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Annihilators on co-commutators with generalized
derivations on Lie ideals

By LUISA CARINI (Messina), VINCENZO DE FILIPPIS (Messina)
and BASUDEB DHARA (Paschim Medinipur)

Abstract. Let R be a prime ring of characteristic different from 2, U the Utumi

quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R,

H and G non-zero generalized derivations of R. Suppose that there exists 0 6= a ∈ R

such that a(H(u)u− uG(u)) = 0, for all u ∈ L, then one of the following holds:

(1) there exist b′, c′ ∈ U such that H(x) = b′x + xc′, G(x) = c′x with ab′ = 0;

(2) R satisfies s4 and there exist b′, c′, q′ ∈ U such that H(x) = b′x + xc′, G(x) =

c′x + xq′, with a(b′ − q′) = 0.

1. Introduction

Let R be a prime ring of characteristic different from 2 with center Z(R)
and extended centroid C. The standard polynomial of degree 4 is defined as
s4(x1, . . . , x4) =

∑
σ∈S4

(−1)σxσ(1) · · ·xσ(4), where σ runs over S4 the symmetric
group of degree 4 and where (−1)σ is 1 or −1 according as σ is an even or odd
permutation.

A well known result of Posner [18] states that if d is a derivation of R

such that [d(x), x] ∈ Z(R), for any x ∈ R, then either d = 0 or R is commu-
tative. This theorem indicates that the global structure of a ring R is often
tightly connected to the behaviour of additive mappings defined on R. Follow-
ing this line of investigation, several authors generalized the Posner’s Theorem.
For instance in [2] Bresar proves that if d and δ are derivations of R such that
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d(x)x− xδ(x) ∈ Z(R), for all x ∈ R, then either d = δ = 0 or R is commutative.
Later in [12] Lee and Wong consider the case when d(x)x − xδ(x) ∈ Z(R), for
all x in some non-central Lie ideal L of R. They prove that either d = δ = 0 or
R satisfies s4, the standard identity of degree 4. Recently in [17] Niu and Wu

study the left annihilator of the set {d(u)u − uδ(u), u ∈ L}, where d and δ are
derivations of R and L is a non-central Lie ideal of R. In case the annihilator is
not zero, the conclusion is that R satisfies the standard identity s4 and d = −δ

are inner derivations. These facts in a prime ring are natural tests which evidence
that the set {d(u)u− uδ(u), u ∈ L} is rather large in R.

Here we will consider the same situation in the case the derivations d and δ are
replaced respectively by the generalized derivations H and G. More specifically
an additive map G : R −→ R is said to be a generalized derivation if there is a
derivation d of R such that, for all x, y ∈ R, G(xy) = G(x)y+xd(y). A significative
example is a map of the form G(x) = ax+xb, for some a, b ∈ R; such generalized
derivations are called inner. Generalized derivations have been primarily studied
on operator algebras. Therefore any investigation from the algebraic point of
view might be interesting (see for example [13]). Here our purpose is to prove the
following theorem:

Theorem 1. Let R be a prime ring of characteristic different from 2, U the

Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central

Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there

exists 0 6= a ∈ R such that a(H(u)u− uG(u)) = 0, for all u ∈ L, then one of the

following holds:

(1) there exist b′, c′ ∈ U such that H(x) = b′x + xc′, G(x) = c′x with ab′ = 0;

(2) R satisfies s4 and there exist b′, c′, q′ ∈ U such that H(x) = b′x + xc′,
G(x) = c′x + xq′, with a(b′ − q′) = 0.

In all that follows let R be a non-commutative prime ring of characteristic
different from 2, U its Utumi quotient ring and C = Z(U) the center of U . We
refer the reader to [1] for the definitions and the related properties of these objects.
In particular we make use of the following well known facts:

Fact 1. If I is a two-sided ideal of R, then R, I and U satisfies the same
generalized polynomial identities with coefficients in U ([4]).

Fact 2. Every derivation d of R can be uniquely extended to a derivation
of U (see Proposition 2.5.1 in [1]).

