Annihilators on co-commutators with generalized derivations on Lie ideals

By LUISA CARINI (Messina), VINCENZO DE FILIPPIS (Messina) and BASUDEB DHARA (Paschim Medinipur)

Abstract

Let R be a prime ring of characteristic different from $2, U$ the Utumi quotient ring of $R, C=Z(U)$ the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists $0 \neq a \in R$ such that $a(H(u) u-u G(u))=0$, for all $u \in L$, then one of the following holds: (1) there exist $b^{\prime}, c^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}, G(x)=c^{\prime} x$ with $a b^{\prime}=0$; (2) R satisfies s_{4} and there exist $b^{\prime}, c^{\prime}, q^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}, G(x)=$ $c^{\prime} x+x q^{\prime}$, with $a\left(b^{\prime}-q^{\prime}\right)=0$.

1. Introduction

Let R be a prime ring of characteristic different from 2 with center $Z(R)$ and extended centroid C. The standard polynomial of degree 4 is defined as $s_{4}\left(x_{1}, \ldots, x_{4}\right)=\sum_{\sigma \in S_{4}}(-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(4)}$, where σ runs over S_{4} the symmetric group of degree 4 and where $(-1)^{\sigma}$ is 1 or -1 according as σ is an even or odd permutation.

A well known result of Posner [18] states that if d is a derivation of R such that $[d(x), x] \in Z(R)$, for any $x \in R$, then either $d=0$ or R is commutative. This theorem indicates that the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. Following this line of investigation, several authors generalized the Posner's Theorem. For instance in [2] Bresar proves that if d and δ are derivations of R such that

[^0]$d(x) x-x \delta(x) \in Z(R)$, for all $x \in R$, then either $d=\delta=0$ or R is commutative. Later in [12] Lee and Wong consider the case when $d(x) x-x \delta(x) \in Z(R)$, for all x in some non-central Lie ideal L of R. They prove that either $d=\delta=0$ or R satisfies s_{4}, the standard identity of degree 4 . Recently in [17] NiU and WU study the left annihilator of the set $\{d(u) u-u \delta(u), u \in L\}$, where d and δ are derivations of R and L is a non-central Lie ideal of R. In case the annihilator is not zero, the conclusion is that R satisfies the standard identity s_{4} and $d=-\delta$ are inner derivations. These facts in a prime ring are natural tests which evidence that the set $\{d(u) u-u \delta(u), u \in L\}$ is rather large in R.

Here we will consider the same situation in the case the derivations d and δ are replaced respectively by the generalized derivations H and G. More specifically an additive $\operatorname{map} G: R \longrightarrow R$ is said to be a generalized derivation if there is a derivation d of R such that, for all $x, y \in R, G(x y)=G(x) y+x d(y)$. A significative example is a map of the form $G(x)=a x+x b$, for some $a, b \in R$; such generalized derivations are called inner. Generalized derivations have been primarily studied on operator algebras. Therefore any investigation from the algebraic point of view might be interesting (see for example [13]). Here our purpose is to prove the following theorem:

Theorem 1. Let R be a prime ring of characteristic different from $2, U$ the Utumi quotient ring of $R, C=Z(U)$ the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists $0 \neq a \in R$ such that $a(H(u) u-u G(u))=0$, for all $u \in L$, then one of the following holds:
(1) there exist $b^{\prime}, c^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}, G(x)=c^{\prime} x$ with $a b^{\prime}=0$;
(2) R satisfies s_{4} and there exist $b^{\prime}, c^{\prime}, q^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}$, $G(x)=c^{\prime} x+x q^{\prime}$, with $a\left(b^{\prime}-q^{\prime}\right)=0$.

In all that follows let R be a non-commutative prime ring of characteristic different from $2, U$ its Utumi quotient ring and $C=Z(U)$ the center of U. We refer the reader to [1] for the definitions and the related properties of these objects. In particular we make use of the following well known facts:

Fact 1. If I is a two-sided ideal of R, then R, I and U satisfies the same generalized polynomial identities with coefficients in U ([4]).

Fact 2. Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1 in [1]).

Fact 3. We denote by $\operatorname{Der}(U)$ the set of all derivations on U. By a derivation word we mean an additive map Δ of the form $\Delta=d_{1} d_{2} \ldots d_{m}$, with each
$d_{i} \in \operatorname{Der}(U)$. Then a differential polynomial is a generalized polynomial, with coefficients in U, of the form $\Phi\left({ }^{\Delta_{j}} x_{i}\right)$ involving non-commutative indeterminates x_{i} on which the derivations words Δ_{j} act as unary operations. The differential polynomial $\Phi\left({ }^{\Delta_{j}} x_{i}\right)$ is said to be a differential identity on a subset T of U if it vanishes for any assignment of values from T to its indeterminates x_{i}.

Let $D_{\text {int }}$ be the C-subspace of $\operatorname{Der}(U)$ consisting of all inner derivations on U and let d be a non-zero derivation on R. By Theorem 2 in [10] we have the following result (see also Theorem 1 in [14]): If $\Phi\left(x_{1}, \ldots, x_{n},{ }^{d} x_{1}, \ldots,{ }^{d} x_{n}\right)$ is a differential identity on R, then one of the following holds:
(1) either $d \in D_{\text {int }}$;
(2) or R satisfies the generalized polynomial identity $\Phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

Fact 4. If I is a two-sided ideal of R, then R, I and U satisfies the same differential identities ([14]).

We refer the reader to Chapter 7 in [1] for a complete and detailed description of the theory of generalized polynomial identities involving derivations.

Fact 5. Since we assume that $\operatorname{char}(R) \neq 2$, then there exists a non-zero twosided ideal I of R such that $0 \neq[I, R] \subseteq L$. In particular, if R is a simple ring it follows that $[R, R] \subseteq L$.

