Publ. Math. Debrecen **76**/**4** (2010), 395–409

Annihilators on co-commutators with generalized derivations on Lie ideals

By LUISA CARINI (Messina), VINCENZO DE FILIPPIS (Messina) and BASUDEB DHARA (Paschim Medinipur)

Abstract. Let *R* be a prime ring of characteristic different from 2, *U* the Utumi quotient ring of *R*, C = Z(U) the extended centroid of *R*, *L* a non-central Lie ideal of *R*, *H* and *G* non-zero generalized derivations of *R*. Suppose that there exists $0 \neq a \in R$ such that a(H(u)u - uG(u)) = 0, for all $u \in L$, then one of the following holds:

- (1) there exist $b', c' \in U$ such that H(x) = b'x + xc', G(x) = c'x with ab' = 0;
- (2) R satisfies s_4 and there exist $b', c', q' \in U$ such that H(x) = b'x + xc', G(x) = c'x + xq', with a(b' q') = 0.

1. Introduction

Let R be a prime ring of characteristic different from 2 with center Z(R)and extended centroid C. The standard polynomial of degree 4 is defined as $s_4(x_1, \ldots, x_4) = \sum_{\sigma \in S_4} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(4)}$, where σ runs over S_4 the symmetric group of degree 4 and where $(-1)^{\sigma}$ is 1 or -1 according as σ is an even or odd permutation.

A well known result of POSNER [18] states that if d is a derivation of R such that $[d(x), x] \in Z(R)$, for any $x \in R$, then either d = 0 or R is commutative. This theorem indicates that the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. Following this line of investigation, several authors generalized the Posner's Theorem. For instance in [2] BRESAR proves that if d and δ are derivations of R such that

Mathematics Subject Classification: 16N60, 16W25.

Key words and phrases: prime rings, derivations, generalized derivations, Utumi quotient rings, differential identities.

 $d(x)x - x\delta(x) \in Z(R)$, for all $x \in R$, then either $d = \delta = 0$ or R is commutative. Later in [12] LEE and WONG consider the case when $d(x)x - x\delta(x) \in Z(R)$, for all x in some non-central Lie ideal L of R. They prove that either $d = \delta = 0$ or R satisfies s_4 , the standard identity of degree 4. Recently in [17] NIU and WU study the left annihilator of the set $\{d(u)u - u\delta(u), u \in L\}$, where d and δ are derivations of R and L is a non-central Lie ideal of R. In case the annihilator is not zero, the conclusion is that R satisfies the standard identity s_4 and $d = -\delta$ are inner derivations. These facts in a prime ring are natural tests which evidence that the set $\{d(u)u - u\delta(u), u \in L\}$ is rather large in R.

Here we will consider the same situation in the case the derivations d and δ are replaced respectively by the generalized derivations H and G. More specifically an additive map $G: R \longrightarrow R$ is said to be a generalized derivation if there is a derivation d of R such that, for all $x, y \in R$, G(xy) = G(x)y + xd(y). A significative example is a map of the form G(x) = ax + xb, for some $a, b \in R$; such generalized derivations are called inner. Generalized derivations have been primarily studied on operator algebras. Therefore any investigation from the algebraic point of view might be interesting (see for example [13]). Here our purpose is to prove the following theorem:

Theorem 1. Let R be a prime ring of characteristic different from 2, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists $0 \neq a \in R$ such that a(H(u)u - uG(u)) = 0, for all $u \in L$, then one of the following holds:

- (1) there exist $b', c' \in U$ such that H(x) = b'x + xc', G(x) = c'x with ab' = 0;
- (2) R satisfies s_4 and there exist $b', c', q' \in U$ such that H(x) = b'x + xc', G(x) = c'x + xq', with a(b' - q') = 0.

In all that follows let R be a non-commutative prime ring of characteristic different from 2, U its Utumi quotient ring and C = Z(U) the center of U. We refer the reader to [1] for the definitions and the related properties of these objects. In particular we make use of the following well known facts:

Fact 1. If I is a two-sided ideal of R, then R, I and U satisfies the same generalized polynomial identities with coefficients in U([4]).

Fact 2. Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1 in [1]).

Fact 3. We denote by Der(U) the set of all derivations on U. By a derivation word we mean an additive map Δ of the form $\Delta = d_1 d_2 \dots d_m$, with each

 $d_i \in \text{Der}(U)$. Then a differential polynomial is a generalized polynomial, with coefficients in U, of the form $\Phi(\Delta_j x_i)$ involving non-commutative indeterminates x_i on which the derivations words Δ_j act as unary operations. The differential polynomial $\Phi(\Delta_j x_i)$ is said to be a differential identity on a subset T of U if it vanishes for any assignment of values from T to its indeterminates x_i .

Let D_{int} be the *C*-subspace of Der(U) consisting of all inner derivations on U and let d be a non-zero derivation on R. By Theorem 2 in [10] we have the following result (see also Theorem 1 in [14]): If $\Phi(x_1, \ldots, x_n, {}^dx_1, \ldots, {}^dx_n)$ is a differential identity on R, then one of the following holds:

- (1) either $d \in D_{\text{int}}$;
- (2) or R satisfies the generalized polynomial identity $\Phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$.