Fact 3. We denote by Der(U) the set of all derivations on U . By a deriva-
tion word we mean an additive map ∆ of the form ∆ = d1d2 . . . dm, with each
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di ∈ Der(U). Then a differential polynomial is a generalized polynomial, with
coefficients in U , of the form Φ(∆j xi) involving non-commutative indeterminates
xi on which the derivations words ∆j act as unary operations. The differential
polynomial Φ(∆j xi) is said to be a differential identity on a subset T of U if it
vanishes for any assignment of values from T to its indeterminates xi.

Let Dint be the C-subspace of Der(U) consisting of all inner derivations on
U and let d be a non-zero derivation on R. By Theorem 2 in [10] we have the
following result (see also Theorem 1 in [14]): If Φ(x1, . . . , xn, dx1, . . . ,

dxn) is a
differential identity on R, then one of the following holds:

(1) either d ∈ Dint;

(2) or R satisfies the generalized polynomial identity Φ(x1, . . . , xn, y1, . . . , yn).

Fact 4. If I is a two-sided ideal of R, then R, I and U satisfies the same
differential identities ([14]).

We refer the reader to Chapter 7 in [1] for a complete and detailed description
of the theory of generalized polynomial identities involving derivations.

Fact 5. Since we assume that char(R) 6= 2, then there exists a non-zero two-
sided ideal I of R such that 0 6= [I,R] ⊆ L. In particular, if R is a simple ring it
follows that [R, R] ⊆ L.

This follows from pp. 4–5 in [9], Lemma 2 and Proposition 1 in [6], Theorem 4
in [11].

2. The case of inner generalized derivations

We dedicate this section to prove the theorem in case both the generalized
derivations H and G are inner, that is there exist b, c, p, q ∈ U such that H(x) =
bx + xc and G(x) = px + xq, for all x ∈ R.

In light of Fact 5, since we suppose char(R) 6= 2, there exists a non-central
ideal I of R such that [I, I]⊆L. This implies that a(b[r1, r2]2+[r1, r2](c−p)[r1, r2]−
[r1, r2]2q) = 0 for all r1, r2 ∈ I. Moreover by Fact 1, I and R satisfy the same gen-
eralized polynomial identities, thus a(b[r1, r2]2+[r1, r2](c−p)[r1, r2]−[r1, r2]2q)=0
for all r1, r2 ∈ R. Hence in all that follows we assume that R satisfies the following
generalized polynomial identity

P (x1, x2) = a
(
b[x1, x2]2 + [x1, x2](c− p)[x1, x2]− [x1, x2]2q

)
.

P (x1, x2) is a generalized polynomial in the free product U ∗C C{x1, x2} of the
C-algebra U and the free C-algebra C{x1, x2} .
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We first prove the following:

Proposition 1. If a ∈ Z(R), then one of the following holds:

(1) either there exists b′ ∈ U such that H(x) = xb′ and G(x) = b′x, for all x ∈ R;

(2) or R satisfies s4 and there exists α ∈ C such that p = c − α and q = b + α,

that is H(x) = bx + xc and G(x) = cx + xb.

Proof. Since a ∈ Z(R), then a is not a zero-divisor, then by main assump-
tion it follows that (H(u)u − uG(u)) = 0, for all u ∈ [R, R]. In this case, it is
proved in [15] that either there exists b′ ∈ U such that H(x) = xb′ and G(x) = b′x,
for all x ∈ R, or R satisfies s4. In this last case R is PI-ring, moreover U satisfies
the same generalized polynomial identities of R. Therefore U is a central simple
algebra of dimension at most 4 over its center, and it is known that in this case
[r, s]2 ∈ Z(U) = C for all r, s ∈ U . Moreover U satisfies

b[x1, x2]2 + [x1, x2](c− p)[x1, x2]− [x1, x2]2q.

