂ
(
∆̂k−1−l(1)

)
+ (1 − p)kI

)

dÛ
( ∑i−1

l=0(1 − p)lpÂ(∆̂i−1−l(z)) + (1 − p)iIz
)

dz

∣∣∣∣
z=1

∞∏

r=i+1

Û

( r−1∑

l=0

(1 − p)lpÂ
(
∆̂r−1−l(1)

)
+ (1 − p)rI

)
, (20)

where the empty product equals to 1 as usual.

6. Closed form result for vacation model

with binomial-exhaustive discipline

Similarly to the case of binomial-gated discipline we solve the system equation

(9) for m̂(z), however here we start with a proposition.

Proposition 1. Let us consider the stable vacation model with binomial-

exhaustive discipline having parameter 0 < q < 1. A series of matrix GFs is

defined recursively as

Θ̂0(z) = Iz, |z| ≤ 1,

Θ̂k+1(z) = qG + (1 − q)IΘ̂k(z), k ≥ 0. (21)

The series of matrix GFs Θ̂k(z) uniquely converges to stochastic matrix G,

which is independent of z:

lim
k→∞

Θ̂k(z) = G. (22)
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Proof. Applying recursive substitution in (21) results in

Θ̂1(z) = qG + (1 − q)Iz,

Θ̂2(z) = qG + (1 − q)qG + (1 − q)2Iz,

...

Θ̂k(z) =

k−1∑

l=0

(1 − q)l qG + (1 − q)kIz. (23)

Utilizing 0 < q < 1 and applying the form for the limit of the sum of geometric

series in (23) it leads to

lim
k→∞

Θ̂k(z) =
1

1 − (1 − q)
qG = G. (24)

Due to stability of the model ρ < 1 and hence matrix G is stochastic. Addi-

tionally (24) holds for |z| ≤ 1 and hence the proof is completed. �

Theorem 5. In the stable vacation model with binomial-exhaustive disci-

pline (0 < q < 1) the closed-form expression of the vector GF of stationary

number of customers at start of vacations, m̂(z), is given as:

m̂(z) = m̂(G)

∞∏

r=1

Û

( r−1∑

l=0

(1 − q)l qG + (1 − q)rIz

)
, (25)

where m̂(G) is a solution of a system of linear equation and it is given as

m̂(G) = eL

(
(I − Û(G)) || e

)
−1

. (26)

Proof. We apply again the method of series of matrix GFs as in the proof of

Theorem 4. Now we need the series of matrix GFs Θ̂k, k ≥ 0, defined recursively

in (21). Substituting z by matrix GF Θ̂k(z), for k ≥ 0 in system equation (9)

leads to

m̂
(
Θ̂k(z)

)
= m̂

(
Θ̂k+1(z)

)
Û(Θ̂k+1(z)), k ≥ 0. (27)

Solving (27) by recursive substitution for k ≥ 0 yields

m̂(z) = m̂
(

lim
k→∞

Θ̂k(z)
) ∞∏

r=1

Û
(
Θ̂r(z)

)
. (28)

Applying (22) and (23) in (28) gives (25).

Starting from (27) and applying the same arguments as in the proof of Theo-

rem 4 leads to the same system of linear equation for m̂(G) as there. Therefore the

solution for m̂(G) is also the same as there and hence (26) is the same as (12). �
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The unknowns m, m(1) in (5) can be determined by setting z = 1 in (25)

and taking the first derivative of (25) at z = 1, respectively, which result in

m = m̂(G)
∞∏

r=1

Û

( r−1∑

l=0

(1 − q)l qG + (1 − q)rI

)
,

m(1) = m̂(G)

∞∑

i=1

i−1∏

k=1

Û

( k−1∑

l=0

(1 − q)l qG + (1 − q)kI

)

dÛ
( ∑i−1

l=0(1 − q)l qG + (1 − q)iIz
)

dz
|z=1

∞∏

r=i+1

Û

( r−1∑

l=0

(1 − q)l qG + (1 − q)rI

)
. (29)

7. Special case of the model with the exhaustive discipline

By setting q = 1 in the binomial-exhaustive discipline results in the exhaus-

tive discipline as a special case. In case of this discipline no customer present at

start of vacation, i.e. m̂(z) = m̂(0) = m̂(1). Using it, setting q = 1 in (9) and

applying the notation m = m̂(1) results in the system equation for the vacation

model with exhaustive discipline as

m = mÛ(G). (30)

Due to stability of the model the system of linear equation (30) (together

with the normalization condition me = 1) can be solved for m by applying the

same method as in the proof of Theorem 4 for solving m̂(G) and it yields

m = eL

(
(I − Û(G)) || e

)
−1

. (31)

For this model m(1) = 0, since no customer present at start of vacation.