This follows from pp. 4-5 in [9], Lemma 2 and Proposition 1 in [6], Theorem 4 in [11].

2. The case of inner generalized derivations

We dedicate this section to prove the theorem in case both the generalized derivations H and G are inner, that is there exist $b, c, p, q \in U$ such that $H(x)=$ $b x+x c$ and $G(x)=p x+x q$, for all $x \in R$.

In light of Fact 5 , since we suppose $\operatorname{char}(R) \neq 2$, there exists a non-central ideal I of R such that $[I, I] \subseteq L$. This implies that $a\left(b\left[r_{1}, r_{2}\right]^{2}+\left[r_{1}, r_{2}\right](c-p)\left[r_{1}, r_{2}\right]-\right.$ $\left.\left[r_{1}, r_{2}\right]^{2} q\right)=0$ for all $r_{1}, r_{2} \in I$. Moreover by Fact $1, I$ and R satisfy the same generalized polynomial identities, thus $a\left(b\left[r_{1}, r_{2}\right]^{2}+\left[r_{1}, r_{2}\right](c-p)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right]^{2} q\right)=0$ for all $r_{1}, r_{2} \in R$. Hence in all that follows we assume that R satisfies the following generalized polynomial identity

$$
P\left(x_{1}, x_{2}\right)=a\left(b\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right](c-p)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]^{2} q\right)
$$

$P\left(x_{1}, x_{2}\right)$ is a generalized polynomial in the free product $U *_{C} C\left\{x_{1}, x_{2}\right\}$ of the C-algebra U and the free C-algebra $C\left\{x_{1}, x_{2}\right\}$.

We first prove the following:
Proposition 1. If $a \in Z(R)$, then one of the following holds:
(1) either there exists $b^{\prime} \in U$ such that $H(x)=x b^{\prime}$ and $G(x)=b^{\prime} x$, for all $x \in R$;
(2) or R satisfies s_{4} and there exists $\alpha \in C$ such that $p=c-\alpha$ and $q=b+\alpha$, that is $H(x)=b x+x c$ and $G(x)=c x+x b$.

Proof. Since $a \in Z(R)$, then a is not a zero-divisor, then by main assumption it follows that $(H(u) u-u G(u))=0$, for all $u \in[R, R]$. In this case, it is proved in [15] that either there exists $b^{\prime} \in U$ such that $H(x)=x b^{\prime}$ and $G(x)=b^{\prime} x$, for all $x \in R$, or R satisfies s_{4}. In this last case R is PI-ring, moreover U satisfies the same generalized polynomial identities of R. Therefore U is a central simple algebra of dimension at most 4 over its center, and it is known that in this case $[r, s]^{2} \in Z(U)=C$ for all $r, s \in U$. Moreover U satisfies

$$
b\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right](c-p)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]^{2} q .
$$

Since the polynomial $\left[x_{1}, x_{2}\right]^{2}$ is central valued in U, then U satisfies

$$
\begin{equation*}
(b-q)\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right](c-p)\left[x_{1}, x_{2}\right] . \tag{1}
\end{equation*}
$$

Denote $e_{i j}$ the usual matrix unit, with 1 in the (i, j)-entry and zero elsewhere, and write $w=(c-p)=\sum_{r s} w_{r s} e_{r s}$, for suitable $w_{r s} \in C$. Therefore for any $i \neq j$, let $r_{1}=e_{i i}, r_{2}=e_{i j}$ and $\left[r_{1}, r_{2}\right]=e_{i j}$. It follows by (1) that $e_{i j} w e_{i j}=0$ for all $i \neq j$, that is $w_{j i}=0$ and w is a diagonal matrix in $M_{2}(C)$. Moreover, for all $\varphi \in \operatorname{Aut}_{F}\left(M_{2}(C)\right), U$ satisfies

$$
\varphi\left((b-q)\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right](c-p)\left[x_{1}, x_{2}\right]\right)
$$

which is

$$
\left(\varphi(b-q)\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right] \varphi(c-p)\left[x_{1}, x_{2}\right]\right)
$$

since the set of all the evaluation of $\left[x_{1}, x_{2}\right]$ is invariant under the action of any element of $\operatorname{Aut}_{F}\left(M_{2}(C)\right)$. By the above argument, $\varphi(c-p)$ must be diagonal. In particular, let $r \neq s$ and $\varphi(x)=\left(1+e_{r s}\right) x\left(1-e_{r s}\right)$, hence

$$
\varphi(c-p)=\sum_{t} w_{t t} e_{t t}+w_{s s} e_{r s}-w_{r r} e_{r s}
$$

which implies $w_{r r}=w_{s s}$, for all $r \neq s$. Thus $c-p$ is a central matrix, namely $c-p=\alpha$. By (1) we get that U satisfies $(b-q+\alpha)\left[x_{1}, x_{2}\right]^{2}$, and since $0 \neq$ $[U, U]^{2} \subseteq C$, we also have $q-b=\alpha=c-p$. Thus we conclude that, in case R satisfies $s_{4}, p=c-\alpha$ and $q=b+\alpha$.

Proposition 2. If $a \notin Z(R)$ then either $P\left(x_{1}, x_{2}\right)$ is a non-trivial generalized polynomial identity for R or $H(x)=b^{\prime} x+x c^{\prime}, G(x)=c^{\prime} x$ for some $b^{\prime}, c^{\prime} \in U$ satisfying $a b^{\prime}=0$.