Since the polynomial [x1, x2]2 is central valued in U , then U satisfies

(b− q)[x1, x2]2 + [x1, x2](c− p)[x1, x2]. (1)

Denote eij the usual matrix unit, with 1 in the (i, j)-entry and zero elsewhere,
and write w = (c − p) =

∑
rs wrsers, for suitable wrs ∈ C. Therefore for any

i 6= j, let r1 = eii, r2 = eij and [r1, r2] = eij . It follows by (1) that eijweij = 0
for all i 6= j, that is wji = 0 and w is a diagonal matrix in M2(C). Moreover, for
all ϕ ∈ AutF (M2(C)), U satisfies

ϕ
(
(b− q)[x1, x2]2 + [x1, x2](c− p)[x1, x2]

)

which is (
ϕ(b− q)[x1, x2]2 + [x1, x2]ϕ(c− p)[x1, x2]

)

since the set of all the evaluation of [x1, x2] is invariant under the action of any
element of AutF (M2(C)). By the above argument, ϕ(c− p) must be diagonal. In
particular, let r 6= s and ϕ(x) = (1 + ers)x(1− ers), hence

ϕ(c− p) =
∑

t

wttett + wssers − wrrers

which implies wrr = wss, for all r 6= s. Thus c − p is a central matrix, namely
c − p = α. By (1) we get that U satisfies (b − q + α)[x1, x2]2, and since 0 6=
[U,U ]2 ⊆ C, we also have q − b = α = c − p. Thus we conclude that, in case R

satisfies s4, p = c− α and q = b + α. ut
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Proposition 2. If a /∈ Z(R) then either P (x1, x2) is a non-trivial generalized

polynomial identity for R or H(x) = b′x + xc′, G(x) = c′x for some b′, c′ ∈ U

satisfying ab′ = 0.

Proof. Suppose now that R does not satisfy any non-trivial generalized
polynomial identity. Let T = U ∗C C{X} be the free product over C of the C-
algebra U and the free C-algebra C{X}, with X the countable set consisting of
non-commuting indeterminates x1, x2, . . . , xn, . . . .

For brevity we write P (X) instead of P (x1, x2) and f(X) instead of [x1, x2].
Now consider the generalized polynomial P (X) ∈ U ∗C C{X}. By our hy-

pothesis, R satisfies the following generalized polynomial identity:

P (X) = abf(X)2 + af(X)(c− p)f(X)− af(X)2q = 0 ∈ T.

Since R does not satisfy non-trivial GPIs, by [4], the coefficients {ab, a} must be
linearly C-dependent. Therefore there exist β1, β2 ∈ C such that β1(ab)+β2a = 0,
with β1 6= 0 since a /∈ C. Hence we may write ab = λa, for a suitable λ ∈ C. In
this situation R satisfies

a
(
λf(X)2 + f(X)(c− p)f(X)− f(X)2q

)

that is
λf(X)2 + f(X)(c− p)f(X)− f(X)2q = 0 ∈ T.

Again since R does not satisfy any non-trivial generalized polynomial identity,
{1, q} must be linearly C-dependent, that is q ∈ C. This implies that G(x) =
(p + q)x and also that R satisfies

f(X)
(
λ + (c− p)− q

)
f(X)

which implies λ+(c−p)−q = 0, that is H(x) = bx+x(p+q−λ) = (b−λ)x+x(p+q),
and we obtain the required conclusion, for b′ = b− λ and c′ = p + q. ut

Lemma 1. Let R = Mm(F ) be the ring of all m×m matrices over a field F

of characteristic different from 2. If a is not central in R then there exists α ∈ F

such that p = c− α · Im, where Im is the identity matrix of order m, and one of

the following holds:

(1) q ∈ Z(R) and there exists γ ∈ F such that p + q = c + γ · Im, that is

H(x) = bx + xc, G(x) = (c + γ · Im)x; moreover a(b− γ · Im) = 0;

(2) R satisfies s4 and there exists q′ ∈ R such that G(x) = cx + xq′, with

a(b− q′) = 0.
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Proof. Denote a =
∑

rs ersars, q =
∑

rs ersqrs, c − p = w =
∑

rs erswrs,
for suitable ars, qrs, wrs ∈ F . By the main assumption, R satisfies

a
(
b[x1, x2]2 + [x1, x2](c− p)[x1, x2]− [x1, x2]2q

)
. (2)

Fix [x1, x2] = eij , for any i 6= j. In this case from (2) we have

aeij(c− p)eij = 0 (3)
that is

either aki = 0 ∀k or wji = 0 (3′).