Applying it in (5) results in the mean of the stationary number of customers at

an arbitrary instant in the vacation model with exhaustive discipline as

q(1) =
m

λv

(
1

2
U(2)eπ +

1

2
(U − I)A(2)eπ + U(1)A(1)eπ

)

−
m

λv

(
U(1)A + (U − I)A(1)

)
(D + eπ)−1D(1)eπ

+
m

λv

(
U(1)Aeπ + (U − I)A(1)eπ

) (
C2eπ

λ
+ (1 − ρ)C1

)
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+
m

λv
(U − I)A(D + eπ)−1

(
λI − D(1)eπ

)(
C2eπ

λ
+ (1 − ρ)C1

)

+ π

(
A(2)eπ

2(1 − ρ)
− (I − A(1))C1

)
. (32)

Appendix

In the following we give a generalization of a convergence property of series

of scalar PGFs (see [10]) for the series of matrix GFs.

Appendix A. Convergence of a class of matrix GF series

Lemma 1. Let Ĥ(z) =
∑

∞

i=0 Hiz
i, |z| ≤ 1 be an L×L matrix GF with the

following assumptions

(1) the matrices Hi are nonnegative,

(2) Ĥ(1)e = e, i.e. Ĥ(1) is stochastic,

(3) the discrete-time Markov chain (DTMC) with the transition matrix Ĥ(1) =∑
∞

i=0 Hi is irreducible and

(4) 0 < σ, where σ = πH
bH(z)
dz

∣∣
z=1

e and πH is the unique (due to assumption

(3)) eigenvector of Ĥ(1) belonging to eigenvalue 1, for which πHe = 1.

Additionally a series of matrix GFs is defined recursively as

X̂0(z) = Iz, |z| ≤ 1,

X̂k+1(z) = Ĥ(X̂k(z)), k ≥ 0. (33)

If σ < 1 then the series of matrix GFs X̂k(z) converges to a stochastic ma-

trix, which is independent of z,

lim
k→∞

X̂k(z) = G, (34)

where G is the minimal non-negative solution of G =
∑

∞

k=0 HkG
k.
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Proof. Let {(Γℓ, Jℓ); ℓ ≥ 1} be a bivariate DTMC on the state space

(Γℓ ∈ {0, 1, . . .}, Jℓ ∈ {1, 2, . . . , L}) with the following transition matrix:

Π =





I 0 0 0 . . .

H0 H1 H2 H3 . . .

0 H0 H1 H2 . . .

0 0 H0 H1 . . .
...

...
...

...
. . .




(35)

Γℓ is called the level of the chain at time ℓ and Jℓ is the phase of the chain.

In the context of queuing models with BMAP arrival the level of the chain cor-

responds to the number of customers in the system and the phase of the chain is

the phase of the BMAP.

X̂k(z) in (33) is matrix GF, which implies that X̂ℓ
k(z) is also matrix GF, for

k ≥ 1 and ℓ ≥ 0. The matrix X
(ℓ)
k,i, for k ≥ 1 and i, ℓ ≥ 0, is defined as the i-th

coefficient of the power series form of the matrix GF X̂ℓ
k(z). Hence X̂ℓ

k(z) can be

written as

X̂ℓ
k(z) =

∞∑

i=0

X
(ℓ)
k,iz

i, |z| ≤ 1.

We also use the notation Xk,i = X
(1)
k,i , for k ≥ 1 and i ≥ 0. Note that

matrices X
(ℓ)
k,i, for k ≥ 1 and i, ℓ ≥ 0, are nonnegative and matrices X̂k(1), for

k ≥ 1, are stochastic.

Analogously to the infinite state Markov chain with transition matrix in (35)

a sequence of infinite state Markov chains is defined, where the transition matrix

of the k-th Markov chain, for k ≥ 1, is given as

Πk =





I 0 0 0 . . .