Proof. Suppose now that R does not satisfy any non-trivial generalized polynomial identity. Let $T=U *_{C} C\{X\}$ be the free product over C of the C algebra U and the free C-algebra $C\{X\}$, with X the countable set consisting of non-commuting indeterminates $x_{1}, x_{2}, \ldots, x_{n}, \ldots$.

For brevity we write $P(X)$ instead of $P\left(x_{1}, x_{2}\right)$ and $f(X)$ instead of $\left[x_{1}, x_{2}\right]$.
Now consider the generalized polynomial $P(X) \in U *_{C} C\{X\}$. By our hypothesis, R satisfies the following generalized polynomial identity:

$$
P(X)=a b f(X)^{2}+a f(X)(c-p) f(X)-a f(X)^{2} q=0 \in T
$$

Since R does not satisfy non-trivial GPIs, by [4], the coefficients $\{a b, a\}$ must be linearly C-dependent. Therefore there exist $\beta_{1}, \beta_{2} \in C$ such that $\beta_{1}(a b)+\beta_{2} a=0$, with $\beta_{1} \neq 0$ since $a \notin C$. Hence we may write $a b=\lambda a$, for a suitable $\lambda \in C$. In this situation R satisfies

$$
a\left(\lambda f(X)^{2}+f(X)(c-p) f(X)-f(X)^{2} q\right)
$$

that is

$$
\lambda f(X)^{2}+f(X)(c-p) f(X)-f(X)^{2} q=0 \in T
$$

Again since R does not satisfy any non-trivial generalized polynomial identity, $\{1, q\}$ must be linearly C-dependent, that is $q \in C$. This implies that $G(x)=$ $(p+q) x$ and also that R satisfies

$$
f(X)(\lambda+(c-p)-q) f(X)
$$

which implies $\lambda+(c-p)-q=0$, that is $H(x)=b x+x(p+q-\lambda)=(b-\lambda) x+x(p+q)$, and we obtain the required conclusion, for $b^{\prime}=b-\lambda$ and $c^{\prime}=p+q$.

Lemma 1. Let $R=M_{m}(F)$ be the ring of all $m \times m$ matrices over a field F of characteristic different from 2. If a is not central in R then there exists $\alpha \in F$ such that $p=c-\alpha \cdot I_{m}$, where I_{m} is the identity matrix of order m, and one of the following holds:
(1) $q \in Z(R)$ and there exists $\gamma \in F$ such that $p+q=c+\gamma \cdot I_{m}$, that is $H(x)=b x+x c, G(x)=\left(c+\gamma \cdot I_{m}\right) x ;$ moreover $a\left(b-\gamma \cdot I_{m}\right)=0 ;$
(2) R satisfies s_{4} and there exists $q^{\prime} \in R$ such that $G(x)=c x+x q^{\prime}$, with $a\left(b-q^{\prime}\right)=0$.

Proof. Denote $a=\sum_{r s} e_{r s} a_{r s}, q=\sum_{r s} e_{r s} q_{r s}, c-p=w=\sum_{r s} e_{r s} w_{r s}$, for suitable $a_{r s}, q_{r s}, w_{r s} \in F$. By the main assumption, R satisfies

$$
\begin{equation*}
a\left(b\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right](c-p)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]^{2} q\right) . \tag{2}
\end{equation*}
$$

Fix $\left[x_{1}, x_{2}\right]=e_{i j}$, for any $i \neq j$. In this case from (2) we have

$$
\begin{equation*}
a e_{i j}(c-p) e_{i j}=0 \tag{3}
\end{equation*}
$$

that is

$$
\text { either } \quad a_{k i}=0 \quad \forall k \quad \text { or } \quad w_{j i}=0 \quad\left(3^{\prime}\right) .
$$

Here we first prove that w is a diagonal matrix. In order to do this, we suppose that there exists some non-zero off-diagonal entry of w and divide the proof into two cases:

Case 1: $m=2$.

Suppose $w_{21} \neq 0$, then by (3) it follows $a_{11}=a_{21}=0$. Of course, since we suppose $a \neq 0$, we must assume now $w_{12}=0$.

Choose $\left[x_{1}, x_{2}\right]=\left[e_{12}, e_{21}\right]=e_{11}-e_{22}$ and by (2) we have

$$
0=Y=a\left(b\left(e_{11}-e_{22}\right)^{2}+\left(e_{11}-e_{22}\right)(c-p)\left(e_{11}-e_{22}\right)-\left(e_{11}-e_{22}\right)^{2} q\right)
$$

in particular the $(1,1)$-entry of the matrix Y is $a_{12}\left(b_{21}-w_{21}-q_{21}\right)=0$ and the $(2,1)$-one is $a_{22}\left(b_{21}-w_{21}-q_{21}\right)=0$. Therefore, from $a \neq 0$ follows

$$
\begin{equation*}
b_{21}-w_{21}-q_{21}=0 . \tag{4}
\end{equation*}
$$

In the same way, for $\left[x_{1}, x_{2}\right]=\left[e_{12}-e_{21}, e_{22}\right]=e_{12}+e_{21}$ in (2) we have

$$
0=T=a\left(b\left(e_{12}+e_{21}\right)^{2}+\left(e_{12}+e_{21}\right)(c-p)\left(e_{12}+e_{21}\right)-\left(e_{12}+e_{21}\right)^{2} q\right)
$$

The $(1,1)$-entry of the matrix T is $a_{12}\left(b_{21}-q_{21}\right)=0$ and the $(2,1)$-one is $a_{22}\left(b_{21}-q_{21}\right)=0$. Since $a \neq 0$ we get

$$
\begin{equation*}
b_{21}-q_{21}=0 \tag{5}
\end{equation*}
$$

Thus by (5) and (4) we obtain the contradiction $w_{21}=0$.

Case 2: $m \geq 3$.