Fact 4. If I is a two-sided ideal of R, then R, I and U satisfies the same differential identities ([14]).

We refer the reader to Chapter 7 in [1] for a complete and detailed description of the theory of generalized polynomial identities involving derivations.

Fact 5. Since we assume that $\operatorname{char}(R) \neq 2$, then there exists a non-zero twosided ideal I of R such that $0 \neq [I, R] \subseteq L$. In particular, if R is a simple ring it follows that $[R, R] \subseteq L$.

This follows from pp. 4–5 in [9], Lemma 2 and Proposition 1 in [6], Theorem 4 in [11].

2. The case of inner generalized derivations

We dedicate this section to prove the theorem in case both the generalized derivations H and G are inner, that is there exist $b, c, p, q \in U$ such that H(x) = bx + xc and G(x) = px + xq, for all $x \in R$.

In light of Fact 5, since we suppose $\operatorname{char}(R) \neq 2$, there exists a non-central ideal I of R such that $[I, I] \subseteq L$. This implies that $a(b[r_1, r_2]^2 + [r_1, r_2](c-p)[r_1, r_2] - [r_1, r_2]^2q) = 0$ for all $r_1, r_2 \in I$. Moreover by Fact 1, I and R satisfy the same generalized polynomial identities, thus $a(b[r_1, r_2]^2 + [r_1, r_2](c-p)[r_1, r_2] - [r_1, r_2]^2q) = 0$ for all $r_1, r_2 \in R$. Hence in all that follows we assume that R satisfies the following generalized polynomial identity

$$P(x_1, x_2) = a(b[x_1, x_2]^2 + [x_1, x_2](c-p)[x_1, x_2] - [x_1, x_2]^2q).$$

 $P(x_1, x_2)$ is a generalized polynomial in the free product $U *_C C\{x_1, x_2\}$ of the C-algebra U and the free C-algebra $C\{x_1, x_2\}$.

We first prove the following:

Proposition 1. If $a \in Z(R)$, then one of the following holds:

- (1) either there exists $b' \in U$ such that H(x) = xb' and G(x) = b'x, for all $x \in R$;
- (2) or R satisfies s_4 and there exists $\alpha \in C$ such that $p = c \alpha$ and $q = b + \alpha$, that is H(x) = bx + xc and G(x) = cx + xb.

PROOF. Since $a \in Z(R)$, then a is not a zero-divisor, then by main assumption it follows that (H(u)u - uG(u)) = 0, for all $u \in [R, R]$. In this case, it is proved in [15] that either there exists $b' \in U$ such that H(x) = xb' and G(x) = b'x, for all $x \in R$, or R satisfies s_4 . In this last case R is PI-ring, moreover U satisfies the same generalized polynomial identities of R. Therefore U is a central simple algebra of dimension at most 4 over its center, and it is known that in this case $[r, s]^2 \in Z(U) = C$ for all $r, s \in U$. Moreover U satisfies

$$b[x_1, x_2]^2 + [x_1, x_2](c-p)[x_1, x_2] - [x_1, x_2]^2 q.$$

Since the polynomial $[x_1, x_2]^2$ is central valued in U, then U satisfies

$$(b-q)[x_1, x_2]^2 + [x_1, x_2](c-p)[x_1, x_2].$$
(1)

Denote e_{ij} the usual matrix unit, with 1 in the (i, j)-entry and zero elsewhere, and write $w = (c - p) = \sum_{rs} w_{rs} e_{rs}$, for suitable $w_{rs} \in C$. Therefore for any $i \neq j$, let $r_1 = e_{ii}$, $r_2 = e_{ij}$ and $[r_1, r_2] = e_{ij}$. It follows by (1) that $e_{ij}we_{ij} = 0$ for all $i \neq j$, that is $w_{ji} = 0$ and w is a diagonal matrix in $M_2(C)$. Moreover, for all $\varphi \in \operatorname{Aut}_F(M_2(C))$, U satisfies

$$\varphi((b-q)[x_1,x_2]^2 + [x_1,x_2](c-p)[x_1,x_2])$$

which is

$$(\varphi(b-q)[x_1,x_2]^2 + [x_1,x_2]\varphi(c-p)[x_1,x_2])$$

since the set of all the evaluation of $[x_1, x_2]$ is invariant under the action of any element of $\operatorname{Aut}_F(M_2(C))$. By the above argument, $\varphi(c-p)$ must be diagonal. In particular, let $r \neq s$ and $\varphi(x) = (1 + e_{rs})x(1 - e_{rs})$, hence

$$\varphi(c-p) = \sum_{t} w_{tt} e_{tt} + w_{ss} e_{rs} - w_{rr} e_{rs}$$

which implies $w_{rr} = w_{ss}$, for all $r \neq s$. Thus c - p is a central matrix, namely $c - p = \alpha$. By (1) we get that U satisfies $(b - q + \alpha)[x_1, x_2]^2$, and since $0 \neq [U, U]^2 \subseteq C$, we also have $q - b = \alpha = c - p$. Thus we conclude that, in case R satisfies s_4 , $p = c - \alpha$ and $q = b + \alpha$.

