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Finsler metrizability and Landsberg spaces in dimension two

By GERARD THOMPSON (Toledo)

Abstract. The problems of Finsler metrizability in dimension two is analyzed and

solved completely. Thereafter the famous Landsberg problem concerning the existence of

Landsberg spaces whose the sprays do not correspond to linear connection is considered.

It is argued in dimension two that the answer to this question is affirmative and it is

explained why it is difficult to produce a concrete example. Some of the results are

extended to arbitrary dimension and finally a comparison is made with recent alternative

investigations into the Landsberg problems.

1. Introduction

We consider the problems of Finsler metrizability in dimension two; in other
words given a spray in the sense that its right hand sides are homogeneous of
degree two in velocities, is there a Finsler function L of degree two so that its
Euler-Lagrange equations engender the given spray? We will provide a complete
solution to this problem in dimension two in Section two. In Section three we
change point of view and consider Landsberg spaces again in dimension two. A
Landsberg space is a Finsler function L which in addition satisfies a compatability
condition: namely, the Finsler metric, which is the Hessian of L, is parallel with
respect to the natural Berwald connection. This condition is a natural general-
ization of the well known compatability connection that expresses the fact that
a Riemannian metric is parallel with respect to its Levi-Cevita connection. The
Landsberg condition is given below as equation (3.1). We show that in dimension
two at least, this Landsberg condition reduces to a single fourth order partial
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differential equation and we find it explicitly. We compare this equation with
another fifth order equation which arises in the context of the famous Landsberg
problem; namely, are there examples of Landsberg spaces such that the spray does
not correspond to a genuine linear connection? We argue again in dimension two
that the answer to this question is affirmative but we explain why it is unlikely
that a concrete example will ever be found.

In Section four we consider the possibility of extending our results to n di-
mensions. Although some of the arguments are repeated the general case can be
difficult without a sound understanding of the two-dimensional case. Again the
inverse Finsler problem is solved in the generic case. Finally in Section five a
comparison of our results with various recent investigations into the Landsberg
problem is made.

Recently Muzsnay [6] has written a very elegant article that considers much
the same topic using Fröhlicher–Nijenhuis and Spencer theory. However, Muzs-

nay considers generally structures in dimension n and apparently there is almost
not much overlap with results presented here which is presented in a much more
pedestrian manner except for Section 5 in [6]. We refer to [6] for further references
besides the ones given here.

Below the term “spray” will be taken to mean that the right hand sides of
the second order equations are homogeneous of degree two in velocities. When we
need to refer to the geodesics of a linear connection we shall refer to a “quadratic
spray”. Furthermore in Finsler geometry it is usually assumed that the the Finsler
metric is positive definite. We have not included this condition here but it can
easily be added to the main results. Finally there is a slight notational difficulty
in terms of denoting partial derivatives and whether to include a comma in the
notation. It seems to be too fastidious to insist on using a comma on every
occasion so we have suppressed them wherever possible; however, the formulas
are sufficiently well known that there should be no difficulty in interpreting them
in practice.

Finally the author thanks the referee for constructive criticsm comments and
supplying references and Zoltán Muzsnay for alerting him to Szabó’s paper [8]
and for helpful comments and hospitality.

2. Finsler metrizability

We shall use local coordinates x and y on a manifold of dimension two. The
corresponding velocities will be denoted by u and v rather than ẋ and ẏ. We
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define z to be u
v and write our spray in the following form:

u̇ = v2Q, v̇ = v2R (2.1)

where Q and R are functions of x, y and z. We shall also write our putative
Finsler function in the form

L = v2M (2.2)

where M is a function of x, y and z. In order for L to give rise to equation (2.1)
as its Finsler geodesics it is necessary and sufficient that the following conditions
should be satisfied:

Mz(zMzx + Myz −Mx)− (zMx + My)Mzz

2MMzz −M2
z

= R (2.3)

2M(Mx −Myz − zMxz) + (zMx + My)Mz

2MMzz −M2
z

= Q− zR. (2.4)

The last two equations can be rewritten as

zMx + My = R(zMz − 2M)−QMz (2.5)

zMzx + Myz −Mx = R(zMzz −Mz)−QMzz. (2.6)