Also in this case we suppose that there exists $w_{j i} \neq 0$ for some $i \neq j$, so that $a_{k i}=0$ for all k, that is the i-th column of a is zero.

Let now $q \neq i, j$ and fix $\left[x_{1}, x_{2}\right]=\left[e_{i j}+e_{q j}, e_{j j}\right]=e_{i j}+e_{q j}$. Then (2) implies $a\left(e_{i j}+e_{q j}\right) w\left(e_{i j}+e_{q j}\right)=0$ and since $a_{k i}=0$ for all k, it follows that $a e_{q j} w\left(e_{i j}+e_{q j}\right)=0$. Moreover, by (3), we get $a e_{q j} w e_{q j}=0$, which implies that $a e_{q j} w e_{i j}=0$. The assumption $w_{j i} \neq 0$ implies that $a_{k q}=0$ for all k, that is a has just one non-zero column, the j-th one: $a=\sum_{r} a_{r j} e_{r j}$.

Notice that if $w_{t j} \neq 0$ for some $t \neq j$, by the same argument we get that a has just the t-th column non-zero, that is $a=0$. Thus we may assume that $w_{t j}=0$ for all $t \neq j$.

Let $t \neq i, j$ and denote by σ_{t} and τ_{t} the following automorphisms of R :

$$
\begin{aligned}
\sigma_{t}(x) & =\left(1+e_{j t}\right) x\left(1-e_{j t}\right)=x+e_{j t} x-x e_{j t}-e_{j t} x e_{j t} \\
\tau_{t}(x) & =\left(1-e_{j t}\right) x\left(1+e_{j t}\right)=x-e_{j t} x+x e_{j t}-e_{j t} x e_{j t}
\end{aligned}
$$

and say $\sigma_{t}(w)=\sum \sigma_{r s} e_{r s}, \tau_{t}(w)=\sum \tau_{r s} e_{r s}$ where $\sigma_{r s}, \tau_{r s} \in F$. We have

$$
\sigma_{j i}=w_{j i}+w_{t i} \quad \text { and } \quad \tau_{j i}=w_{j i}-w_{t i}
$$

If there exists t such that $\sigma_{j i}=w_{j i}+w_{t i}=0$ or $\tau_{j i}=w_{j i}-w_{t i}=0$ then $w_{t i}=-w_{j i} \neq 0$ or $w_{t i}=w_{j i} \neq 0$. Therefore $w_{j i} \neq 0$ and $w_{t i} \neq 0$, and so, by using (3), $a=0$.

Hence assume that $\sigma_{j i} \neq 0$ and $\tau_{j i} \neq 0$, for all $t \neq i, j$, and recall that, for any F-automorphism φ of R, the following holds

$$
\varphi(a)\left(\varphi(b)\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right] \varphi(c-p)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]^{2} \varphi(q)\right)
$$

Thus in this case by (3), for any $t \neq i, j$, the non-zero entries of the matrices $\sigma_{t}(a)$ and $\tau_{t}(a)$ are just in the j-th column. In particular, since

$$
\begin{aligned}
\sigma_{t}(a) & =a+e_{j t} a-a e_{j t}-e_{j t} a e_{j t}
\end{aligned}=\sum_{r} a_{r j} e_{r j}-\sum_{r} a_{r j} e_{r t}+a_{t j} e_{j j}-a_{t j} e_{j t} .
$$

then both the above matrices have zero in the (j, t) entry that is

$$
\begin{array}{rlll}
-a_{j j}-a_{t j}=0 & \text { for } & \sigma_{t}(a) \\
a_{j j}-a_{t j}=0 & \text { for } & \tau_{t}(a) .
\end{array}
$$

By $\operatorname{char}(R) \neq 2$ we obtain $a_{j j}=a_{t j}=0$ for all $t \neq i$, that is $a=a_{i j} e_{i j}$.

Denote now by φ and χ the following automorphisms of R :

$$
\begin{aligned}
& \varphi(x)=\left(1+e_{j i}\right) x\left(1-e_{j i}\right)=x+e_{j i} x-x e_{j i}-e_{j i} x e_{j i}, \\
& \chi(x)=\left(1-e_{j i}\right) x\left(1+e_{j i}\right)=x-e_{j i} x+x e_{j i}-e_{j i} x e_{j i}
\end{aligned}
$$

and say $\varphi(w)=\sum \varphi_{r s} e_{r s}, \chi(w)=\sum \chi_{r s} e_{r s}$ where $\varphi_{r s}, \chi_{r s} \in F$. Since, by (3^{\prime}), $w_{i j} \neq 0$ implies $a=0$, we assume that $w_{i j}=0$. Then we have

$$
\varphi_{j i}=w_{j i}-w_{j j}+w_{i i} \quad \text { and } \quad \chi_{j i}=w_{j i}+w_{j j}-w_{i i}
$$

If $\varphi_{j i}=\chi_{j i}=0$, then we get the contradiction $w_{j i}=0$.
If at least one of $\varphi_{j i}$ and $\chi_{j i}$ is not zero, then, by (3), one of $\varphi(a)$ and $\chi(a)$ has zero in all the entries of the i-th column. In particular notice that

$$
\begin{array}{r}
\varphi(a)=a_{i j} e_{i j}-a_{i j} e_{i i}+a_{i j} e_{j j}-a_{i j} e_{j i}, \\
\chi(a)=a_{i j} e_{i j}+a_{i j} e_{i i}-a_{i j} e_{j j}-a_{i j} e_{j i}
\end{array}
$$

which means that in any case the (j, i)-entry is $a_{i j}=0$, a contradiction again.
All the previous arguments say that if a is not zero, then w must be diagonal matrix, $w=\sum_{t} w_{t} e_{t t}$.