Proposition 2. If $a \notin Z(R)$ then either $P(x_1, x_2)$ is a non-trivial generalized polynomial identity for R or H(x) = b'x + xc', G(x) = c'x for some $b', c' \in U$ satisfying ab' = 0.

PROOF. Suppose now that R does not satisfy any non-trivial generalized polynomial identity. Let $T = U *_C C\{X\}$ be the free product over C of the C-algebra U and the free C-algebra $C\{X\}$, with X the countable set consisting of non-commuting indeterminates $x_1, x_2, \ldots, x_n, \ldots$.

For brevity we write P(X) instead of $P(x_1, x_2)$ and f(X) instead of $[x_1, x_2]$. Now consider the generalized polynomial $P(X) \in U *_C C\{X\}$. By our hypothesis, R satisfies the following generalized polynomial identity:

$$P(X) = abf(X)^{2} + af(X)(c-p)f(X) - af(X)^{2}q = 0 \in T.$$

Since R does not satisfy non-trivial GPIs, by [4], the coefficients $\{ab, a\}$ must be linearly C-dependent. Therefore there exist $\beta_1, \beta_2 \in C$ such that $\beta_1(ab) + \beta_2 a = 0$, with $\beta_1 \neq 0$ since $a \notin C$. Hence we may write $ab = \lambda a$, for a suitable $\lambda \in C$. In this situation R satisfies

$$a\left(\lambda f(X)^2 + f(X)(c-p)f(X) - f(X)^2q\right)$$

that is

$$\lambda f(X)^{2} + f(X)(c-p)f(X) - f(X)^{2}q = 0 \in T.$$

Again since R does not satisfy any non-trivial generalized polynomial identity, $\{1,q\}$ must be linearly C-dependent, that is $q \in C$. This implies that G(x) = (p+q)x and also that R satisfies

$$f(X)(\lambda + (c-p) - q)f(X)$$

which implies $\lambda + (c-p) - q = 0$, that is $H(x) = bx + x(p+q-\lambda) = (b-\lambda)x + x(p+q)$, and we obtain the required conclusion, for $b' = b - \lambda$ and c' = p + q.

Lemma 1. Let $R = M_m(F)$ be the ring of all $m \times m$ matrices over a field F of characteristic different from 2. If a is not central in R then there exists $\alpha \in F$ such that $p = c - \alpha \cdot I_m$, where I_m is the identity matrix of order m, and one of the following holds:

- (1) $q \in Z(R)$ and there exists $\gamma \in F$ such that $p + q = c + \gamma \cdot I_m$, that is H(x) = bx + xc, $G(x) = (c + \gamma \cdot I_m)x$; moreover $a(b \gamma \cdot I_m) = 0$;
- (2) R satisfies s_4 and there exists $q' \in R$ such that G(x) = cx + xq', with a(b-q') = 0.

PROOF. Denote $a = \sum_{rs} e_{rs} a_{rs}$, $q = \sum_{rs} e_{rs} q_{rs}$, $c - p = w = \sum_{rs} e_{rs} w_{rs}$, for suitable $a_{rs}, q_{rs}, w_{rs} \in F$. By the main assumption, R satisfies

$$a(b[x_1, x_2]^2 + [x_1, x_2](c-p)[x_1, x_2] - [x_1, x_2]^2q).$$
(2)

Fix $[x_1, x_2] = e_{ij}$, for any $i \neq j$. In this case from (2) we have

$$ae_{ij}(c-p)e_{ij} = 0 \tag{3}$$

that is

either
$$a_{ki} = 0 \quad \forall k \quad \text{or} \quad w_{ji} = 0 \quad (3')$$

Here we first prove that w is a diagonal matrix. In order to do this, we suppose that there exists some non-zero off-diagonal entry of w and divide the proof into two cases:

Case 1: m = 2.

Suppose $w_{21} \neq 0$, then by (3) it follows $a_{11} = a_{21} = 0$. Of course, since we suppose $a \neq 0$, we must assume now $w_{12} = 0$.

Choose $[x_1, x_2] = [e_{12}, e_{21}] = e_{11} - e_{22}$ and by (2) we have

$$0 = Y = a \left(b(e_{11} - e_{22})^2 + (e_{11} - e_{22})(c - p)(e_{11} - e_{22}) - (e_{11} - e_{22})^2 q \right)$$

in particular the (1, 1)-entry of the matrix Y is $a_{12}(b_{21} - w_{21} - q_{21}) = 0$ and the (2, 1)-one is $a_{22}(b_{21} - w_{21} - q_{21}) = 0$. Therefore, from $a \neq 0$ follows

$$b_{21} - w_{21} - q_{21} = 0. (4)$$

In the same way, for $[x_1, x_2] = [e_{12} - e_{21}, e_{22}] = e_{12} + e_{21}$ in (2) we have

$$0 = T = a \left(b(e_{12} + e_{21})^2 + (e_{12} + e_{21})(c - p)(e_{12} + e_{21}) - (e_{12} + e_{21})^2 q \right).$$

The (1, 1)-entry of the matrix T is $a_{12}(b_{21} - q_{21}) = 0$ and the (2, 1)-one is $a_{22}(b_{21} - q_{21}) = 0$. Since $a \neq 0$ we get

$$b_{21} - q_{21} = 0. (5)$$

Thus by (5) and (4) we obtain the contradiction $w_{21} = 0$.

