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Annihilators on co-commutators with generalized
derivations on Lie ideals

By LUISA CARINI (Messina), VINCENZO DE FILIPPIS (Messina)
and BASUDEB DHARA (Paschim Medinipur)

Abstract. Let R be a prime ring of characteristic different from 2, U the Utumi
quotient ring of R, C' = Z(U) the extended centroid of R, L a non-central Lie ideal of R,
H and G non-zero generalized derivations of R. Suppose that there exists 0 # a € R
such that a(H (u)u — uG(u)) = 0, for all u € L, then one of the following holds:

(1) there exist b',c’ € U such that H(z) = V'z + zc’, G(z) = 'z with ab’ = 0;
(2) R satisfies s4 and there exist b',c’,q' € U such that H(z) = b’z + zc, G(z) =
cz + xq', with a(b' — ¢') = 0.

1. Introduction

Let R be a prime ring of characteristic different from 2 with center Z(R)
and extended centroid C. The standard polynomial of degree 4 is defined as
sa(z1, .., m4) =3 c5,(=1)7T5(1) - To(a), Where o runs over Sy the symmetric

7 is 1 or —1 according as ¢ is an even or odd

group of degree 4 and where (—1)
permutation.

A well known result of POSNER [18] states that if d is a derivation of R
such that [d(z),z] € Z(R), for any € R, then either d = 0 or R is commu-
tative. This theorem indicates that the global structure of a ring R is often
tightly connected to the behaviour of additive mappings defined on R. Follow-
ing this line of investigation, several authors generalized the Posner’s Theorem.

For instance in [2] BRESAR proves that if d and § are derivations of R such that
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d(x)x — x0(x) € Z(R), for all z € R, then either d = § = 0 or R is commutative.
Later in [12] LEE and WONG consider the case when d(z)z — zd(x) € Z(R), for
all z in some non-central Lie ideal L of R. They prove that either d =6 = 0 or
R satisfies s4, the standard identity of degree 4. Recently in [17] N1u and Wu
study the left annihilator of the set {d(u)u — ud(u),u € L}, where d and ¢ are
derivations of R and L is a non-central Lie ideal of R. In case the annihilator is
not zero, the conclusion is that R satisfies the standard identity s4 and d = —§
are inner derivations. These facts in a prime ring are natural tests which evidence
that the set {d(u)u — ud(u),u € L} is rather large in R.

Here we will consider the same situation in the case the derivations d and § are
replaced respectively by the generalized derivations H and G. More specifically
an additive map G : R — R is said to be a generalized derivation if there is a
derivation d of R such that, for all z,y € R, G(zy) = G(z)y+zd(y). A significative
example is a map of the form G(x) = ax + xb, for some a,b € R; such generalized
derivations are called inner. Generalized derivations have been primarily studied
on operator algebras. Therefore any investigation from the algebraic point of
view might be interesting (see for example [13]). Here our purpose is to prove the
following theorem:

Theorem 1. Let R be a prime ring of characteristic different from 2, U the
Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central
Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there
exists 0 # a € R such that a(H(u)u — uG(u)) = 0, for all u € L, then one of the
following holds:

(1) there exist b',¢’ € U such that H(z) = bz + zc, G(z) = ¢z with ab’ = 0;
(2) R satisfies s4 and there exist b',c¢',q' € U such that H(x) = bz + xc,
G(z) =dz+zq, with a(t/ — ¢') = 0.
In all that follows let R be a non-commutative prime ring of characteristic
different from 2, U its Utumi quotient ring and C = Z(U) the center of U. We

refer the reader to [1] for the definitions and the related properties of these objects.
In particular we make use of the following well known facts:

Fact 1. Tf I is a two-sided ideal of R, then R, I and U satisfies the same
generalized polynomial identities with coefficients in U ([4]).

Fact 2. Every derivation d of R can be uniquely extended to a derivation
of U (see Proposition 2.5.1 in [1]).

Fact 3. We denote by Der(U) the set of all derivations on U. By a deriva-
tion word we mean an additive map A of the form A = dids...d,,, with each
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d; € Der(U). Then a differential polynomial is a generalized polynomial, with
coefficients in U, of the form ®(%72;) involving non-commutative indeterminates
x; on which the derivations words A; act as unary operations. The differential
polynomial ®(%9x;) is said to be a differential identity on a subset T' of U if it
vanishes for any assignment of values from T to its indeterminates x;.