Xk,0 Xk,1 Xk,2 Xk,3 . . .

0 Xk,0 Xk,1 Xk,2 . . .

0 0 Xk,0 Xk,1 . . .
...

...
...

...
. . .




(36)

We refer to the Markov chain with transition matrix Πk as Markov chain Πk.

It can be directly seen from (36) that, for k ≥ 1, the matrix GF X̂k(z) describes

the random population after one step transition starting from the population of 1

initial customer, i.e. starting from level 1. Introducing matrix Ei of size (L×∞),

whose i-th (L×L) block is I and all other entries equals to 0 (e.g., the first block
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row of Πk is E0) and matrix Z of size (∞× L), whose i-th (L × L) block is Izi,

for i ≥ 0, (i.e., ZT = (I, Iz, Iz2, . . .), where ZT stands for the transpose of Z), we

have X̂k(z) = E1ΠkZ.

We apply induction to show that the matrix GF describing the random pop-

ulation after n step transition of the Markov chain Πk (Πn
k ) starting from level

c + n is
Ec+nΠn

kZ = zcX̂n
k (z), n ≥ 0, c ≥ 0, k ≥ 1. (37)

For n = 0 and n = 1 (37) follows directly from the transition matrix (36) as

EcΠ
0
kZ = Izc = zcX̂0

k(z), Ec+1ΠkZ = zcX̂k(z). (38)

For n ≥ 2 we apply induction. We show that the matrix GF of the random

population after ℓ step transition of the Markov chain Πk starting from level c+n

is given as

Ec+nΠℓ
kZ = zc+n−ℓX̂ℓ

k(z), 1 ≤ ℓ < n, c ≥ 0, k ≥ 1. (39)

For l = 1 (39) follows from (38) as

Ec+nΠkZ = zc+n−1X̂k(z).

The inductive condition (39) can be rearranged by using EiZ = Izi, for

i ≥ 0, as

Ec+nΠℓ
kZ = zc+n−ℓX̂ℓ

k(z) = zc+n−ℓ

∞∑

i=0

X
(ℓ)
k,iIz

i =

∞∑

i=0

X
(ℓ)
k,iIz

c+n−l+i

=

∞∑

i=0

X
(ℓ)
k,iEc+n−l+iZ.

Hence

Ec+nΠℓ
k =

∞∑

i=0

X
(ℓ)
k,iEc+n−l+i. (40)

By using (40) and (38) the matrix GF of the random population after ℓ + 1

step transition, Ec+nΠℓ+1
k Z can be expressed as

Ec+nΠ
ℓ+1
k Z = Ec+nΠℓ

kΠkZ =

∞∑

i=0

X
(ℓ)
k,iEc+n−l+iΠkZ

=

∞∑

i=0

X
(ℓ)
k,iz

c+n−ℓ+i−1X̂k(z) = zc+n−(ℓ+1)
∞∑

i=0

X
(ℓ)
k,iz

iX̂k(z) = zc+n−(ℓ+1)X̂ℓ+1
k (z).

Therefore if the inductive condition holds for ℓ (Ec+nΠℓ
kZ = zc+n−ℓX̂ℓ

k(z))

then it follows that it also holds for ℓ + 1 (Ec+nΠℓ+1
k Z = zc+n−(ℓ+1)X̂ℓ+1

k (z)).

Applying the induction recursively for ℓ = 1, . . . , n−1 gives the matrix GF of the

random population after n step transition as Ec+nΠ
n
kZ = zcX̂n

k (z).
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Now let us turn back to the matrix GFs X̂k(z), for k ≥ 1. X̂1(z) = E1Π1Z =

Ĥ(z) describes the random population after one step transition of the Markov

chain Π1 starting from level 1 (E1), where Π1 = Π. In order to interpret X̂k+1(z)

we continue with the interpretation of EnΠk+1Z, for which (38) implies that

EnΠk+1Z = zn−1X̂k+1(z), for n ≥ 1. It follows from transition matrix (35) that

Hi = EnΠET
n−1+i, i ≥ 0, n ≥ 1. (41)