Case 2: $m \geq 3$.

Also in this case we suppose that there exists $w_{ji} \neq 0$ for some $i \neq j$, so that $a_{ki} = 0$ for all k, that is the *i*-th column of a is zero.

Let now $q \neq i, j$ and fix $[x_1, x_2] = [e_{ij} + e_{qj}, e_{jj}] = e_{ij} + e_{qj}$. Then (2) implies $a(e_{ij} + e_{qj})w(e_{ij} + e_{qj}) = 0$ and since $a_{ki} = 0$ for all k, it follows that $ae_{qj}w(e_{ij} + e_{qj}) = 0$. Moreover, by (3), we get $ae_{qj}we_{qj} = 0$, which implies that $ae_{qj}we_{ij} = 0$. The assumption $w_{ji} \neq 0$ implies that $a_{kq} = 0$ for all k, that is a has just one non-zero column, the j-th one: $a = \sum_r a_{rj}e_{rj}$.

Notice that if $w_{tj} \neq 0$ for some $t \neq j$, by the same argument we get that a has just the t-th column non-zero, that is a = 0. Thus we may assume that $w_{tj} = 0$ for all $t \neq j$.

Let $t \neq i, j$ and denote by σ_t and τ_t the following automorphisms of R:

$$\sigma_t(x) = (1 + e_{jt})x(1 - e_{jt}) = x + e_{jt}x - xe_{jt} - e_{jt}xe_{jt}$$

$$\tau_t(x) = (1 - e_{jt})x(1 + e_{jt}) = x - e_{jt}x + xe_{jt} - e_{jt}xe_{jt}$$

and say $\sigma_t(w) = \sum \sigma_{rs} e_{rs}, \tau_t(w) = \sum \tau_{rs} e_{rs}$ where $\sigma_{rs}, \tau_{rs} \in F$. We have

$$\sigma_{ji} = w_{ji} + w_{ti} \quad \text{and} \quad \tau_{ji} = w_{ji} - w_{ti}.$$

If there exists t such that $\sigma_{ji} = w_{ji} + w_{ti} = 0$ or $\tau_{ji} = w_{ji} - w_{ti} = 0$ then $w_{ti} = -w_{ji} \neq 0$ or $w_{ti} = w_{ji} \neq 0$. Therefore $w_{ji} \neq 0$ and $w_{ti} \neq 0$, and so, by using (3), a = 0.

Hence assume that $\sigma_{ji} \neq 0$ and $\tau_{ji} \neq 0$, for all $t \neq i, j$, and recall that, for any *F*-automorphism φ of *R*, the following holds

$$\varphi(a)\big(\varphi(b)[x_1,x_2]^2 + [x_1,x_2]\varphi(c-p)[x_1,x_2] - [x_1,x_2]^2\varphi(q)\big).$$

Thus in this case by (3), for any $t \neq i, j$, the non-zero entries of the matrices $\sigma_t(a)$ and $\tau_t(a)$ are just in the *j*-th column. In particular, since

$$\sigma_t(a) = a + e_{jt}a - ae_{jt} - e_{jt}ae_{jt} = \sum_r a_{rj}e_{rj} - \sum_r a_{rj}e_{rt} + a_{tj}e_{jj} - a_{tj}e_{jt}$$

$$\tau_t(a) = a - e_{jt}a + ae_{jt} - e_{jt}ae_{jt} = \sum_r a_{rj}e_{rj} + \sum_r a_{rj}e_{rt} - a_{tj}e_{jj} - a_{tj}e_{jt}$$

then both the above matrices have zero in the (j, t) entry that is

$$-a_{jj} - a_{tj} = 0$$
 for $\sigma_t(a)$
 $a_{jj} - a_{tj} = 0$ for $\tau_t(a)$.

By char(R) $\neq 2$ we obtain $a_{jj} = a_{tj} = 0$ for all $t \neq i$, that is $a = a_{ij}e_{ij}$.

Denote now by φ and χ the following automorphisms of R:

$$\varphi(x) = (1 + e_{ji})x(1 - e_{ji}) = x + e_{ji}x - xe_{ji} - e_{ji}xe_{ji},$$
$$\chi(x) = (1 - e_{ji})x(1 + e_{ji}) = x - e_{ji}x + xe_{ji} - e_{ji}xe_{ji},$$

and say $\varphi(w) = \sum \varphi_{rs} e_{rs}$, $\chi(w) = \sum \chi_{rs} e_{rs}$ where $\varphi_{rs}, \chi_{rs} \in F$. Since, by (3'), $w_{ij} \neq 0$ implies a = 0, we assume that $w_{ij} = 0$. Then we have

$$\varphi_{ji} = w_{ji} - w_{jj} + w_{ii}$$
 and $\chi_{ji} = w_{ji} + w_{jj} - w_{ii}$

If $\varphi_{ji} = \chi_{ji} = 0$, then we get the contradiction $w_{ji} = 0$.