Let Djy, be the C-subspace of Der(U) consisting of all inner derivations on
U and let d be a non-zero derivation on R. By Theorem 2 in [10] we have the
following result (see also Theorem 1 in [14]): If ®(x1,..., 2., %1,...,%,) is a

differential identity on R, then one of the following holds:
(1) either d € Dipg;
(2) or R satisfies the generalized polynomial identity ®(x1,...,Zn, Y1,-- -, Yn)-

Fact 4. If I is a two-sided ideal of R, then R, I and U satisfies the same
differential identities ([14]).

We refer the reader to Chapter 7 in [1] for a complete and detailed description
of the theory of generalized polynomial identities involving derivations.

Fact 5. Since we assume that char(R) # 2, then there exists a non-zero two-
sided ideal I of R such that 0 # [I, R] C L. In particular, if R is a simple ring it
follows that [R, R] C L.

This follows from pp. 4-5 in [9], Lemma 2 and Proposition 1 in [6], Theorem 4
in [11].

2. The case of inner generalized derivations

We dedicate this section to prove the theorem in case both the generalized
derivations H and G are inner, that is there exist b, ¢, p, ¢ € U such that H(z) =
bx + zc and G(x) = px + xq, for all x € R.

In light of Fact 5, since we suppose char(R) # 2, there exists a non-central
ideal I of R such that [I, I]C L. This implies that a(b[ry, 72]?+[r1, 72](c—p)[r1, 2] —
[r1,72]%q) = 0 for all r1,ro € I. Moreover by Fact 1, I and R satisfy the same gen-
eralized polynomial identities, thus a(b[r1, ro]?+[r1,r2](c—p)[r1, ra]—[r1, r2]%q)=0
for all 71,72 € R. Hence in all that follows we assume that R satisfies the following
generalized polynomial identity

P(xy1,m0) = a(b[xl,xg]Q + [z1, 22)(c — p)[z1, 2] — [ml,xQ]Qq).

P(x1,x29) is a generalized polynomial in the free product U x¢c C{x1,22} of the
C-algebra U and the free C-algebra C{x1, x5} .
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We first prove the following:

Proposition 1. Ifa € Z(R), then one of the following holds:
(1) either there exists b’ € U such that H(x) = xb’ and G(x) = V'z, for all z € R;

(2) or R satisfies sy and there exists o € C such that p=c—«a and ¢ = b+ a,
that is H(x) = bx + xc and G(z) = cx + zb.

PROOF. Since a € Z(R), then a is not a zero-divisor, then by main assump-
tion it follows that (H(u)u — uG(u)) = 0, for all v € [R, R]. In this case, it is
proved in [15] that either there exists b’ € U such that H(z) = b’ and G(z) = b'z,
for all x € R, or R satisfies s4. In this last case R is PI-ring, moreover U satisfies
the same generalized polynomial identities of R. Therefore U is a central simple
algebra of dimension at most 4 over its center, and it is known that in this case
[r,s]> € Z(U) = C for all r,s € U. Moreover U satisfies

blxy, 20]? + [z1, 2] (c — p)[w1, 2] — [21, 22]%q.

Since the polynomial [z, 22)? is central valued in U, then U satisfies

(b — @)[z1, 22)% + [x1, 22] (¢ — p)[21, 2] (1)

Denote e;; the usual matrix unit, with 1 in the (¢, j)-entry and zero elsewhere,
and write w = (¢ —p) = Y, Wpseps, for suitable w,s € C. Therefore for any
i # j,let r1 = e, 72 = €;5 and [r1,r2] = e;5. It follows by (1) that e;jwe;; =0
for all i # j, that is w;; = 0 and w is a diagonal matrix in M>(C). Moreover, for
all ¢ € Autp(M2(C)), U satisfies

o((b— q)[z1, z2)* + [1, 2] (c — p)[x1, 22])

which is
(o(b— @)y, x2]* + [1, m2)o(c — p)[21, 22])

since the set of all the evaluation of [z, x5] is invariant under the action of any
element of Autr(M2(C)). By the above argument, ¢(c— p) must be diagonal. In
particular, let r # s and p(x) = (1 + e,5)z(1l — e,5), hence

SD(C - p) = Zwttett + Wss€rs — Wrreyps
t
which implies w,, = wss, for all r # s. Thus ¢ — p is a central matrix, namely
c—p = a. By (1) we get that U satisfies (b — g + a)[r1,22]?, and since 0 #
[U,U]? C C, we also have ¢ — b = a = ¢ — p. Thus we conclude that, in case R
satisfies s4, p=c—a and ¢ =b+ a. a
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Proposition 2. Ifa ¢ Z(R) then either P(x1,x2) is a non-trivial generalized
polynomial identity for R or H(z) = b'x + xc’, G(z) = 'z for some V', € U
satisfying ab’ = 0.