We can regard the last pair of equations as conditions on the unknown function M

given the spray in terms of Q and R.
We now proceed as follows: differentiating equation (2.5) with respect to z

gives

zMzx + Myz + Mx =Rz(zMz − 2M)+ R(zMzz −Mz)−QMzz −QzMz. (2.7)

Now we obtain from equations (2.5), 2.6) and (2.7):

2Mx = Rz(zMz − 2M)−QzMz (2.8)

2Mxz = Rzz(zMz − 2M) + Rz(zMzz −Mz)−QzzMz −QzMzz. (2.9)

and
2My = (2R− zRz)(zMz − 2M) + Mz(zQz − 2Q). (2.10)

The following Lemma is easily verified.

Lemma 2.1. The pair of equations 2.5 and 2.6 is equivalent to the pair 2.8
and 2.10.
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Now from the equations 2.8 and 2.10 we obtain as a compatibility condition
by equating Mxy and Myx

2(zRzx + Rzy − 2Rx)(zMz − 2M)− 2(Qzy + zQzx − 2Qx)Mz + ((zRz −Qz)Rz

+ 2(Q− zR)Rzz)(zMz − 2M)− (2RQz − 2RzQ + 2(Q− zR)Qzz

−Qz(Qz − zRz))Mz = 0. (2.11)

In the generic case we now have expressions for all three derivatives Mx, My, Mz

of M . In fact this will be the case when the coefficient A of Mz in equation (2.10)

A = 2z(zRzx + Rzy − 2Rx)− 2RQz + 2RzQ− 2(Q− zR)Qzz + Qz(Qz − zRz)

− 2Qzy − 2zQzx + 4Qx + z((zRz −Qz)Rz + 2(Q− zR)Rzz) (2.12)

is not zero. Let us define the coefficient of M in equation (2.10) to be B so that

B = −2(zRz −Qz)Rz − 4(Q− zR)Rzz − 4zRzx − 4Rzy + 8Rx.

We can now state the solution to the Finsler inverse problem in the generic case
as follows:

Theorem 2.1. If the function A is nowhere zero then the necessary and

sufficient condition for a Finsler function to be compatible with the system 2.1 is

that the one-form

((Qz − zRz)B − 2ARz)dx + ((zB + 2A)(zRz − 2R) + B(2Q− zQz))dy −Bdz

2A

should be exact, say, equal to dm. The only stipulation is that the Hessian

should be regular, that is, that 2mzz + m2
z should be nowhere zero. In that case

the Finsler function is given by emv2 and is unique up to scaling by a constant.

In the non-generic case where A = 0 we must have also that B is zero in
order to have a Lagrangian. Thus we have that:

2zRzx + 2Rzy − 4Rx + 2(Q− zR)Rzz − (Qz − zRz)Rz = 0
and

2zQzx + 2Qzy − 4Qx + 2(Q− zR)Qzz − (Qz − zRz)Qz − 2QRz + 2RQz = 0.

Since there is just one dependent variable M and we have a first order system
and the compatibility conditions are satisfied, existence of M follows from ODE
techniques alone – essentially the method of characteristics. Moreover the solution
for M depends on a “single function of one variable”.
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As another way to treat the non-generic case we refer to the work of Douglas

[2]: see also [1], [3], [4]. For a general system of second order ODE in dimension n

ẍi = f i(xj , ẋj) (2.13)

there is a matrix called Φ and sometimes known as the Jacobi endomorphism
defined as follows where ui stands for ẋi:

Φi
j =

1
2

d

dt

(
∂f i

∂uj

)
− ∂f i

∂xj
− 1

4
∂f i

∂uk

∂fk

∂uj
. (2.14)

The matrix Φ is the principal tensorial invariant associated to the general inverse
problem for second order ODE and it enables many special subcases to be defined.
The simplest case of all, sometimes referred to as “Case 1”, is defined by the
condition that Φ should be a multiple of the identity matrix. In that case there
certainly is a Lagrangian that depends on n “functions of n + 1 variables”. For
the system (2.1) we may compute that the entries in the matrix Φ are given by:

Φ1
1 =

1
4
zQzx + 2Qzy − 4Qx + 2(Q− zR)Qzz − (Qz − zRz)Qz − 2QRz + 2RQz

Φ1
2 = −z

4
zQzx + 2Qzy − 4Qx + 2(Q− zR)Qzz − (Qz − zRz)Qz − 2QRz + 2RQz

Φ2
1 =

−z

4
−(2zRzx + 2Rzy − 4Rx + 2(Q− zR)Rzz − (Qz − zRz)Rz)

Φ2
2 =

−z

4
(2zRzx + 2Rzy − 4Rx + 2(Q− zR)Rzz − (Qz − zRz)Rz).