Here we first prove that w is a diagonal matrix. In order to do this, we suppose
that there exists some non-zero off-diagonal entry of w and divide the proof into
two cases:

Case 1: m = 2.
Suppose w21 6= 0, then by (3) it follows a11 = a21 = 0. Of course, since we

suppose a 6= 0, we must assume now w12 = 0.
Choose [x1, x2] = [e12, e21] = e11 − e22 and by (2) we have

0 = Y = a
(
b(e11 − e22)2 + (e11 − e22)(c− p)(e11 − e22)− (e11 − e22)2q

)

in particular the (1, 1)-entry of the matrix Y is a12(b21 − w21 − q21) = 0 and the
(2, 1)-one is a22(b21 − w21 − q21) = 0. Therefore, from a 6= 0 follows

b21 − w21 − q21 = 0. (4)

In the same way, for [x1, x2] = [e12 − e21, e22] = e12 + e21 in (2) we have

0 = T = a
(
b(e12 + e21)2 + (e12 + e21)(c− p)(e12 + e21)− (e12 + e21)2q

)
.

The (1, 1)-entry of the matrix T is a12(b21 − q21) = 0 and the (2, 1)-one is
a22(b21 − q21) = 0. Since a 6= 0 we get

b21 − q21 = 0. (5)

Thus by (5) and (4) we obtain the contradiction w21 = 0.

Case 2: m ≥ 3.
Also in this case we suppose that there exists wji 6= 0 for some i 6= j, so that

aki = 0 for all k, that is the i-th column of a is zero.
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Let now q 6= i, j and fix [x1, x2] = [eij + eqj , ejj ] = eij + eqj . Then (2)
implies a(eij + eqj)w(eij + eqj) = 0 and since aki = 0 for all k, it follows that
aeqjw(eij + eqj) = 0. Moreover, by (3), we get aeqjweqj = 0, which implies that
aeqjweij = 0. The assumption wji 6= 0 implies that akq = 0 for all k, that is a

has just one non-zero column, the j-th one: a =
∑

r arjerj .
Notice that if wtj 6= 0 for some t 6= j, by the same argument we get that

a has just the t-th column non-zero, that is a = 0. Thus we may assume that
wtj = 0 for all t 6= j.

Let t 6= i, j and denote by σt and τt the following automorphisms of R:

σt(x) = (1 + ejt)x(1− ejt) = x + ejtx− xejt − ejtxejt

τt(x) = (1− ejt)x(1 + ejt) = x− ejtx + xejt − ejtxejt

and say σt(w) =
∑

σrsers, τt(w) =
∑

τrsers where σrs, τrs ∈ F . We have

σji = wji + wti and τji = wji − wti.

If there exists t such that σji = wji + wti = 0 or τji = wji − wti = 0 then
wti = −wji 6= 0 or wti = wji 6= 0. Therefore wji 6= 0 and wti 6= 0, and so, by
using (3), a = 0.

Hence assume that σji 6= 0 and τji 6= 0, for all t 6= i, j, and recall that, for
any F -automorphism ϕ of R, the following holds

ϕ(a)
(
ϕ(b)[x1, x2]2 + [x1, x2]ϕ(c− p)[x1, x2]− [x1, x2]2ϕ(q)

)
.

Thus in this case by (3), for any t 6= i, j, the non-zero entries of the matrices σt(a)
and τt(a) are just in the j-th column. In particular, since

σt(a) = a + ejta− aejt − ejtaejt =
∑

r

arjerj −
∑

r

arjert + atjejj − atjejt

τt(a) = a− ejta + aejt − ejtaejt =
∑

r

arjerj +
∑

r

arjert − atjejj − atjejt

then both the above matrices have zero in the (j, t) entry that is

−ajj − atj = 0 for σt(a)

ajj − atj = 0 for τt(a).