PROOF. Suppose now that R does not satisfy any non-trivial generalized
polynomial identity. Let T = U xc C{X} be the free product over C of the C-
algebra U and the free C-algebra C{X}, with X the countable set consisting of
non-commuting indeterminates x1,xa, ..., Tn,... .

For brevity we write P(X) instead of P(x1,22) and f(X) instead of [z1,x2].

Now consider the generalized polynomial P(X) € U x¢ C{X}. By our hy-
pothesis, R satisfies the following generalized polynomial identity:

P(X) = abf(X)* + af (X)(c—p)f(X) —af(X)?¢=0€T.

Since R does not satisfy non-trivial GPIs, by [4], the coefficients {ab,a} must be
linearly C-dependent. Therefore there exist (1, 32 € C such that 51 (ab)+B2a = 0,
with 7 # 0 since a ¢ C. Hence we may write ab = Aa, for a suitable A € C. In
this situation R satisfies

a(Af(X)? + f(X)(c—p)f(X) — f(X)?q)

that is
MX)?+ f(X)(c—p)f(X)— f(X)’¢q=0€T.

Again since R does not satisfy any non-trivial generalized polynomial identity,
{1, ¢} must be linearly C-dependent, that is ¢ € C. This implies that G(z) =
(p+ ¢)x and also that R satisfies

FEOA+ (e =p) —a) f(X)

which implies A-(c—p)—q = 0, that is H(z) = br+x(p+q—A) = (b—N)z+x(p+q),
and we obtain the required conclusion, for ¥ =b— X and ¢ =p +q. a

Lemma 1. Let R = M,,(F) be the ring of all m x m matrices over a field F
of characteristic different from 2. If a is not central in R then there exists a € F
such that p = ¢ — « - I,,,, where I, is the identity matrix of order m, and one of
the following holds:

(1) ¢ € Z(R) and there exists v € F such that p+q = ¢+ v - I, that is
H(z) = bx + zc, G(x) = (¢ + v - Ip)x; moreover a(b—~ - I,,,) = 0;

(2) R satisfies sy and there exists ¢ € R such that G(x) = cx + zq', with
alb—4q')=0.
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PROOF. Denote a = Y €rslrs, ¢ = D, €rslps, C—D =W = Y €rslWrs,
for suitable a,.s, grs, w,s € F. By the main assumption, R satisfies

a(blzy, mo]? + [x1, 22)(c — p) 1, 22] — [21, 22]%q). (2)

Fix [x1,x2] = €;5, for any i # j. In this case from (2) we have

ae;j(c—p)e;; =0 (3)
that is
either ayp; =0 Vk or wj =0 (3.

Here we first prove that w is a diagonal matrix. In order to do this, we suppose
that there exists some non-zero off-diagonal entry of w and divide the proof into
two cases:

Case 1: m = 2.

Suppose we1 # 0, then by (3) it follows a1 = ag; = 0. Of course, since we
suppose a # 0, we must assume now wis = 0.

Choose [331,582] = [612,621] = €11 — €32 and by (2) we have

0=Y= a(b(en - @22)2 + (e11 — ea2)(c — p)(e1r — e22) — (€11 — 622)2(1)

in particular the (1,1)-entry of the matrix Y is a12(bo1 — we1 — g21) = 0 and the
(2,1)-one is aga(ba; — we1 — g21) = 0. Therefore, from a # 0 follows

ba1 — wa1 — g21 = 0. (4)
In the same way, for [z, z2] = [e12 — €21, €22] = €12 + €21 in (2) we have
0="T=a(bler2 + e21)* + (e12 + €21)(c — p)(e12 + €21) — (€12 + €21)*q).

The (1, 1)-entry of the matrix T is aj2(ba1 — g21) = 0 and the (2, 1)-one is
asa(ba1 — g21) = 0. Since a # 0 we get

ba1 — q21 = 0. (5)

Thus by (5) and (4) we obtain the contradiction wy; = 0.