Thus in the non-generic case it follows that Φ is zero and so the system (2.1) is
certainly variational. It is not immediately apparent, however, from this approach
that there is a Finsler function that engenders (2.1).

3. Landsberg spaces

We now change point of view and consider Landsberg spaces. As such we
are starting with a Finsler function L so that the conditions derived in Section 2
are now to be regarded as identities. A Landsberg space has the property that
the metric defined by the Hessian of L is parallel with respect to the Berwald
connection or, in tensorial notation valid in arbitrary dimensions,

2gij,xk + f l
,uigij,ul + f l

,uiukglj + f l
,uiuj glk = 0 (3.1)
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where gij denotes the Hessian of L and the position and velocity coordinates are
denoted by xi and ui, respectively, and the f l denote the right hand sides of the
geodesic equations or “forces” and comma denotes a derivative with respect to
the indicated variables.

Coming back now to the case of dimension two we use the notation of the
last Section. As such it turns out that gij can be written

gij =

[
Mzz Mz − zMzz

Mz − zMzz 2M − 2zMz + z2Mzz

]
. (3.2)

Notice that since L is homogeneous of degree 2 the components of gij must be
homogeneous of degree zero and so can be expressed in terms of x, y and z. When
the parallel condition is imposed it turns out to be just a single condition:

Proposition 3.1. The Landsberg parallel condition reduces to

(Qzzz − zRzzz)Mz + 2MRzzz = 0 (3.3)

where Q and R are defined by equations (2.4) and (2.5).

Proof. The proof is a matter of calculation. We understand that x1 = x,
x2 = y, u1 = u and u2 = v. In principle the Landsberg condition comprises six
conditions. We note that three of them may be written as:

2
∂gjk

∂x
+ (Qz − zRz)

∂gjk

∂z
+

∂(vQz)
∂uk

g1j +
∂(vQz)

∂uj
g1k +

∂(vRz)
∂uj

g2k +
∂(vRz)

∂uk
g2j

Now we choose successively j = 1, k = 1, j = 1, k = 2 and j = 2, k = 2. All
terms except the first produce terms that involve derivatives with respect only
to z. The first term involves just one x-derivative. These latter terms may be
converted into z-derivatives using 2.8 and 2.10. In the case j = 1, k = 1, we
obtain

(Qz − zRz)Mzzz + 2QzzMzz + 2Rzz(Mz − zMzz) + (zMz − 2M)Rzzz

+(zMzz −Mz)Rzz + zRzMzzz −MzQzzz − 2MzzQzz −MzzzQz = 0. (3.4)

the last six terms having been obtained from converting 2Mzzx by means of
equation (2.8). The only terms in equation (3.4) that do not cancel give equation
(3.3). The other five cases are similar. ¤
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Our principal concern is to decide whether there are any proper Landsberg
spaces. Indeed for all known examples of Landsberg spaces it turns out that
they all correspond to linear connections; in other words the functions Q and R

are quadratic in z. Clearly if Q and R are quadratic in z then equation (3.3) is
satisfied: the challenge is try to prove the converse, namely, does equation (3.3)
somehow imply that Q and R are quadratic in z? A Landsberg space that does
not correspond to a linear connection is a proper Landsberg space.

It might appear that equation (3.3) is a fifth order condition in z but in
fact it is only fourth order. Indeed equation (3.3) is equivalent to the following
condition:

∆(zMxzzz + Myzzz) + (Q− zR)(∆Mzzzz − 3MM2
zzz)−R∆Mzzz

−3(M(zMxzz + Myzz)−MxMz)Mzzz = 0. (3.5)

where ∆ denotes the determinant of the Hessian of L, namely, 2MMzz−M2
z and

it is understood that Q and R are determined in terms of M from equations (2.3)
and (2.4).