Using the definition of X̂k+1(z), the property (37) and (41) results in

EnΠk+1Z = zn−1X̂k+1(z) = zn−1
∞∑

i=0

HiX̂
i
k(z) =

∞∑

i=0

Hiz
n−1X̂i

k(z)

=
∞∑

i=0

HiEn−1+iΠ
i
kZ = EnΠ

∞∑

i=0

ET
n−1+iEn−1+iΠ

i
kZ, k ≥ 1, n ≥ 1. (42)

ET
n−1+i in (42) represents the case when the next level after one step transi-

tion of the Markov chain Π starting from level n (EnΠ) is n − 1 + i, where i ≥ 0

is random. Setting n = 1 in (41) shows that i in (42) can be also interpreted as

the random number of customers after one step transition of the Markov chain Π

starting from level 1. Hence (42) shows the interpretation of the matrix GF of the

random population after one step transition of the Markov chain Πk+1 starting

from level n ≥ 1 (En) as the matrix GF of the random population after one initial

one step transition of the Markov chain Π starting from level n and followed by

so many consecutive one step transitions of the Markov chain Πk as the random

number of customers (i) after one step transition of the Markov chain Π starting

from level 1.

En−1+iΠ
i
k in (42) means no transition for i = 0 and i number of one step

transitions of Markov chain Πk, for i ≥ 1. The first transition of Markov chain

Πk starts from level n−1+i, the second one starts from level n−1+i−1 or greater

(see transition matrix (36)) and so on. Thus each of the i consecutive transitions

of Markov chain Πk in (42) starts from level n ≥ 1 or greater. Therefore the

interpretation of (42) can be applied recursively. Applying the interpretation of

(42) recursively for k ≥ 1 shows that the random population characterized by

EnΠk+1Z is originated from a random number of consecutively applied one step

transitions of the Markov chain Π starting from level n.

In order to express quantitatively the number of consecutively applied one

step transitions of the Markov chain Π we introduce several generic random

variables. O denotes the number of customers after one step transition of the
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Markov chain Π starting from level 1. Because we need to distinguish among the

samples of this random variable we also use the notations Oi1 , Oi2,i1 , O...,i2,i1,

for its individual samples. T (k), for k ≥ 1, denotes the number of consecutive

one step transitions of the Markov chain Π starting from level n ≥ 1, which

leads to the random population after one step transition of the Markov chain Πk

starting from level n. Note that T (k) is independent of n, since the power of Π

and the power of Πk in (42) are independent of n. Again we need to distinguish

among the samples of this random variable hence we also use the notation Ti(k)

for its individual samples. Then using the above interpretation of EnΠk+1Z the

number of one step transitions of the Markov chain Π, which leads to the random

population characterized by matrix GF EnΠk+1Z, can be expressed as

T (1) = 1, T (k + 1) = 1 +

O∑

i=1

Ti(k), k ≥ 1. (43)

Applying recursive substitution in (43) results in

T (1) = 1,

T (2) = 1 + O,

T (3) = 1 +

O∑

i1=1

(1 + Oi1 ),

T (4) = 1 +
O∑

i2=1

(
1 +

Oi2∑

i1=1

(1 + Oi2,i1)

)
,

... (44)

Each time when any O...,i2,i1, = 0, the Markov chain Π goes to the absorbing

level 0. Thus the random realizations of the chain, in which the total number of

transitions in (44) is finite, as k → ∞, all go to the absorbing level 0. Hence

they can be extended by infinite number of further one step transitions without

resulting any change in the state of the Markov chain Π. Therefore, as k → ∞, the

random population with matrix GF zn−1X̂k(z) = EnΠkZ, for n ≥ 1, corresponds

to infinite many one step transition of the Markov chain Π starting from level n.

The upper block Hessenberg form and the repetitive structure of the tran-

sition matrix Π ensures that {(Γℓ, Jℓ); ℓ ≥ 1} is an M/G/1-type chain. If the

assumptions of the lemma hold then starting from any level greater than 0 this

Markov chain eventually gets absorbed at level 0, as the number of one step

transitions goes to ∞. In case of starting from level 1 the corresponding phase
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transition matrix is G (see Neuts [4]). It follows that

lim
k→∞

X̂k(z) = G, (45)

which is stochastic if σ < 1. Furthermore (45) shows that limk→∞ X̂k(z) is

independent of z, which completes the proof. �
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