If at least one of φ_{ji} and χ_{ji} is not zero, then, by (3), one of $\varphi(a)$ and $\chi(a)$ has zero in all the entries of the *i*-th column. In particular notice that

$$\varphi(a) = a_{ij}e_{ij} - a_{ij}e_{ii} + a_{ij}e_{jj} - a_{ij}e_{ji},$$

$$\chi(a) = a_{ij}e_{ij} + a_{ij}e_{ii} - a_{ij}e_{jj} - a_{ij}e_{ji}$$

which means that in any case the (j, i)-entry is $a_{ij} = 0$, a contradiction again.

All the previous arguments say that if a is not zero, then w must be a diagonal matrix, $w = \sum_{t} w_t e_{tt}$.

Moreover, for all $\lambda \in \operatorname{Aut}_F(M_m(F))$, since $\lambda(a) \neq 0$ and R satisfies

$$\lambda(a) \big(\lambda(b) [x_1, x_2]^2 + [x_1, x_2] \lambda(c-p) [x_1, x_2] - [x_1, x_2]^2 \lambda(q) \big),$$

we also have that $\lambda(c-p)$ is diagonal. In particular, let $r \neq s$ and $\lambda(x) = (1+e_{rs})x(1-e_{rs})$, hence

$$\lambda(c-p) = \sum_{t} w_t e_{tt} + w_s e_{rs} - w_r e_{rs}$$

is diagonal implying $w_r = w_s = \alpha$, for all $r \neq s$. Thus c - p is a central matrix, namely $c - p = \alpha \cdot I_m$. Therefore R satisfies

$$ab[x_1, x_2]^2 + a[x_1, x_2]^2(\alpha - q)$$

Denote by G the additive subgroup of R generated by all the evaluations of the polynomial $[x_1, x_2]^2$. By [3], since char $(R) \neq 2$, either $[R, R] \subseteq G$ or $[x_1, x_2]^2$ is central valued on R that is R satisfies s_4 .

In the first case R satisfies

$$ab[x_1, x_2] + a[x_1, x_2](\alpha - q).$$

Let $\alpha - q = u = \sum_{r,s} u_{rs} e_{rs}$, with $u_{rs} \in F$. For $[x_1, x_2] = e_{ij}$, with any $i \neq j$, it follows $abe_{ij} + ae_{ij}(\alpha - q) = 0$. By right multiplying for any e_{qq} , with $q \neq j$, we have $ae_{ij}(\alpha - q)e_{qq} = 0$ that is

either
$$a_{ki} = 0 \quad \forall k \quad \text{or} \quad u_{jq} = 0 \quad \forall q \neq j.$$

In particular

either
$$a_{ki} = 0 \quad \forall k \qquad \text{or} \quad u_{ji} = 0 \qquad (3'')$$

Notice that (3") has the same flavour of (3'). By the same argument as above, in case $a \neq 0$ we have that $u = \alpha - q$ is a central matrix, and so $a(b+u)[r_1, r_2] = 0$, for all $r_1, r_2 \in R$. This implies a(b+u) = 0, which is the conclusion 1 of Lemma 1, for $\gamma = -u$.

Consider finally the case when $[x_1, x_2]^2$ is central valued on R. Here R satisfies $a(b + \alpha - q)[x_1, x_2]^2$, moreover there exists $0 \neq [r_1, r_2]^2 \in F \cdot I_m$, which implies $a(b + \alpha - q) = 0$, the conclusion 2 of Lemma 1, for $q' = q - \alpha$.

Lemma 2. Let R be a prime ring of characteristic different from 2. If a is not central in R then $c - p = \alpha \in C$ and one of the following holds:

- (1) $q \in C$ and there exist $\lambda \in C$, $b' = b \lambda$, c' = p + q such that H(x) = b'x + xc', G(x) = c'x, with ab' = 0;
- (2) $q \in C$ and there exists $\gamma = q \alpha \in C$ such that $p + q = c + \gamma$, that is H(x) = bx + xc, $G(x) = (c + \gamma)x$, with $a(b \gamma) = 0$;
- (3) R satisfies s_4 and there exists $q' = q \alpha$ such that G(x) = cx + xq', with a(b-q') = 0.

PROOF. As above we denote for brevity $P(x_1, x_2)$ by P(X) and $[x_1, x_2]$ by f(X) and consider the generalized polynomial

$$P(X) = abf(X)^{2} + af(X)(c-p)f(X) - af(X)^{2}q.$$

Since U and R satisfy the same generalized polynomial identities with coefficients in U (see Fact 1), then P(X) is also a generalized identity for U.

Suppose first that U does not satisfy any non-trivial generalized polynomial identity. Therefore by Proposition 2 we get conclusion 1.