Moreover, for all $\lambda \in \operatorname{Aut}_{F}\left(M_{m}(F)\right)$, since $\lambda(a) \neq 0$ and R satisfies

$$
\lambda(a)\left(\lambda(b)\left[x_{1}, x_{2}\right]^{2}+\left[x_{1}, x_{2}\right] \lambda(c-p)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]^{2} \lambda(q)\right)
$$

we also have that $\lambda(c-p)$ is diagonal. In particular, let $r \neq s$ and $\lambda(x)=$ $\left(1+e_{r s}\right) x\left(1-e_{r s}\right)$, hence

$$
\lambda(c-p)=\sum_{t} w_{t} e_{t t}+w_{s} e_{r s}-w_{r} e_{r s}
$$

is diagonal implying $w_{r}=w_{s}=\alpha$, for all $r \neq s$. Thus $c-p$ is a central matrix, namely $c-p=\alpha \cdot I_{m}$. Therefore R satisfies

$$
a b\left[x_{1}, x_{2}\right]^{2}+a\left[x_{1}, x_{2}\right]^{2}(\alpha-q) .
$$

Denote by G the additive subgroup of R generated by all the evaluations of the polynomial $\left[x_{1}, x_{2}\right]^{2}$. By [3], since $\operatorname{char}(R) \neq 2$, either $[R, R] \subseteq G$ or $\left[x_{1}, x_{2}\right]^{2}$ is central valued on R that is R satisfies s_{4}.

In the first case R satisfies

$$
a b\left[x_{1}, x_{2}\right]+a\left[x_{1}, x_{2}\right](\alpha-q) .
$$

Let $\alpha-q=u=\sum_{r, s} u_{r s} e_{r s}$, with $u_{r s} \in F$. For $\left[x_{1}, x_{2}\right]=e_{i j}$, with any $i \neq j$, it follows $a b e_{i j}+a e_{i j}(\alpha-q)=0$. By right multiplying for any $e_{q q}$, with $q \neq j$, we have $a e_{i j}(\alpha-q) e_{q q}=0$ that is

$$
\text { either } \quad a_{k i}=0 \quad \forall k \quad \text { or } \quad u_{j q}=0 \quad \forall q \neq j
$$

In particular

$$
\text { either } \quad a_{k i}=0 \quad \forall k \quad \text { or } \quad u_{j i}=0 \quad\left(3^{\prime \prime}\right)
$$

Notice that $\left(3^{\prime \prime}\right)$ has the same flavour of $\left(3^{\prime}\right)$. By the same argument as above, in case $a \neq 0$ we have that $u=\alpha-q$ is a central matrix, and so $a(b+u)\left[r_{1}, r_{2}\right]=0$, for all $r_{1}, r_{2} \in R$. This implies $a(b+u)=0$, which is the conclusion 1 of Lemma 1, for $\gamma=-u$.

Consider finally the case when $\left[x_{1}, x_{2}\right]^{2}$ is central valued on R. Here R satisfies $a(b+\alpha-q)\left[x_{1}, x_{2}\right]^{2}$, moreover there exists $0 \neq\left[r_{1}, r_{2}\right]^{2} \in F \cdot I_{m}$, which implies $a(b+\alpha-q)=0$, the conclusion 2 of Lemma 1, for $q^{\prime}=q-\alpha$.

Lemma 2. Let R be a prime ring of characteristic different from 2. If a is not central in R then $c-p=\alpha \in C$ and one of the following holds:
(1) $q \in C$ and there exist $\lambda \in C, b^{\prime}=b-\lambda, c^{\prime}=p+q$ such that $H(x)=b^{\prime} x+x c^{\prime}$, $G(x)=c^{\prime} x$, with $a b^{\prime}=0 ;$
(2) $q \in C$ and there exists $\gamma=q-\alpha \in C$ such that $p+q=c+\gamma$, that is $H(x)=b x+x c, G(x)=(c+\gamma) x$, with $a(b-\gamma)=0 ;$
(3) R satisfies s_{4} and there exists $q^{\prime}=q-\alpha$ such that $G(x)=c x+x q^{\prime}$, with $a\left(b-q^{\prime}\right)=0$.

Proof. As above we denote for brevity $P\left(x_{1}, x_{2}\right)$ by $P(X)$ and $\left[x_{1}, x_{2}\right]$ by $f(X)$ and consider the generalized polynomial

$$
P(X)=a b f(X)^{2}+a f(X)(c-p) f(X)-a f(X)^{2} q
$$

Since U and R satisfy the same generalized polynomial identities with coefficients in U (see Fact 1), then $P(X)$ is also a generalized identity for U.

Suppose first that U does not satisfy any non-trivial generalized polynomial identity. Therefore by Proposition 2 we get conclusion 1 .

Hence we may suppose now that U satisfies some non-trivial generalized polynomial identity. By [16] U is primitive having a non-zero socle $\operatorname{Soc}(U)$ with C as the associated division ring and by Jacobson's Theorem (p. 75 in [8]) U is isomorphic to a dense ring of linear transformations of some vector space V over C.

If V is finite-dimensional over C, it follows that $R \subseteq U=M_{k}(C)$, for $k=$ $\operatorname{dim}_{C} V$. In this case we get the required conclusions by Lemma 1.