We now consider Rzzz = 0 regarded as a condition on M . It is a fifth order
exceedingly complicated condition in z. In fact its fifth order terms, after mul-
tiplication by a factor that can be assumed to be non-zero involving ∆ and Mz,
are given by

zMxzzzz + Myzzzz + (Q− zR)Mzzzzz + · · · = 0.

It is apparent that by differentiating equation (3.3) we can remove the fifth order
terms from Rzzz = 0 to obtain a fourth order condition that is equivalent in the
presence of equation (3.3). It is:

(MxMz −M(zMxzz + Myzz))Mzzzz + (∆ + zMMzzz)Mxzzz + MMzzzMyzzz

(MxMzz + 3MzMxz − 3MMxzz − 2Mz(zMxzz + Myzz))Mzzz

+((2zMz −M)R− 2MzQ)M2
zzz = 0. (3.6)

The precise form of equation (3.6) was obtained by adding in a multiple of equa-
tion (3.3) itself and seemed to offer about the simplest alternative. In order to
make clear what is going on we offer the following self-evident lemma.

Lemma 3.2. The PDE system consisting of equation (3.3) and Rzzz = 0 is

equivalent for non-singular Lagrangians to the PDE system consisting of equation

(3.3) and equation (3.6).

In fact the PDE system consisting of equation (3.3) and equation (3.6) is an
involutive system after we add in one more equation which is obtained by adding
a multiple of the derivative of equation (3.3) to Rzzz = 0. The Cartan characters
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are s1 = 10, s2 = 3 and s3 = 0. However, it is clear that the latter PDE system
is equivalent to the system consisting of Qzzz = 0 and Rzzz = 0, that is, in the
case where the Finsler function gives rise to a genuine linear connection. We have
investigated the solutions of this system in terms of M in some detail in [10] so
we shall not repeat the analysis here.

Let us now come back to the Landsberg problem. What is required to find
a proper Landsberg space is to find a regular solution of equation (3.3), that is,
such that 2MMzz −M2

z 6= 0 and that is not a solution of equation (3.6).

Theorem 3.1. A proper Landsberg space is precisely one for which the

function M satisfies condition (3.3) and for which the equation (3.6) is not valid

and in addition for which the inequality 2FH −G2 6= 0 holds.

In the abstract such a solution should exist: in the analytic category we
can solve equation (3.3) for Mzzzz and then use the Cauchy–Kowaleskaya theo-
rem to find a solution depending on F (x, y) = M(x, y, 0), G(x, y) = Mz(x, y, 0),
H(x, y) = Mzz(x, y, 0) and K(x, y) = Mzzz(x, y, 0) where F , G, H and K are
arbitrary analytic functions of x and y. We will require F , G, H and K to satisfy
2FH −G2 6= 0. If we use equation (3.3) to find Mzzzz and then substitute all the
values of M and its partial derivatives into the left hand side of equation (3.6) we
find the following quadratic condition on z:
−G5FxKy+4G4F 2

xK+4G2FxKGyFH−G4FxKGy+4F 3HyH2Ky+FHyG4Ky−
6F 3H2

yKH + 3F 2H2
yKG2 + 8KxF 3H2Fx − 8KxF 3H2Gy + 2KxG4FFx −

2KxG4FGy+4KF 2
xH2F 2−3KG4GxFy+2KG4HyFy−6K2F 2GG2

y−6K2F 2GF 2
x−

4F 2HyHKyG2 + 4G3FxKyFH − 10G2F 2
xKFH − 4GFxF 2H2Ky +

6GFxKF 2HyH3G3FxKFHy+6F 2HyKGGyH−3FHyKG3Gy+2F 2HyKH2Fy−
5FHyKHFyG2 + KxG5Fy + 4KxF 2H2GFy − 8KxF 2HG2Fx + 8KxF 2HG2Gy −
4KxFHG3Fy+4F 3KKyHFx−4F 3KKyHGy+2F 2KKyHGFy−2F 2KKyG2Fx+
2F 2KKyG2Gy−FKKyG3Fy−4KFxH2F 2Gy−6KG3GxFFx +6KG3GxFGy−
12KF 3HxHFx + 12KF 3HxHGy + 6KF 2HxG2Fx − 6KF 2HxG2Gy +
3KFHxG3Fy − 2K2G3F 2