Hence we may suppose now that U satisfies some non-trivial generalized polynomial identity. By [16] U is primitive having a non-zero socle Soc(U) with C as the associated division ring and by Jacobson's Theorem (p. 75 in [8]) Uis isomorphic to a dense ring of linear transformations of some vector space Vover C.

If V is finite-dimensional over C, it follows that $R \subseteq U = M_k(C)$, for $k = \dim_C V$. In this case we get the required conclusions by Lemma 1.

Let $\dim_C V = \infty$. Denote $\operatorname{End}_C V$ the ring of endomorphisms of $_C V$ and recall that the range of a polynomial $f(X) \in C\{x_1, x_2\}$ is defined as follows

$$r(f; U) = \{ f(x_1, x_2) \in \text{End}_C V : x_1, x_2 \in U \}$$

In [19] (Lemma) it is proved that, if U is a dense subring of $\operatorname{End}_{C}V$ and $\dim_{C}V = \infty$, then r(f;U) is a dense subset of $\operatorname{End}_{C}V$ and this implies that U satisfies the generalized polynomial identity

$$abx^2 + ax(c-p)x - ax^2q.$$
(6)

Suppose that there exists a minimal idempotent element e of Soc(U) such that $e(c-p)(1-e) \neq 0$. Replace in (6) x by (1-e)re for any $r \in U$, then it follows that a(1-e)re(c-p)(1-e)re = 0, which implies a(1-e) = 0, since $e(c-p)(1-e) \neq 0$. This means that a = ae.

On the other hand, if in (6) we replace x by *ere* for any $r \in U$, we get $ab(ere)^2 + aere(c-p)ere - a(ere)^2q = 0$, and by right multiplying by (1-e) one has $-ae(ere)^2q(1-e) = 0$. Since $0 \neq a = ae$, we have eq(1-e) = 0, that is eq = eqe.

Finally replace in (6) x by x + y. It follows that U satisfies:

$$ab(xy) + ab(yx) + ax(c-p)y + ay(c-p)x - a(xy)q - a(yx)q$$

and for any x = re and y = (1 - e)s, with $r, s \in U$, we get

$$ab(1-e)sre + are(c-p)(1-e)s + a(1-e)s(c-p)re - a(1-e)sreq = 0.$$

By right multiplying by (1-e) and since eq(1-e) = 0, we have are (c-p)(1-e)s(1-e) = 0, for all $r, s \in U$. By the primeness of U and by the assumption that $e(c-p)(1-e) \neq 0$, the contradiction a = 0 follows.

Therefore e(c-p)(1-e) = 0, for any idempotent element $e \in \text{Soc}(U)$ of rank 1. Hence [c-p, e] = 0, for any idempotent of rank 1, and [c-p, Soc(U)] = 0, since Soc(U) is generated by these idempotent elements. This argument gives $c-p \in C$, and as a consequence of (6), U satisfies the generalized polynomial identity

$$abx^2 + ax^2(c - p - q).$$
 (7)

As above, suppose that there exists a minimal idempotent element e of Soc(U) such that $(1-e)(c-p-q)e \neq 0$. If we replace in (7) x by (1-e)r(1-e)

for any $r \in U$ and multiply by e on the right, then we get $a((1-e)r(1-e))^2(c-p-q)e = 0$, that is a(1-e) = 0, since $(1-e)(c-p-q)e \neq 0$.

Now by (7), for x = t + y, it follows that U satisfies

abty + abyt + aty(c - p - q) + ayt(c - p - q).

Finally for t = (1 - e), y = z(1 - e) and by right multiplying by e, we have az(1 - e)(c - p - q)e = 0, that is a = 0, a contradiction. Therefore (1 - e)(c - p - q)e = 0, for any idempotent element $e \in \text{Soc}(U)$ of rank 1, that is as above $c - p - q \in C$, which implies $q \in C$. Therefore U satisfies $a(b + c - p - q)x^2$, that is a(b + c - p - q) = 0, with $c - p \in C$ and $q \in C$, which is the conclusion 2 of Lemma 2.

3. The general case

We consider now the more general situation and prove the main Theorem of the paper. As in Section 1, since we suppose $char(R) \neq 2$, by Fact 5 we may assume that there exists a non-zero ideal I of R such that

$$a(H([r_1, r_2])[r_1, r_2] - [r_1, r_2]G([r_1, r_2])) = 0$$

for all $r_1, r_2 \in I$. Under these assumptions we have that:

Theorem 2. If R is a prime ring of characteristic different from 2, then one of the following holds:

- (1) there exist $b', c' \in U$ such that H(x) = b'x + xc', G(x) = c'x with ab' = 0;
- (2) R satisfies s_4 and there exist $b', c', q' \in U$ such that H(x) = b'x + xc', G(x) = c'x + xq', with a(b' - q') = 0.

PROOF. By Theorem 3 in [13] every generalized derivation g on a dense right ideal of R can be uniquely extended to the Utumi quotient ring U of R, and thus we can think of any generalized derivation of R to be defined on the whole U and to be of the form g(x) = bx + d(x) for some $b \in U$ and d a derivation on U. Thus we may assume that there exist $b, p \in U$ and d, δ derivations on U such that

$$H(x) = bx + d(x)$$
 and $G(x) = px + \delta(x)$.