Case 2: m > 3.
Also in this case we suppose that there exists w;; # 0 for some 7 # j, so that
ar; = 0 for all k, that is the i-th column of a is zero.
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Let now ¢ # 4,7 and fix [z1,22] = [ei; + eqj, €] = €ij + eqj. Then (2)
implies a(e;; + eqj)w(es; + eq;) = 0 and since ay; = 0 for all k, it follows that
aeq;w(ei; + €q;) = 0. Moreover, by (3), we get aeqjweq; = 0, which implies that
aeqjwe;; = 0. The assumption wj; # 0 implies that ap, = 0 for all k, that is a
has just one non-zero column, the j-th one: a =" a,;er;.

Notice that if wy; # 0 for some t # j, by the same argument we get that
a has just the ¢-th column non-zero, that is a = 0. Thus we may assume that
wy; = 0 for all ¢ # j.

Let t # 4,7 and denote by o; and 7; the following automorphisms of R:

o(x) = (1+ej)x(l —ej) =+ ez — vej — ejpxej;
T(z) = (1 —ejp)x(l+ej) =z — ejpx + zej — ejpxej;
and say o¢(w) = Y Orsers, Te(W) = > Trsers where oyg, 7ps € F. We have
Oj; = Wj; + Wy and Tji = Wj; — Wi

If there exists ¢ such that oj; = wj; +wy = 0 or 73 = wj; — wy = 0 then
wy = —wj; 7 0 or wy; = wj; # 0. Therefore w;; # 0 and wy; # 0, and so, by
using (3), a = 0.

Hence assume that oj; # 0 and 75; # 0, for all ¢ # ¢, 5, and recall that, for
any F-automorphism ¢ of R, the following holds

o(a) (p(b) [z, z2]* + [1, m2)@(c — p)[21, T2] — [21, 2)%0(q)).

Thus in this case by (3), for any ¢ # i, j, the non-zero entries of the matrices o(a)
and 7¢(a) are just in the j-th column. In particular, since

oi(a) = a+ejia —aej; — ejraej; = E Arj€rj — E Qrjer + Qyj€jj — Qgjejt
T T

Ti(a) = a — e;ta + aejr — ejraej; = g Qrjerj + E Qrjery — Qyj€5j — Qgj€j¢
T s

then both the above matrices have zero in the (j,¢) entry that is

—a;; —ay; =0 for oy(a)

a;; —a; =0 for m(a).

By char(R) # 2 we obtain a;; = a;; = 0 for all ¢ # 4, that is a = a;je;;.
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Denote now by ¢ and x the following automorphisms of R:
p(x) = (1+ej)z(l —ej) =+ ejx — xej; — ej;x€j;,
X(@) = (1 —ej)z(l +ej) = — ejix + zej; — ej;xe);

and say o(w) = > @rsers, x(W) = > Xrsers Where @pq, Xrs € F. Since, by (3'),
w;; 7 0 implies a = 0, we assume that w;; = 0. Then we have

Pji = Wi —wjj +wii  and X = wj; + Wy — wi

If pji = xj: = 0, then we get the contradiction wj; = 0.
If at least one of ¢j; and x;; is not zero, then, by (3), one of ¢(a) and x(a)
has zero in all the entries of the i-th column. In particular notice that

pla) = aijei; — aijeq + aijej; — aije;i,
x(a) = aijeij + aijei — aijej; — aije;;

which means that in any case the (j,4)-entry is a;; = 0, a contradiction again.

All the previous arguments say that if ¢ is not zero, then w must be a diagonal
matrix, w =), wiey.
Moreover, for all A € Autp(M,,(F)), since A(a) # 0 and R satisfies

Ma)(AD)[x1, w2] + [21, 22]Mc — p)lar, 22] — 21, 22]*A(q)),

we also have that A(c — p) is diagonal. In particular, let r # s and A(z) =
(1+ers)x(l — eps), hence

A(C - p) = Zwtett + Wsers — Wreps
t

is diagonal implying w, = ws = «, for all r # s. Thus ¢ — p is a central matrix,
namely ¢ —p = a - I,. Therefore R satisfies

ablzy, z2)? + a[z1, 29)* (o — q).

Denote by G the additive subgroup of R generated by all the evaluations of the
polynomial [z1, 22])?. By [3], since char(R) # 2, either [R, R] C G or [x1,2]? is
central valued on R that is R satisfies s4.