y + 12KGGxF 2HFx − 12KGGxF 2HGy +
6KG2GxFHFy − 6KF 2HxHGFy + 12K2F 2GGyFx + 7K2FG2GyFy −
7K2FG2FxFy +2K2F 2HFyFx−2K2F 2HFyGy +K2FHF 2

y G+(−4G4FxKGx +
4F 3HyH2Kx + FHyG4Kx + 4F 3HxH2Ky + FHxG4Ky − 8KxF 3H2Gx −
2KxG4FGx+6KG3G2

xF+2KG4HyFx+2KG4HxFy−7K2G2F 2
xF−4K2G3FxFy+

2K2F 2HF 2
x + 10G2FxKGxFH − 4F 2HyHKxG2 − 12F 3HyKHxH +

6F 2HyKHxG2 + 6F 2HyKGGxH − 3FHyKG3Gx + 2F 2HyKH2Fx −
5FHyKHFxG2 − 4F 2HxHKyG2 + 6F 2HxKGGyH

−3FHxKG3Gy + 2F 2HxKH2Fy − 5FHxKHFyG2 + 8KxF 2HG2Gx +
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2KxF 2KG2Gy −KxFKG3Fy − 4F 3KKyHGx + 2F 2KKyHGFx +
2F 2KKyG2Gx−FKKyG3Fx+4KxF 3KHFx−4KxF 3KHGy+2KxF 2KHGFy−
2KxF 2KG2Fx − 12KGG2

xF 2H + 12KF 3HxHGx − 6KF 2HxG2Gx +
7K2G2FxFGy − 12K2F 2GGyGx + 12K2F 2GFxGx + 7K2FG2GxFy −
2K2F 2HFyGx + 2K2FHFyGFx − 2K2F 2HFxGy − 4KFxH2F 2Gx)z +
(−6F 3H2

xKH − 4F 2HxHKxG2− 3FHxKG3Gx +2KxF 2KG2Gx +FHxG4Kx−
5FHxKHFxG2 −KxFKG3Fx + 3F 2H2

xKG2 − 6K2F 2GG2
x + 6F 2HxKGGxH +

7K2G2FxFGx−4KxF 3KHGx−2K2G3F 2
x +2F 2HxKH2Fx +2KxF 2KHGFx +

2KG4HxFx + 4F 3HxH2Kx − 2K2F 2HFxGx + K2FHF 2
xG)z2.

Therefore we will have to choose the functions F , G, H and K so that at least
one of the coefficients of 1, z or z2 in the last expression is non-zero in order
for equation (3.6) not to be satisfied as well as to require that 2FH − G2 6= 0.
However, so far it is has not proved possible to obtain an explicit example. The
difficulty lies in finding a solution of (3.3) that does not satisfy equation (3.6).
These equations have a lot of obvious common “gauge” solutions, namely, an ar-
bitrary quadratic function in z with function coefficients depending on x and y.
It may well be the case that no other explicit solutions of (3.3) can be obtained.
In a future work we hope to be able to give a more geometric interpretation of
the conditions obtained here.

4. Higher dimensions

We shall briefly consider some calculations that are valid in arbitrary dimen-
sions. They will also serve to put the two-dimensional case into a better perspec-
tive. As such we resume the discussion from equation 3.1 so that L = L(xi, ui) is
a Finsler function of degree two, that is,

ukL,uk = 2L.

Next we use the fact that a Finsler function is first integral of its own geodesic
equations: see [1]: thus

ukL,xk + fkL,uk = 0.

Now we differentiate the last condition with respect to ui then uj to obtain

2gij,xk + f l
,uigij,ul + f l

,uiukglj + f l
,uiuj glk + f l

,uiujukL,ul = 0. (4.1)

Comparing equation 3.1 we have:

Proposition 4.1. The Landsberg condition is equivalent to f l
,uiujukL,ul = 0.
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Again we obtain a well known result:

Corollary 4.2. If the f l’s are quadratic and therefore homogeneous qua-

dratic the Landsberg condition is satisfied.