Since I, R and U satisfy the same differential identities [14], then without loss of generality, in order to prove our results we may assume that

$$a(H([r_1, r_2])[r_1, r_2] - [r_1, r_2]G([r_1, r_2])) = 0$$

for all $r_1, r_2 \in U$. Hence U satisfies

$$a\big(\big(b[x_1, x_2] + d([x_1, x_2])\big)[x_1, x_2] - [x_1, x_2]\big(p[x_1, x_2] + \delta([x_1, x_2])\big)\big)$$

that is

$$a\big(\big(b[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)])\big)[x_1, x_2] - [x_1, x_2]\big(p[x_1, x_2] + [\delta(x_1), x_2] + [x_1, \delta(x_2)])\big)\big)$$
(8)

where d, δ are derivations on U. We divide the proof into 3 cases:

Case 1: Let d(x) = [c, x] and $\delta(x) = [q, x]$ be both inner derivations in U, so that H(x) = bx + [c, x] = (b+c)x + x(-c) and G(x) = px + [q, x] = (p+q)x + x(-q), for suitable elements $c, q \in U$. In this case H and G are both inner generalized derivations in U. We notice that, if $a \in C$, then by Proposition 1 we have that either there exists $b' \in U$ such that H(x) = xb' and G(x) = b'x for all $x \in R$ (conclusion 1); or R satisfies s_4 and there exist $b', c' \in U$ such that H(x) = b'x + xc', G(x) = c'x + xb' (which is a particular case of conclusion 2). In what follows we assume that $a \notin C$.

Thus by Lemma 2 one of the following holds:

1. By conclusion 1 of Lemma 2 we get: $-c - p - q = \alpha \in C$ and $q \in C$, $a(b + c - \lambda) = 0$, c' = p such that $H(x) = (b + c - \lambda)x + xc'$ and G(x) = c'x, which is the conclusion 1 of the Theorem.

2. By conclusion 2 of Lemma 2 it follows: $-c - p - q = \alpha \in C$ and $q \in C$, $\gamma = -q - \alpha \in C$, $p = -c + \gamma$ such that H(x) = (b + c)x + x(-c) and $G(x) = (-c + \gamma)x$ with $a(b + c - \gamma) = 0$. By rewriting $H(x) = (b + c - \gamma)x + x(\gamma - c)$, we obtain conclusion 1 of the Theorem.

3. By conclusion 3 of Lemma 2 it follows: $-c - p - q = \alpha \in C$, R satisfies s_4 and $q' = -q - \alpha$ such that H(x) = (b + c)x + x(-c) and G(x) = -cx + xq' with a(b + c - q') = 0, which is the conclusion 2 of the Theorem.

Case 2: Assume now that both d and δ are not inner derivations. Suppose first that d and δ are linearly C-independent modulo X-inner derivations. In this case, by KHARCHENKO's Theorem in [10] (see Fact 3), by (8) we have that Usatisfies

$$a\big(\big(b[x_1, x_2] + [t_1, x_2] + [x_1, t_2]\big)[x_1, x_2] - [x_1, x_2]\big(b[x_1, x_2] + [z_1, x_2] + [x_1, z_2]\big)\big)$$

and in particular U satisfies the blended component

$$a([[x_1,t_2],[x_1,z_2]]).$$

By Lemma 3 in [5], since we suppose $a \neq 0$, U must satisfy $[[x_1, t_2], [x_1, z_2]]$. In this case it is well known by Posner's Theorem that there exists a suitable field F such that U and $M_m(F)$, the ring of $m \times m$ matrices over F, satisfy the same polynomial identities. In particular, for $m \geq 2$, we get the contradiction that

$$0 = [[e_{12}, e_{22}], [e_{12}, e_{21}]] = -2e_{12} \neq 0.$$

Consider now the case when there exist $\alpha, \beta \in C$ such that $\alpha d + \beta \delta = ad(q)$, the inner derivation induced by some $q \in U$. Of course both α and β are not zero, since d and δ are not inner derivations. So, if denote $\lambda = -\alpha\beta^{-1}$ and $\mu = \beta^{-1}$, it follows that $\delta = \lambda d + \mu ad(q)$. Thus by (8) we have

$$a((b[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)])[x_1, x_2] - [x_1, x_2](p[x_1, x_2] + \lambda[d(x_1), x_2] + \lambda[x_1, d(x_2)] + \mu[[q, x_1], x_2] + \mu[x_1, [q, x_2]]))$$
(9)