Let $\operatorname{dim}_{C} V=\infty$. Denote $\operatorname{End}_{C} V$ the ring of endomorphisms of ${ }_{C} V$ and recall that the range of a polynomial $f(X) \in C\left\{x_{1}, x_{2}\right\}$ is defined as follows

$$
r(f ; U)=\left\{f\left(x_{1}, x_{2}\right) \in \operatorname{End}_{C} V: x_{1}, x_{2} \in U\right\}
$$

In [19] (Lemma) it is proved that, if U is a dense subring of $\operatorname{End}_{C} V$ and $\operatorname{dim}_{C} V=$ ∞, then $r(f ; U)$ is a dense subset of $\operatorname{End}_{C} V$ and this implies that U satisfies the generalized polynomial identity

$$
\begin{equation*}
a b x^{2}+a x(c-p) x-a x^{2} q . \tag{6}
\end{equation*}
$$

Suppose that there exists a minimal idempotent element e of $\operatorname{Soc}(U)$ such that $e(c-p)(1-e) \neq 0$. Replace in $(6) x$ by $(1-e) r e$ for any $r \in U$, then it follows that $a(1-e) r e(c-p)(1-e) r e=0$, which implies $a(1-e)=0$, since $e(c-p)(1-e) \neq 0$. This means that $a=a e$.

On the other hand, if in (6) we replace x by ere for any $r \in U$, we get $a b(e r e)^{2}+\operatorname{aere}(c-p) \operatorname{ere}-a(e r e)^{2} q=0$, and by right multiplying by $(1-e)$ one has $-a e(e r e)^{2} q(1-e)=0$. Since $0 \neq a=a e$, we have $e q(1-e)=0$, that is $e q=e q e$.

Finally replace in (6) x by $x+y$. It follows that U satisfies:

$$
a b(x y)+a b(y x)+a x(c-p) y+a y(c-p) x-a(x y) q-a(y x) q
$$

and for any $x=r e$ and $y=(1-e) s$, with $r, s \in U$, we get

$$
a b(1-e) s r e+\operatorname{are}(c-p)(1-e) s+a(1-e) s(c-p) r e-a(1-e) s r e q=0 .
$$

By right multiplying by $(1-e)$ and since $e q(1-e)=0$, we have are $(c-p)(1-e)$ $s(1-e)=0$, for all $r, s \in U$. By the primeness of U and by the assumption that $e(c-p)(1-e) \neq 0$, the contradiction $a=0$ follows.

Therefore $e(c-p)(1-e)=0$, for any idempotent element $e \in \operatorname{Soc}(U)$ of rank 1. Hence $[c-p, e]=0$, for any idempotent of $\operatorname{rank} 1$, and $[c-p, \operatorname{Soc}(U)]=0$, since $\operatorname{Soc}(U)$ is generated by these idempotent elements. This argument gives $c-p \in C$, and as a consequence of (6), U satisfies the generalized polynomial identity

$$
\begin{equation*}
a b x^{2}+a x^{2}(c-p-q) . \tag{7}
\end{equation*}
$$

As above, suppose that there exists a minimal idempotent element e of $\operatorname{Soc}(U)$ such that $(1-e)(c-p-q) e \neq 0$. If we replace in $(7) x$ by $(1-e) r(1-e)$
for any $r \in U$ and multiply by e on the right, then we get $a((1-e) r(1-e))^{2}(c-$ $p-q) e=0$, that is $a(1-e)=0$, since $(1-e)(c-p-q) e \neq 0$.

Now by (7), for $x=t+y$, it follows that U satisfies

$$
a b t y+a b y t+a t y(c-p-q)+a y t(c-p-q)
$$

Finally for $t=(1-e), y=z(1-e)$ and by right multiplying by e, we have $a z(1-e)(c-p-q) e=0$, that is $a=0$, a contradiction. Therefore $(1-e)(c-$ $p-q) e=0$, for any idempotent element $e \in \operatorname{Soc}(U)$ of rank 1 , that is as above $c-p-q \in C$, which implies $q \in C$. Therefore U satisfies $a(b+c-p-q) x^{2}$, that is $a(b+c-p-q)=0$, with $c-p \in C$ and $q \in C$, which is the conclusion 2 of Lemma 2.

3. The general case

We consider now the more general situation and prove the main Theorem of the paper. As in Section 1, since we suppose $\operatorname{char}(R) \neq 2$, by Fact 5 we may assume that there exists a non-zero ideal I of R such that

$$
a\left(H\left(\left[r_{1}, r_{2}\right]\right)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] G\left(\left[r_{1}, r_{2}\right]\right)\right)=0
$$

for all $r_{1}, r_{2} \in I$. Under these assumptions we have that:
Theorem 2. If R is a prime ring of characteristic different from 2 , then one of the following holds:
(1) there exist $b^{\prime}, c^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}, G(x)=c^{\prime} x$ with $a b^{\prime}=0$;
(2) R satisfies s_{4} and there exist $b^{\prime}, c^{\prime}, q^{\prime} \in U$ such that $H(x)=b^{\prime} x+x c^{\prime}$, $G(x)=c^{\prime} x+x q^{\prime}$, with $a\left(b^{\prime}-q^{\prime}\right)=0$.
Proof. By Theorem 3 in [13] every generalized derivation g on a dense right ideal of R can be uniquely extended to the Utumi quotient ring U of R, and thus we can think of any generalized derivation of R to be defined on the whole U and to be of the form $g(x)=b x+d(x)$ for some $b \in U$ and d a derivation on U. Thus we may assume that there exist $b, p \in U$ and d, δ derivations on U such that

$$
H(x)=b x+d(x) \quad \text { and } \quad G(x)=p x+\delta(x)
$$

Since I, R and U satisfy the same differential identities [14], then without loss of generality, in order to prove our results we may assume that

$$
a\left(H\left(\left[r_{1}, r_{2}\right]\right)\left[r_{1}, r_{2}\right]-\left[r_{1}, r_{2}\right] G\left(\left[r_{1}, r_{2}\right]\right)\right)=0
$$