We now change point of view and suppose that f is a function such that
f = f(xi, ui) and put zA = uA

un
where 1 ≤ A ≤ n− 1 and F = f

u2
n
. Then we find

the following: 



f,uAuBuC =
1
un

F,zAzBzC

f,uAuBun =
−zC

un
F,zAzBzC

f,uAunun =
zBzC

un
F,zAzBzC

f,ununun =
−zAzBzC

un
F,zAzBzC .

(4.2)

Coming back now to the Landsberg condition we put L = u2
nM(xi, zA) and also

write F i = fi

u2
n

so that F i = F i(xi, zA) where 1 ≤ A ≤ n−1. Then the Landsberg
condition becomes in the (xi, zA) coordinates

FE
,zAzBzC M,zE + Fn

,zAzBzC (2M − zEM,zE ) = 0. (4.3)

It should be apparent that the last condition generalizes equation 3.3 to
higher dimensions. Likewise the generalization of 2.5 and 2.6 are given by

zEMxE + Mxn = Fn(zEMzE − 2M)− FEMzE (4.4)

zEMzAxE + MxnzA −MxA = Fn(zEMzAzE −MzA)− FEMzAzE . (4.5)

Computing the zA-derivative of 4.4 gives

zEMzAxE + MxA + MzAxn = Fn(zEMzAzE −MzA) + Fn
zA(zEMzE − 2M)

− FEMzAzE − FE
zAMzE (4.6)

and hence subtracting 4.5 from 4.6

2MxA = Fn
zA(zEMzE − 2M)− FE

zAMzE (4.7)

and hence from 4.4

2Mxn = (2Fn − zBFn
zB )(zEMzE − 2M) + MzE (zBFE

zB − 2FE). (4.8)
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Now compute the difference of the xn-derivative of 4.7 and the xA-derivative
of 4.8: we find that

λD
AMzD − µAM = 0

where

λD
A = zD

(
2Fn

xA − zBFn
zBxA − zBFn

zBxA − Fn
zAxn +

1
2
(zCFE

zC − 2FE + 2zEFn

− zCzEFn
zC )Fn

zAzE − zE

2
Fn

zAFn
zE +

zBzE

2
Fn

zAFn
zBzE +

1
2
FE

zAFn
zE

− zB

2
FE

zAFn
zBzE + FnFn

zA − zE

2
Fn

zAFn
zE

)
+ FD

xnzA + zBFD
xAzB − FD

xA

− zC

2
Fn

zAFD
zC + Fn

zAFD − zDFn
zAFn +

zCzD

2
Fn

zAFn
zC − zBzC

2
Fn

zAFD
zBzC

+
zC

2
Fn

zAFD
zC +

zB

2
FC

zAFD
zBzC − 1

2
FC

zAFD
zC −

(
zC

2
FB

zC − FB + zBFn

− zCzE

2
Fn

zC

)
zBFD

zAFn
zB − FnFD

zA + zBFn
zAFD

zB − 2FDFn
zA

and

µA = 4Fn
xA − 2zBFn

zBxA − 2Fn
zAxn +

(
zCFE

zC − 2FE + 2zEFn − zCzEFn
zC

)
Fn

zAzE

− zEFn
zAFn

zE + zBzEFn
zAFn

zBzE + FE
zAFn

zE − zBFE
zAFn

zBzE + 2FnFn
zA .

Suppose now in the generic case that the matrix λD
A is invertible. Then we

can solve explicitly for MzD and obtain the one-form

ω =
(

1
2
(
zEFn

ZA − FE
ZA

)
(λE

B)−1µB ,
1
2
(
zE(2Fn − zCFn

zC )

+ zCFE
zC − 2FE

)
(λE

B)−1µB , (λA
E)−1µE

)
.