From (9) and applying Kharchenko's result, it follows that R satisfies

$$a((b[x_1, x_2] + [t_1, x_2] + [x_1, t_2])[x_1, x_2] - [x_1, x_2](p[x_1, x_2] + \lambda[t_1, x_2] + \lambda[x_1, t_2] + \mu[[q, x_1], x_2] + \mu[x_1, [q, x_2]]))$$

and in particular R satisfies the blended component

$$a([x_1, t_2][x_1, x_2] - \lambda[x_1, x_2][x_1, t_2]).$$

As above by Lemma 3 in [5], since $a \neq 0$, R satisfies the polynomial identity $[x_1, t_2][x_1, x_2] - \lambda[x_1, x_2][x_1, t_2]$. Since R is a PI-ring, then there exists a field F such that R, U and $M_m(F)$ satisfy the same polynomial identities. In particular $M_m(F)$ satisfies

$$[x_1, t_2][x_1, x_2] - \lambda[x_1, x_2][x_1, t_2]$$
(10)

Consider $m \ge 2$. In (10) choose $x_1 = e_{12}$, $x_2 = e_{21}$ and $t_2 = e_{22}$. By calculations it follows $-(1 + \lambda)e_{12} = 0$, which means $\lambda = -1$.

On the other hand, for $x_1 = e_{12}$ and $x_2 = t_2 = e_{21}$, by (10) we have $(1 - \lambda)(e_{11} + e_{22}) = 0$, which implies $\lambda = 1$, that is a contradiction, since $\operatorname{char}(R) \neq 2$.

Case 3: Finally assume that either d or δ is an inner derivation on U. Without loss of generality we may assume that d(x) = [c, x], for a suitable $c \in U$ and let δ be an outer derivation of U. By (8) and Kharchenko's result, we get that U satisfies

$$a\big(\big(b[x_1, x_2] + c[x_1, x_2] - [x_1, x_2]c\big)[x_1, x_2] - [x_1, x_2]\big(p[x_1, x_2] + [z_1, x_2] + [x_1, z_2]\big)\big)$$

and in particular U satisfies the component

$$a(-[x_1, x_2][x_1, z_2]).$$

As above, by Lemma 3 in [5] and since $a \neq 0$, it follows that U satisfies the polynomial identity $[x_1, x_2][x_1, z_2]$. Let $M_m(F)$ be the ring of $m \times m$ matrices over a field F, which satisfies the same identities of U. This implies the following contradiction:

$$0 = [e_{12}, e_{22}][e_{12}, e_{21}] = -e_{12} \neq 0.$$

Notice that in the case δ is inner and d is outer, we may obtain the same contradiction by using the same argument as above.

References

- K. I. BEIDAR, W. S. MARTINDALE and V. MIKHALEV, Rings with Generalized Identities, Pure and Applied Math., *Dekker, New York*, 1996.
- [2] M. BRESAR, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394.
- [3] C. L. CHUANG, The additive subgroup generated by a polynomial, Israel J. Math. (1) 59 (1987), 98–106.
- [4] C. L. CHUANG, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (3) (1988), 723–728.
- [5] C. L. CHUANG and T. K. LEE, Rings with annihilator conditions on multilinear polynomials, *Chinese J. Math.* 24, no. 2 (1996), 177–185.
- [6] O. M. DI VINCENZO, On the n th centralizers of a Lie ideal, Boll. U. M. I. (7) 3-A (1989), 77–85.
- [7] C. FAITH, Lectures on Injective Modules and Quotient Rings, Vol. 49, Lecture Notes in Mathematics, Springer-Verlag, New York, 1967.
- [8] N. JACOBSON, Structure of Rings, Amer. Math. Soc. Coll. Pub. 37, Providence (1964).
- [9] I. N. HERSTEIN, Topics in Ring Theory, Univ. Chicago Press, Chicago, 1969.
- [10] V. K. KHARCHENKO, Differential identities of prime rings, Algebra and Logic 17 (1978), 155–168.
- [11] C. LANSKI and S. MONTGOMERY, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42, no. 1 (1972), 117–135.
- [12] P. H. LEE and T. L. WONG, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995), 1–5.
- [13] T. K. LEE, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1999), 4057–4073.
- [14] T. K. LEE, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1) (1992), 27–38.
- [15] J. MA and X. Xu, Cocentralizing generalized derivations in prime rings, Northeast. Math. J. 22, no. 1 (2006), 105–113.

- [16] W. S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
- [17] F. NIU and W. WU, Annihilator on co-commutators with derivations on Lie ideals in prime rings, Northeast. Math. J. 22 (4) (2006), 415–424.
- [18] E. C. POSNER, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [19] T. L. WONG, Derivations with power central values on multilinear poynomials, Algebra Colloq. 3 (4) (1996), 369–378.

LUISA CARINI DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI MESSINA MESSINA ITALIA

E-mail: lcarini@unime.it

VINCENZO DE FILIPPIS DIPARTIMENTO DI SCIENZE PER L'INGEGNERIA E PER L'ARCHITETTURA SEZIONE DI MATEMATICA E EIDOMATICA UNIVERSITÀ DI MESSINA MESSINA ITALIA *E-mail:* defilippis@unime.it

BASUDEB DHARA DEPARTMENT OF MATHEMATICS

BELDA COLLEGE, BELDA PASCHIM MEDINIPUR, 721424 (W.B.) INDIA

 $\textit{E-mail: basu_dhara@yahoo.com}$

(Received April 29, 2008; revised July 7, 2009)