In the first case R satisfies

ablxy, 2] + alzy, 2](a — q).
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Leta—g¢g=u= Zr,s Ups€rs, With u,s € F. For [x1,x2] = e;;, with any i # j, it
follows abe;; + ae;j(a — g) = 0. By right multiplying for any e,q, with ¢ # j, we
have ae;j(a — q)eqq = 0 that is

either ap; =0 Vk or ujqo=0 Vg#j.

In particular
either ap; =0 Vk or u;; =0 (3").

Notice that (3”) has the same flavour of (3'). By the same argument as above, in
case a # 0 we have that u = oo — ¢ is a central matrix, and so a(b+ u)[r1,r2] = 0,
for all 1,79 € R. This implies a(b+u) = 0, which is the conclusion 1 of Lemma 1,
for v = —u.

Consider finally the case when [z1,75]? is central valued on R. Here R
satisfies a(b + o — q)[w1, 22)%, moreover there exists 0 # [r1,rs]? € F - I,,,, which
implies a(b+ a — q) = 0, the conclusion 2 of Lemma 1, for ¢ = ¢ — a. O

Lemma 2. Let R be a prime ring of characteristic different from 2. If a is

not central in R then ¢ —p = o € C and one of the following holds:

(1) ¢ € C and there exist A\ € C, b’ =b—\, ¢ = p+q such that H(z) = b'x+xzc,
G(z) = 'z, with ab/ = 0;

(2) ¢ € C and there exists v = ¢ — a € C such that p+ q¢ = ¢+, that is
H(z) =bx + xc, G(x) = (c+ )z, with a(b—v) = 0;

(3) R satisfies s4 and there exists ¢ = q¢ — «a such that G(z) = cx + xq’, with
a(b—¢q')=0.

PROOF. As above we denote for brevity P(x1,22) by P(X) and [z, 23] by
f(X) and consider the generalized polynomial

P(X) = abf(X)* + af(X)(c = p)f(X) — af(X)*q.

Since U and R satisfy the same generalized polynomial identities with coefficients
in U (see Fact 1),then P(X) is also a generalized identity for U.

Suppose first that U does not satisfy any non-trivial generalized polynomial
identity. Therefore by Proposition 2 we get conclusion 1.

Hence we may suppose now that U satisfies some non-trivial generalized
polynomial identity. By [16] U is primitive having a non-zero socle Soc(U) with
C' as the associated division ring and by Jacobson’s Theorem (p. 75 in [8]) U
is isomorphic to a dense ring of linear transformations of some vector space V
over C.
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If V is finite-dimensional over C, it follows that R C U = My (C), for k =
dime V. In this case we get the required conclusions by Lemma 1.

Let dimg V' = oco. Denote EndcV the ring of endomorphisms of «V and
recall that the range of a polynomial f(X) € C{x1,z2} is defined as follows

’I"(f; U) = {f(xl,xg) € EndcgV 2,25 € U}

In [19] (Lemma) it is proved that, if U is a dense subring of End¢V and dime V' =
oo, then r(f;U) is a dense subset of EndcV and this implies that U satisfies the
generalized polynomial identity

abz® + azx(c — p)x — az’q. (6)

Suppose that there exists a minimal idempotent element e of Soc(U) such
that e(c — p)(1 —e) # 0. Replace in (6) x by (1 — e)re for any r € U, then it
follows that a(1 — e)re(c — p)(1 — e)re = 0, which implies a(l — e) = 0, since
e(c —p)(1 —e) # 0. This means that a = ae.

On the other hand, if in (6) we replace = by ere for any r € U, we get
ab(ere)? + aere(c — p)ere — a(ere)?q = 0, and by right multiplying by (1 — e) one
has —ae(ere)?q(1 — e) = 0. Since 0 # a = ae, we have eq(1 — e) = 0, that is
eq = ege.

Finally replace in (6) « by = + y. It follows that U satisfies:

ab(zy) + ab(yx) + az(c — p)y + ay(c — p)z — a(zy)q — alyz)q
and for any z = re and y = (1 — e)s, with r,s € U, we get
ab(1l — e)sre 4+ are(c — p)(1 — e)s + a(l — e)s(c — p)re — a(l — e)sreq = 0.