By char(R) 6= 2 we obtain ajj = atj = 0 for all t 6= i, that is a = aijeij .
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Denote now by ϕ and χ the following automorphisms of R:

ϕ(x) = (1 + eji)x(1− eji) = x + ejix− xeji − ejixeji,

χ(x) = (1− eji)x(1 + eji) = x− ejix + xeji − ejixeji

and say ϕ(w) =
∑

ϕrsers, χ(w) =
∑

χrsers where ϕrs, χrs ∈ F . Since, by (3′),
wij 6= 0 implies a = 0, we assume that wij = 0. Then we have

ϕji = wji − wjj + wii and χji = wji + wjj − wii

If ϕji = χji = 0, then we get the contradiction wji = 0.
If at least one of ϕji and χji is not zero, then, by (3), one of ϕ(a) and χ(a)

has zero in all the entries of the i-th column. In particular notice that

ϕ(a) = aijeij − aijeii + aijejj − aijeji,

χ(a) = aijeij + aijeii − aijejj − aijeji

which means that in any case the (j, i)-entry is aij = 0, a contradiction again.

All the previous arguments say that if a is not zero, then w must be a diagonal
matrix, w =

∑
t wtett.

Moreover, for all λ ∈ AutF (Mm(F )), since λ(a) 6= 0 and R satisfies

λ(a)
(
λ(b)[x1, x2]2 + [x1, x2]λ(c− p)[x1, x2]− [x1, x2]2λ(q)

)
,

we also have that λ(c − p) is diagonal. In particular, let r 6= s and λ(x) =
(1 + ers)x(1− ers), hence

λ(c− p) =
∑

t

wtett + wsers − wrers

is diagonal implying wr = ws = α, for all r 6= s. Thus c − p is a central matrix,
namely c− p = α · Im. Therefore R satisfies

ab[x1, x2]2 + a[x1, x2]2(α− q).

Denote by G the additive subgroup of R generated by all the evaluations of the
polynomial [x1, x2]2. By [3], since char(R) 6= 2, either [R, R] ⊆ G or [x1, x2]2 is
central valued on R that is R satisfies s4.

In the first case R satisfies

ab[x1, x2] + a[x1, x2](α− q).
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Let α − q = u =
∑

r,s ursers, with urs ∈ F . For [x1, x2] = eij , with any i 6= j, it
follows abeij + aeij(α− q) = 0. By right multiplying for any eqq, with q 6= j, we
have aeij(α− q)eqq = 0 that is

either aki = 0 ∀k or ujq = 0 ∀q 6= j.

In particular
either aki = 0 ∀k or uji = 0 (3′′).

Notice that (3′′) has the same flavour of (3′). By the same argument as above, in
case a 6= 0 we have that u = α− q is a central matrix, and so a(b + u)[r1, r2] = 0,
for all r1, r2 ∈ R. This implies a(b+u) = 0, which is the conclusion 1 of Lemma 1,
for γ = −u.

Consider finally the case when [x1, x2]2 is central valued on R. Here R

satisfies a(b + α − q)[x1, x2]2, moreover there exists 0 6= [r1, r2]2 ∈ F · Im, which
implies a(b + α− q) = 0, the conclusion 2 of Lemma 1, for q′ = q − α. ut

Lemma 2. Let R be a prime ring of characteristic different from 2. If a is

not central in R then c− p = α ∈ C and one of the following holds:

(1) q ∈ C and there exist λ ∈ C, b′ = b−λ, c′ = p+q such that H(x) = b′x+xc′,
G(x) = c′x, with ab′ = 0;

(2) q ∈ C and there exists γ = q − α ∈ C such that p + q = c + γ, that is

H(x) = bx + xc, G(x) = (c + γ)x, with a(b− γ) = 0;

(3) R satisfies s4 and there exists q′ = q − α such that G(x) = cx + xq′, with

a(b− q′) = 0.