for all $r_{1}, r_{2} \in U$. Hence U satisfies

$$
a\left(\left(b\left[x_{1}, x_{2}\right]+d\left(\left[x_{1}, x_{2}\right]\right)\right)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]\left(p\left[x_{1}, x_{2}\right]+\delta\left(\left[x_{1}, x_{2}\right]\right)\right)\right)
$$

that is

$$
\begin{align*}
a\left(\left(b\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\right.\right. & {\left.\left.\left[x_{1}, d\left(x_{2}\right)\right]\right)\right)\left[x_{1}, x_{2}\right] } \\
& \left.\left.-\left[x_{1}, x_{2}\right]\left(p\left[x_{1}, x_{2}\right]+\left[\delta\left(x_{1}\right), x_{2}\right]+\left[x_{1}, \delta\left(x_{2}\right)\right]\right)\right)\right) \tag{8}
\end{align*}
$$

where d, δ are derivations on U. We divide the proof into 3 cases:
Case 1: Let $d(x)=[c, x]$ and $\delta(x)=[q, x]$ be both inner derivations in U, so that $H(x)=b x+[c, x]=(b+c) x+x(-c)$ and $G(x)=p x+[q, x]=(p+q) x+x(-q)$, for suitable elements $c, q \in U$. In this case H and G are both inner generalized derivations in U. We notice that, if $a \in C$, then by Proposition 1 we have that either there exists $b^{\prime} \in U$ such that $H(x)=x b^{\prime}$ and $G(x)=b^{\prime} x$ for all $x \in R$ (conclusion 1); or R satisfies s_{4} and there exist $b^{\prime}, c^{\prime} \in U$ such that $H(x)=$ $b^{\prime} x+x c^{\prime}, G(x)=c^{\prime} x+x b^{\prime}$ (which is a particular case of conclusion 2). In what follows we assume that $a \notin C$.

Thus by Lemma 2 one of the following holds:

1. By conclusion 1 of Lemma 2 we get: $-c-p-q=\alpha \in C$ and $q \in C$, $a(b+c-\lambda)=0, c^{\prime}=p$ such that $H(x)=(b+c-\lambda) x+x c^{\prime}$ and $G(x)=c^{\prime} x$, which is the conclusion 1 of the Theorem.
2. By conclusion 2 of Lemma 2 it follows: $-c-p-q=\alpha \in C$ and $q \in C$, $\gamma=-q-\alpha \in C, p=-c+\gamma$ such that $H(x)=(b+c) x+x(-c)$ and $G(x)=$ $(-c+\gamma) x$ with $a(b+c-\gamma)=0$. By rewriting $H(x)=(b+c-\gamma) x+x(\gamma-c)$, we obtain conclusion 1 of the Theorem.
3. By conclusion 3 of Lemma 2 it follows: $-c-p-q=\alpha \in C, R$ satisfies s_{4} and $q^{\prime}=-q-\alpha$ such that $H(x)=(b+c) x+x(-c)$ and $G(x)=-c x+x q^{\prime}$ with $a\left(b+c-q^{\prime}\right)=0$, which is the conclusion 2 of the Theorem.

Case 2: Assume now that both d and δ are not inner derivations. Suppose first that d and δ are linearly C-independent modulo X-inner derivations. In this case, by Kharchenko's Theorem in [10] (see Fact 3), by (8) we have that U satisfies

$$
a\left(\left(b\left[x_{1}, x_{2}\right]+\left[t_{1}, x_{2}\right]+\left[x_{1}, t_{2}\right]\right)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]\left(b\left[x_{1}, x_{2}\right]+\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)
$$

and in particular U satisfies the blended component

$$
a\left(\left[\left[x_{1}, t_{2}\right],\left[x_{1}, z_{2}\right]\right]\right)
$$

By Lemma 3 in [5], since we suppose $a \neq 0, U$ must satisfy $\left[\left[x_{1}, t_{2}\right],\left[x_{1}, z_{2}\right]\right]$. In this case it is well known by Posner's Theorem that there exists a suitable field F such that U and $M_{m}(F)$, the ring of $m \times m$ matrices over F, satisfy the same polynomial identities. In particular, for $m \geq 2$, we get the contradiction that

$$
0=\left[\left[e_{12}, e_{22}\right],\left[e_{12}, e_{21}\right]\right]=-2 e_{12} \neq 0
$$

Consider now the case when there exist $\alpha, \beta \in C$ such that $\alpha d+\beta \delta=a d(q)$, the inner derivation induced by some $q \in U$. Of course both α and β are not zero, since d and δ are not inner derivations. So, if denote $\lambda=-\alpha \beta^{-1}$ and $\mu=\beta^{-1}$, it follows that $\delta=\lambda d+\mu a d(q)$. Thus by (8) we have

$$
\begin{gather*}
a\left(\left(b\left[x_{1}, x_{2}\right]+\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\left[x_{1}, x_{2}\right]\right. \\
\left.-\left[x_{1}, x_{2}\right]\left(p\left[x_{1}, x_{2}\right]+\lambda\left[d\left(x_{1}\right), x_{2}\right]+\lambda\left[x_{1}, d\left(x_{2}\right)\right]+\mu\left[\left[q, x_{1}\right], x_{2}\right]+\mu\left[x_{1},\left[q, x_{2}\right]\right]\right)\right) \tag{9}
\end{gather*}
$$