By right multiplying by (1 — e) and since eq(1 —e) = 0, we have are (¢ —p)(1 —e)
s(1—¢€) =0, for all r,s € U. By the primeness of U and by the assumption that
e(c—p)(1 —e) # 0, the contradiction a = 0 follows.

Therefore e(¢c — p)(1 — e) = 0, for any idempotent element e € Soc(U) of
rank 1. Hence [¢c—p,e] = 0, for any idempotent of rank 1, and [¢c—p, Soc(U)] = 0,
since Soc(U) is generated by these idempotent elements. This argument gives
c—p € C, and as a consequence of (6), U satisfies the generalized polynomial
identity

abz® + ax*(c —p —q). (7)

As above, suppose that there exists a minimal idempotent element e of
Soc(U) such that (1 —e)(c—p—q)e # 0. If we replace in (7) z by (1 —e)r(1—e)
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for any r € U and multiply by e on the right, then we get a((1 —e)r(1 —e))?(c —
p—q)e =0, that is a(1 —e) =0, since (1 —e)(c —p — q)e # 0.
Now by (7), for x =t + y, it follows that U satisfies

abty + abyt + aty(c —p — q) + ayt(c — p — q).

Finally for t = (1 —e), y = 2(1 — e) and by right multiplying by e, we have
az(l —e)(c —p — q)e = 0, that is a = 0, a contradiction. Therefore (1 — e)(c —
p — q)e = 0, for any idempotent element e € Soc(U) of rank 1, that is as above
c—p—q € C, which implies ¢ € C. Therefore U satisfies a(b+ ¢ — p — ¢)z?, that
isa(b+c—p—q) =0, with ¢ —p € C and ¢ € C, which is the conclusion 2 of
Lemma 2. O

3. The general case

We consider now the more general situation and prove the main Theorem
of the paper. As in Section 1, since we suppose char(R) # 2, by Fact 5 we may
assume that there exists a non-zero ideal I of R such that

a(H([r1,r2))[r1,m2] — [r1,m2)G([r1,72])) =0
for all 1,79 € I. Under these assumptions we have that:
Theorem 2. If R is a prime ring of characteristic different from 2, then one
of the following holds:
(1) there exist b, ¢’ € U such that H(x) = b'x + xc, G(x) = ¢’z with ab’ = 0;
(2) R satisfies s4 and there exist V/,c',q' € U such that H(z) = Vz + zc,
G(x) =dx+xq, with a(b/ — ¢') = 0.

PROOF. By Theorem 3 in [13] every generalized derivation g on a dense right
ideal of R can be uniquely extended to the Utumi quotient ring U of R, and thus
we can think of any generalized derivation of R to be defined on the whole U and
to be of the form g(z) = bz 4 d(z) for some b € U and d a derivation on U. Thus
we may assume that there exist b,p € U and d,d derivations on U such that

H(z)=bx+d(z) and G(x)=px+i(z).

Since I, R and U satisfy the same differential identities [14], then without loss of
generality, in order to prove our results we may assume that

Q(H([T’l,’f'g])[’r'l,’l’g] — [rl,rz}G([rl,rg})) =0
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for all 71,75 € U. Hence U satisfies

a((b[xl,xg] + d([xl,xg]))[xl,xg] — [x1, 2] (p[xl,wg] + 6([:51,1‘2])))

that is

a((b[z1, x2] + [d(z1), x2] + [z1,d(x2)])) [21, 22]
= [1, wo] (plwr, w2] + [0(21), 22] + [21,6(22)))))  (8)

where d, 0 are derivations on U. We divide the proof into 3 cases:

Case 1: Let d(z) = [c,z] and 6(z) = [g, z] be both inner derivations in U, so
that H(z) = bx+[c, z] = (b+c)z+x(—c) and G(x) = pz+[q, z] = (p+@)x+z(—q),
for suitable elements c¢,q € U. In this case H and G are both inner generalized
derivations in U. We notice that, if a € C, then by Proposition 1 we have that
either there exists V' € U such that H(z) = zb’ and G(z) = b’z for all z € R
(conclusion 1); or R satisfies sy and there exist ¥',¢’ € U such that H(z) =
ba+ad, G(x) = dz + xb (which is a particular case of conclusion 2). In what
follows we assume that a ¢ C.

Thus by Lemma 2 one of the following holds:

1. By conclusion 1 of Lemma 2 we get: —c—p—q¢=a € C and q € C,
alb+c—X) =0, ¢ =psuch that H(z) = (b+ ¢ — Nz + z¢ and G(z) = 'z,
which is the conclusion 1 of the Theorem.