Proof. As above we denote for brevity P (x1, x2) by P (X) and [x1, x2] by
f(X) and consider the generalized polynomial

P (X) = abf(X)2 + af(X)(c− p)f(X)− af(X)2q.

Since U and R satisfy the same generalized polynomial identities with coefficients
in U (see Fact 1),then P (X) is also a generalized identity for U .

Suppose first that U does not satisfy any non-trivial generalized polynomial
identity. Therefore by Proposition 2 we get conclusion 1.

Hence we may suppose now that U satisfies some non-trivial generalized
polynomial identity. By [16] U is primitive having a non-zero socle Soc(U) with
C as the associated division ring and by Jacobson’s Theorem (p. 75 in [8]) U

is isomorphic to a dense ring of linear transformations of some vector space V

over C.
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If V is finite-dimensional over C, it follows that R ⊆ U = Mk(C), for k =
dimC V . In this case we get the required conclusions by Lemma 1.

Let dimC V = ∞. Denote EndCV the ring of endomorphisms of CV and
recall that the range of a polynomial f(X) ∈ C{x1, x2} is defined as follows

r(f ; U) = {f(x1, x2) ∈ EndCV : x1, x2 ∈ U}.

In [19] (Lemma) it is proved that, if U is a dense subring of EndCV and dimC V =
∞, then r(f ; U) is a dense subset of EndCV and this implies that U satisfies the
generalized polynomial identity

abx2 + ax(c− p)x− ax2q. (6)

Suppose that there exists a minimal idempotent element e of Soc(U) such
that e(c − p)(1 − e) 6= 0. Replace in (6) x by (1 − e)re for any r ∈ U , then it
follows that a(1 − e)re(c − p)(1 − e)re = 0, which implies a(1 − e) = 0, since
e(c− p)(1− e) 6= 0. This means that a = ae.

On the other hand, if in (6) we replace x by ere for any r ∈ U , we get
ab(ere)2 + aere(c− p)ere− a(ere)2q = 0, and by right multiplying by (1− e) one
has −ae(ere)2q(1 − e) = 0. Since 0 6= a = ae, we have eq(1 − e) = 0, that is
eq = eqe.

Finally replace in (6) x by x + y. It follows that U satisfies:

ab(xy) + ab(yx) + ax(c− p)y + ay(c− p)x− a(xy)q − a(yx)q

and for any x = re and y = (1− e)s, with r, s ∈ U , we get

ab(1− e)sre + are(c− p)(1− e)s + a(1− e)s(c− p)re− a(1− e)sreq = 0.

By right multiplying by (1− e) and since eq(1− e) = 0, we have are (c− p)(1− e)
s(1− e) = 0, for all r, s ∈ U . By the primeness of U and by the assumption that
e(c− p)(1− e) 6= 0, the contradiction a = 0 follows.

Therefore e(c − p)(1 − e) = 0, for any idempotent element e ∈ Soc(U) of
rank 1. Hence [c−p, e] = 0, for any idempotent of rank 1, and [c−p, Soc(U)] = 0,
since Soc(U) is generated by these idempotent elements. This argument gives
c − p ∈ C, and as a consequence of (6), U satisfies the generalized polynomial
identity

abx2 + ax2(c− p− q). (7)

As above, suppose that there exists a minimal idempotent element e of
Soc(U) such that (1− e)(c− p− q)e 6= 0. If we replace in (7) x by (1− e)r(1− e)
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for any r ∈ U and multiply by e on the right, then we get a((1− e)r(1− e))2(c−
p− q)e = 0, that is a(1− e) = 0, since (1− e)(c− p− q)e 6= 0.

Now by (7), for x = t + y, it follows that U satisfies

abty + abyt + aty(c− p− q) + ayt(c− p− q).