From (9) and applying Kharchenko's result, it follows that R satisfies

$$
\begin{gathered}
a\left(\left(b\left[x_{1}, x_{2}\right]+\left[t_{1}, x_{2}\right]+\left[x_{1}, t_{2}\right]\right)\left[x_{1}, x_{2}\right]\right. \\
\left.-\left[x_{1}, x_{2}\right]\left(p\left[x_{1}, x_{2}\right]+\lambda\left[t_{1}, x_{2}\right]+\lambda\left[x_{1}, t_{2}\right]+\mu\left[\left[q, x_{1}\right], x_{2}\right]+\mu\left[x_{1},\left[q, x_{2}\right]\right]\right)\right)
\end{gathered}
$$

and in particular R satisfies the blended component

$$
a\left(\left[x_{1}, t_{2}\right]\left[x_{1}, x_{2}\right]-\lambda\left[x_{1}, x_{2}\right]\left[x_{1}, t_{2}\right]\right)
$$

As above by Lemma 3 in [5], since $a \neq 0, R$ satisfies the polynomial identity $\left[x_{1}, t_{2}\right]\left[x_{1}, x_{2}\right]-\lambda\left[x_{1}, x_{2}\right]\left[x_{1}, t_{2}\right]$. Since R is a PI-ring, then there exists a field F such that R, U and $M_{m}(F)$ satisfy the same polynomial identities. In particular $M_{m}(F)$ satisfies

$$
\begin{equation*}
\left[x_{1}, t_{2}\right]\left[x_{1}, x_{2}\right]-\lambda\left[x_{1}, x_{2}\right]\left[x_{1}, t_{2}\right] \tag{10}
\end{equation*}
$$

Consider $m \geq 2$. In (10) choose $x_{1}=e_{12}, x_{2}=e_{21}$ and $t_{2}=e_{22}$. By calculations it follows $-(1+\lambda) e_{12}=0$, which means $\lambda=-1$.

On the other hand, for $x_{1}=e_{12}$ and $x_{2}=t_{2}=e_{21}$, by (10) we have $(1-\lambda)\left(e_{11}+e_{22}\right)=0$, which implies $\lambda=1$, that is a contradiction, since $\operatorname{char}(R) \neq 2$.

Case 3: Finally assume that either d or δ is an inner derivation on U. Without loss of generality we may assume that $d(x)=[c, x]$, for a suitable $c \in U$ and let δ be an outer derivation of U. By (8) and Kharchenko's result, we get that U satisfies
$a\left(\left(b\left[x_{1}, x_{2}\right]+c\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] c\right)\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]\left(p\left[x_{1}, x_{2}\right]+\left[z_{1}, x_{2}\right]+\left[x_{1}, z_{2}\right]\right)\right)$
and in particular U satisfies the component

$$
a\left(-\left[x_{1}, x_{2}\right]\left[x_{1}, z_{2}\right]\right) .
$$

As above, by Lemma 3 in [5] and since $a \neq 0$, it follows that U satisfies the polynomial identity $\left[x_{1}, x_{2}\right]\left[x_{1}, z_{2}\right]$. Let $M_{m}(F)$ be the ring of $m \times m$ matrices over a field F, which satisfies the same identities of U. This implies the following contradiction:

$$
0=\left[e_{12}, e_{22}\right]\left[e_{12}, e_{21}\right]=-e_{12} \neq 0
$$

Notice that in the case δ is inner and d is outer, we may obtain the same contradiction by using the same argument as above.

References

[1] K. I. Beidar, W. S. Martindale and V. Mikhalev, Rings with Generalized Identities, Pure and Applied Math., Dekker, New York, 1996.
[2] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[3] C. L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. (1) $\mathbf{5 9}$ (1987), 98-106.
[4] C. L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (3) (1988), 723-728.
[5] C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math. 24, no. 2 (1996), 177-185.
[6] O. M. Di Vincenzo, On the $n-t h$ centralizers of a Lie ideal, Boll. U. M. I. (7) 3-A (1989), 77-85.
[7] C. Faith, Lectures on Injective Modules and Quotient Rings, Vol. 49, Lecture Notes in Mathematics, Springer-Verlag, New York, 1967.
[8] N. Jacobson, Structure of Rings, Amer. Math. Soc. Coll. Pub. 37, Providence (1964).
[9] I. N. Herstein, Topics in Ring Theory, Univ. Chicago Press, Chicago, 1969.
[10] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155-168.
[11] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42, no. 1 (1972), 117-135.
[12] P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995), 1-5.
[13] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1999), 4057-4073.
[14] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1) (1992), 27-38.
[15] J. Ma and X. Xu, Cocentralizing generalized derivations in prime rings, Northeast. Math. J. 22, no. 1 (2006), 105-113.
[16] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[17] F. NiU and W. Wu, Annihilator on co-commutators with derivations on Lie ideals in prime rings, Northeast. Math. J. 22 (4) (2006), 415-424.
[18] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[19] T. L. Wong, Derivations with power central values on multilinear poynomials, Algebra Colloq. 3 (4) (1996), 369-378.

LUISA CARINI
DIPARTIMENTO DI MATEMATICA
UNIVERSITÁ DI MESSINA
MESSINA
ITALIA
E-mail: Icarini@unime.it
VINCENZO DE FILIPPIS
DIPARTIMENTO DI SCIENZE PER L'INGEGNERIA E PER L'ARCHITETTURA
SEZIONE DI MATEMATICA E EIDOMATICA
UNIVERSITÁ DI MESSINA
MESSINA
italia
E-mail: defilippis@unime.it
BASUDEB DHARA
DEPARTMENT OF MATHEMATICS
BELDA COLLEGE, BELDA
PASCHIM MEDINIPUR, 721424 (W.B.)
INDIA
E-mail: basu_dhara@yahoo.com
(Received April 29, 2008; revised July 7, 2009)

[^0]: Mathematics Subject Classification: 16N60, 16W25.
 Key words and phrases: prime rings, derivations, generalized derivations, Utumi quotient rings, differential identities.