2. By conclusion 2 of Lemma 2 it follows: —c—p—g=a € C and q € C,
v=—q—a¢cC,p=—c+vsuch that H(z) = (b+ ¢)x + 2(—c¢) and G(z) =
(—c+ )z with a(b+ c—+) = 0. By rewriting H(z) = (b+c— )z +z(y —¢), we
obtain conclusion 1 of the Theorem.

3. By conclusion 3 of Lemma 2 it follows: —c—p—q = a € C, R satisfies s4
and ¢’ = —¢ — « such that H(z) = (b+ ¢)z + z(—¢) and G(x) = —cx + xq' with
a(b+ ¢ —¢') = 0, which is the conclusion 2 of the Theorem.

Case 2: Assume now that both d and § are not inner derivations. Suppose
first that d and ¢ are linearly C-independent modulo X-inner derivations. In this
case, by KHARCHENKO’s Theorem in [10] (see Fact 3), by (8) we have that U
satisfies

a((b[CCl,CL’z] + [t1, z2] + [$1,t2})[$1,$2] - [Il,ZEQ](b[Il,IEQ] + [21, 22] + [581,2’2]))
and in particular U satisfies the blended component

a([[z1, 2], [x1, 22]]).
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By Lemma 3 in [5], since we suppose a # 0, U must satisfy [[ml,tg], [z1, zgﬂ In
this case it is well known by Posner’s Theorem that there exists a suitable field
F such that U and M,,(F), the ring of m x m matrices over F, satisfy the same
polynomial identities. In particular, for m > 2, we get the contradiction that

0 = [[e12, e22], [e12, €21]] = —2€12 # 0.

Consider now the case when there exist «, 5 € C such that ad + 5§ = ad(q), the
inner derivation induced by some g € U. Of course both « and ( are not zero,
since d and § are not inner derivations. So, if denote A = —a3~! and p = 371, it
follows that § = Ad + pad(q). Thus by (8) we have

a((bley, zo] + [d(z1), z2] + 21, d(22)])[21, 22]
—[w1, mo] (plw1, wa]+ Ald(21), wa]+- A1, d(2)]+pullg, 21], wo]+plzy, [g, 22]]))  (9)
From (9) and applying Kharchenko’s result, it follows that R satisfies
a((b[xl,mg] + [t1, z2] + [ml,tg]) [z1, 73]
—[ar, wa] (plar, wa] + Alty, wa] + M1, ta] + plg, 1], ] + pf21, [g, 22]]))

and in particular R satisfies the blended component
a([z1, to] w1, m2] — A[w1, 3] [21, E2]).

As above by Lemma 3 in [5], since a # 0, R satisfies the polynomial identity
[x1, ta][x1, T2] — A[z1, x2][x1, t2]. Since R is a Pl-ring, then there exists a field F
such that R, U and M,,(F') satisfy the same polynomial identities. In particular
M,,(F) satisfies

[1, ta][x1, T2]) — A1, 2][21, t2] (10)

Consider m > 2. In (10) choose x1 = e12, T2 = €91 and ty = egq. By calcula-
tions it follows —(1 + A)ejz = 0, which means A = —1.

On the other hand, for z; = e12 and z9 = to = e21, by (10) we have
(1 — M)(e11 + ea2) = 0, which implies A = 1, that is a contradiction, since
char(R) # 2.

Case 3: Finally assume that either d or § is an inner derivation on U. Without
loss of generality we may assume that d(x) = [c, z], for a suitable ¢ € U and let
0 be an outer derivation of U. By (8) and Kharchenko’s result, we get that U
satisfies

a((blz1, m2] + c[z1, m2] — [x1, w2]c) (21, T2] — (w1, 2] (Pla1, T2] + [21, T2] + [21, 22]))
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and in particular U satisfies the component

a(—[z1, z2][z1, 22]).

As above, by Lemma 3 in [5] and since a # 0, it follows that U satisfies the
polynomial identity [z1,xs2][x1, 22]. Let M,,,(F) be the ring of m x m matrices
over a field F'; which satisfies the same identities of U. This implies the following
contradiction:

0 = [e12, ea2][e12, €21] = —e12 # 0.

Notice that in the case § is inner and d is outer, we may obtain the same contra-
diction by using the same argument as above. a
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