Finally for t = (1 − e), y = z(1 − e) and by right multiplying by e, we have
az(1 − e)(c − p − q)e = 0, that is a = 0, a contradiction. Therefore (1 − e)(c −
p − q)e = 0, for any idempotent element e ∈ Soc(U) of rank 1, that is as above
c− p− q ∈ C, which implies q ∈ C. Therefore U satisfies a(b + c− p− q)x2, that
is a(b + c − p − q) = 0, with c − p ∈ C and q ∈ C, which is the conclusion 2 of
Lemma 2. ut

3. The general case

We consider now the more general situation and prove the main Theorem
of the paper. As in Section 1, since we suppose char(R) 6= 2, by Fact 5 we may
assume that there exists a non-zero ideal I of R such that

a
(
H([r1, r2])[r1, r2]− [r1, r2]G([r1, r2])

)
= 0

for all r1, r2 ∈ I. Under these assumptions we have that:

Theorem 2. If R is a prime ring of characteristic different from 2, then one

of the following holds:

(1) there exist b′, c′ ∈ U such that H(x) = b′x + xc′, G(x) = c′x with ab′ = 0;

(2) R satisfies s4 and there exist b′, c′, q′ ∈ U such that H(x) = b′x + xc′,
G(x) = c′x + xq′, with a(b′ − q′) = 0.

Proof. By Theorem 3 in [13] every generalized derivation g on a dense right
ideal of R can be uniquely extended to the Utumi quotient ring U of R, and thus
we can think of any generalized derivation of R to be defined on the whole U and
to be of the form g(x) = bx + d(x) for some b ∈ U and d a derivation on U . Thus
we may assume that there exist b, p ∈ U and d, δ derivations on U such that

H(x) = bx + d(x) and G(x) = px + δ(x).

Since I, R and U satisfy the same differential identities [14], then without loss of
generality, in order to prove our results we may assume that

a
(
H([r1, r2])[r1, r2]− [r1, r2]G([r1, r2])

)
= 0
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for all r1, r2 ∈ U . Hence U satisfies

a
((

b[x1, x2] + d([x1, x2])
)
[x1, x2]− [x1, x2]

(
p[x1, x2] + δ([x1, x2])

))

that is

a
((

b[x1, x2] + [d(x1), x2] + [x1, d(x2)])
)
[x1, x2]

− [x1, x2]
(
p[x1, x2] + [δ(x1), x2] + [x1, δ(x2)])

))
(8)

where d, δ are derivations on U . We divide the proof into 3 cases:

Case 1: Let d(x) = [c, x] and δ(x) = [q, x] be both inner derivations in U , so
that H(x) = bx+[c, x] = (b+c)x+x(−c) and G(x) = px+[q, x] = (p+q)x+x(−q),
for suitable elements c, q ∈ U . In this case H and G are both inner generalized
derivations in U . We notice that, if a ∈ C, then by Proposition 1 we have that
either there exists b′ ∈ U such that H(x) = xb′ and G(x) = b′x for all x ∈ R

(conclusion 1); or R satisfies s4 and there exist b′, c′ ∈ U such that H(x) =
b′x + xc′, G(x) = c′x + xb′ (which is a particular case of conclusion 2). In what
follows we assume that a /∈ C.

Thus by Lemma 2 one of the following holds:
1. By conclusion 1 of Lemma 2 we get: −c − p − q = α ∈ C and q ∈ C,

a(b + c − λ) = 0, c′ = p such that H(x) = (b + c − λ)x + xc′ and G(x) = c′x,
which is the conclusion 1 of the Theorem.

2. By conclusion 2 of Lemma 2 it follows: −c − p − q = α ∈ C and q ∈ C,
γ = −q − α ∈ C, p = −c + γ such that H(x) = (b + c)x + x(−c) and G(x) =
(−c + γ)x with a(b + c− γ) = 0. By rewriting H(x) = (b + c− γ)x + x(γ − c), we
obtain conclusion 1 of the Theorem.