Thus we may state the following Theorem which generalizes 2.1:

Theorem 4.1. If the matrix λD
A is invertible then the necessary and sufficient

condition for a Finsler function to be compatible with the system 2.1 is that the

one-form ω should be exact, say, equal to dm. The only stipulation is that the

Hessian should be regular, which is equivalent to saying that the matrix
[

mzAzB + mzAmzB mzA − zA(mzAzB + mzAmzB )
mzA − zA(mzAzB + mzAmzB ) 2− zAmzA + zAzB(mzAzB + mzAmzB )

]

should be non-singular. In that case the Finsler function is given by u2
nem and is

unique up to scaling by a constant.
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If the matrix λD
A is not invertible then it is not clear if a Finsler function

exists. In view of the complexity of the expressions involved we shall not pursue
the existence of Finsler functions in the non-generic cases here.

5. Prognosis of the Landsberg unicorns

Let us come back to equation 4.3 and the Landsberg problem. Take the
derivative with respect to zD, interchange the indices C and D and subtract and
then use 4.3 to eliminate Fn

,zAzBzC . The result is

((zP MzP − 2M)MzDzQ + (MzD − zP MzDzP )MzQ)FQ
zAzBzC

− ((zP MzP − 2M)MzCzQ + (MzC − zP MzCzP )MzQ)FQ
zAzBzD = 0. (5.1)

One interpretation of 5.1 is that there are
(
n−1

2

)(
n
2

)
linear conditions for the

(n − 1)
(
n+1

3

)
unknowns FP

zAzBzC . Note that these two numbers are equal for
n = 8 and for n > 8 the former is larger than the latter. On the other hand the
conditions are vacuous if for example M is homogeneous of degree two in zA. In
any case since we have argued that Landsberg metrics in arbitrary dimensions do
exist we may not conclude unconditionally that the FP

zAzBzC and hence Fn
zAzBzC

are zero.
Let us take stock of the situation. In the strict sense the answer to the

Landsberg problem is affirmative. In dimension two the Landsberg condition 4.3
reduces to a single condition and so by appealing to the Cauchy–Kowaleskaya
theorem there are solutions in the analytic category. Furthermore Landsberg
metrics of arbitrary dimensions can be obtained by adding “free particle” systems
to the two-dimensional Landsberg system. In higher dimensions the Landsberg
condition 4.3 is a genuine system of fourth order. Conditions 4.4 and 4.5 allow
the functions FA and Fn to be determined in terms of the unknown M and
its derivatives in principle. Unfortunately it appears to be impossible to obtain
FA and Fn explicitly in arbitrary dimensions; thus it is not possible to see how
to generalize equation 3.5. If such a generalization could be found it might be
possible to attack the problem using Cartan-Kähler theory. However, we have
argued above that conditions 5.1 must arise as implicit fifth order conditions in
any such analysis.

Recently there have been several attempts to throw light on the Landsberg
problem. Szabó claimed the non-existence of the so-called Landsberg “unicorns”;
in a subsequent paper [9] he seems to say that his proof in [8] only works with ad-
ditional assumptions. Sabau, Shibuya and Shimada [7] studied the Landsberg
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problem from the point of view of Cartan–Kähler theory. Apparently they accept
Szabó’s result as originally stated but do not claim the existence of Landsberg
unicorns. Matveev wrote a short paper [5] which points out the gap in Szabó’s
proof. Finally Torrome [11] claims the non-existence of Landsberg unicorns. The
consensus seems to be that Landsberg unicorns are indeed chimeras. We must
point out that we have not studied any of these papers in detail. The approaches
adopted appear to be completely different from the one adopted here. They in-
volve holonomy groups of the Berwald and parallel transport of the Finsler metric.
The discrepancy between the conclusions of [8], [9], [7], [5], [11] and the present
paper probably resides in some implicit assumption of smoothness whereas we
do not assume any and do not make the assumption that the Finsler metric is
positive definite. We have not imposed smoothness restrictions that would insure
for example that the holonomy group of the non-linear Berwald connection would
be well defined. In particular we do not assume smoothness on the zero section.
We do assume real analyticity of the Finsler metric in order to invoke the Cauchy-
Kowaleskaya theorem. In any case perhaps the discrepancy between the different
approaches is more apparent than real since it is unlikely that a concrete example
can ever be found. It is hoped that the methods used here may complement other
contributions and take the understanding of Landsberg metrics to a new level.
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