3. By conclusion 3 of Lemma 2 it follows: −c− p− q = α ∈ C, R satisfies s4

and q′ = −q − α such that H(x) = (b + c)x + x(−c) and G(x) = −cx + xq′ with
a(b + c− q′) = 0, which is the conclusion 2 of the Theorem.

Case 2: Assume now that both d and δ are not inner derivations. Suppose
first that d and δ are linearly C-independent modulo X-inner derivations. In this
case, by Kharchenko’s Theorem in [10] (see Fact 3), by (8) we have that U

satisfies

a
((

b[x1, x2] + [t1, x2] + [x1, t2]
)
[x1, x2]− [x1, x2]

(
b[x1, x2] + [z1, x2] + [x1, z2]

))

and in particular U satisfies the blended component

a
([

[x1, t2], [x1, z2]
])

.
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By Lemma 3 in [5], since we suppose a 6= 0, U must satisfy
[
[x1, t2], [x1, z2]

]
. In

this case it is well known by Posner’s Theorem that there exists a suitable field
F such that U and Mm(F ), the ring of m×m matrices over F , satisfy the same
polynomial identities. In particular, for m ≥ 2, we get the contradiction that

0 =
[
[e12, e22], [e12, e21]

]
= −2e12 6= 0.

Consider now the case when there exist α, β ∈ C such that αd + βδ = ad(q), the
inner derivation induced by some q ∈ U . Of course both α and β are not zero,
since d and δ are not inner derivations. So, if denote λ = −αβ−1 and µ = β−1, it
follows that δ = λd + µad(q). Thus by (8) we have

a
((

b[x1, x2] + [d(x1), x2] + [x1, d(x2)]
)
[x1, x2]

−[x1, x2]
(
p[x1, x2]+λ[d(x1), x2]+λ[x1, d(x2)]+µ[[q, x1], x2]+µ[x1, [q, x2]]

))
(9)

From (9) and applying Kharchenko’s result, it follows that R satisfies

a
((

b[x1, x2] + [t1, x2] + [x1, t2]
)
[x1, x2]

−[x1, x2]
(
p[x1, x2] + λ[t1, x2] + λ[x1, t2] + µ[[q, x1], x2] + µ[x1, [q, x2]]

))

and in particular R satisfies the blended component

a
(
[x1, t2][x1, x2]− λ[x1, x2][x1, t2]

)
.

As above by Lemma 3 in [5], since a 6= 0, R satisfies the polynomial identity
[x1, t2][x1, x2] − λ[x1, x2][x1, t2]. Since R is a PI-ring, then there exists a field F

such that R, U and Mm(F ) satisfy the same polynomial identities. In particular
Mm(F ) satisfies

[x1, t2][x1, x2]− λ[x1, x2][x1, t2] (10)

Consider m ≥ 2. In (10) choose x1 = e12, x2 = e21 and t2 = e22. By calcula-
tions it follows −(1 + λ)e12 = 0, which means λ = −1.

On the other hand, for x1 = e12 and x2 = t2 = e21, by (10) we have
(1 − λ)(e11 + e22) = 0, which implies λ = 1, that is a contradiction, since
char(R) 6= 2.

Case 3: Finally assume that either d or δ is an inner derivation on U . Without
loss of generality we may assume that d(x) = [c, x], for a suitable c ∈ U and let
δ be an outer derivation of U . By (8) and Kharchenko’s result, we get that U

satisfies

a
((

b[x1, x2] + c[x1, x2]− [x1, x2]c
)
[x1, x2]− [x1, x2]

(
p[x1, x2] + [z1, x2] + [x1, z2]

))
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and in particular U satisfies the component

a
(−[x1, x2][x1, z2]

)
.

As above, by Lemma 3 in [5] and since a 6= 0, it follows that U satisfies the
polynomial identity [x1, x2][x1, z2]. Let Mm(F ) be the ring of m × m matrices
over a field F , which satisfies the same identities of U . This implies the following
contradiction:

0 = [e12, e22][e12, e21] = −e12 6= 0.

Notice that in the case δ is inner and d is outer, we may obtain the same contra-
diction by using the same argument as above. ut
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