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On f(p) + f(q) = f(p + q) for all odd primes p and q

By KANG-KANG CHEN (Nanjing ) and YONG-GAO CHEN (Nanjing )

Abstract. We characterize all nonvanishing multiplicative functions f for which

f(p) + f(q) = f(p + q) for all odd primes p, q. As a corollary, a multiplicative function

f is the identity function if and only if f(3) = 3 and f(p) + f(q) = f(p + q) for all

odd primes p, q. Two questions posed by Claudia A. Spiro in 1992 are answered

negatively. Two new conjectures are posed.

1. Introduction

Let E be a subset of positive integers, and let S be a set of arithmetic
functions. If there is exactly one element f(n) of S which satisfies

f(m + n) = f(m) + f(n) for all m, n ∈ E,

then we call E an additive uniqueness set of S. Many authors have been interested
in characterizing the identity function (see [1], [2], [3]).

C. A. Spiro [4] proved that the set of primes is an additive uniqueness set
for {f multiplicative, f(p0) 6= 0 for some prime p0}. At the end of the paper,
C. A. Spiro asked if the set of all sufficiently large primes is an additive uniqueness
set for {f multiplicative, f(p0) 6= 0 for some prime p0}. Is there a subset of the
primes having positive lower density in the set of primes, which is not an additive
uniqueness set for {f multiplicative, nonvanishing}?

Let g1(n) = n for all positive integers n and g2(n) = 1 for 2 - n and g2(n) = 2
for 2 | n. It is easy to verify that both g1 and g2 are multiplicative, nonvanishing
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and gi(m + n) = gi(m) + gi(n) for arbitrarily odd numbers m, n. Hence the
set of all positive odd numbers is not an additive uniqueness set for the set of
nonvanishing multiplicative functions. Thus the set of all odd primes is not an
additive uniqueness set for the set of nonvanishing multiplicative functions. This
gives negative answers to the above Spiro’s questions.

In this paper we characterize all nonvanishing multiplicative functions f for
which f(p) + f(q) = f(p + q) for all odd primes p, q. That is,

Theorem 1. Let f be a multiplicative function such that there exists an

odd prime p0 at which f does not vanish. If

f(p) + f(q) = f(p + q) for all odd primes p, q,

then either f = g1 or f = g2.

An immediate result is

Corollary. A multiplicative function f is the identity function if and only

if f(3) = 3 and f(p) + f(q) = f(p + q) for all odd primes p, q.

Remark. For two numbers a, b, let f(1) = 1, f(2) = a, f(4) = b and f(n) = 0
for all n 6= 1, 2, 4. Thus there are infinitely many multiplicative functions f with
f(2) 6= 0 such that f(p) + f(q) = f(p + q) for all odd primes p, q. Conversely, we
pose the following conjecture

Conjecture 1. If f is a multiplicative function such that f(2) 6= 0, f(3) = 0
and f(p) + f(q) = f(p + q) for all odd primes p, q, then f(n) = 0 for all n ≥ 5.

Remark. If f satisfies the conditions of Conjecture 1, then f(p) = 0 for all
primes p ≥ 5 (see the proof of Theorem 2. Thus by induction on n we can
prove that the Goldbach conjecture implies Conjecture 1. This implies that if
Conjecture 1 is false, then the Goldbach conjecture is false.

2. Proof of Theorem 1

We prove the following Theorem 2. This form is convenient in the proof.
Then by using Theorem 2 we give a proof of Theorem 1.

Theorem 2. Let f , g be two multiplicative functions such that there exists

an odd prime p0 at which f does not vanish. If

f(p) + f(q) = f(p + q), g(p) + g(q) = g(p + q) for all odd primes p, q

and f(n) = g(n) for n = 2, 3, 4, then f(n) = g(n) for all positive integers n.
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In the following p, q always denote primes.

Lemma 1. Let f , g be as in Theorem 2. Then

(i) f(n) = g(n) for all n ≤ 18;

(ii) if f(3) 6= 0, then either f(n) = g1(n) for n = 1, 2, 3, 4 or f(n) = g2(n) for

n = 1, 2, 3, 4.

Proof. By f(2)f(p0) = f(p0+p0) = 2f(p0) and f(p0) 6= 0 we have f(2) = 2.
By f(2) = f(2)f(1) we have f(1) = 1.

Now we write f(n) as a polynomial of f(3) and f(4).
Since

2f(5) = f(10) = f(3) + f(7), f(4)f(3) = f(12) = f(5) + f(7),

we have
2f(5)− f(3) = f(7) = f(4)f(3)− f(5).

So

f(5) =
1
3
f(3)(f(4) + 1), f(7) = 2f(5)− f(3) =

1
3
f(3)(2f(4)− 1),

f(10) = 2f(5) =
2
3
f(3)(f(4) + 1).

Thus

f(6) = 2f(3), f(8) = f(3) + f(5) =
1
3
f(3)(f(4) + 4), f(12) = f(3)f(4),

f(14) = 2f(7) =
2
3
f(3)(2f(4)− 1), f(11) = f(14)− f(3) =

1
3
f(3)(4f(4)− 5),

f(15) = f(3)f(5) =
1
3
(f(3))2(f(4) + 1),

f(16) = f(11) + f(5) =
1
3
f(3)(5f(4)− 4),

f(13) = f(16)− f(3) =
1
3
f(3)(5f(4)− 7),

f(18) = f(11) + f(7) = 2f(3)(f(4)− 1),

f(9) = f(18)/2 = f(3)(f(4)− 1).

By f(20) = f(13) + f(7) = f(3) + f(17) we have

f(17) = f(13) + f(7)− f(3) =
1
3
f(3)(7f(4)− 11).

Note that g(2) = f(2)= 2, similarly we have g(1)= 1 and for each 5 ≤ n≤ 18,
g(n) is a polynomial of g(3) and g(4) which is the same polynomial as f(n) being
a polynomial of f(3) and f(4). Since f(3) = g(3) and f(4) = g(4), we have
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f(n) = g(n) for all n ≤ 18.
By f(4)f(5) = f(20) = f(3) + f(17) we have

1
3
f(3)f(4)(f(4) + 1) =

1
3
f(3)(7f(4)− 8).

If f(3) 6= 0, then f(4) = 2 or 4. By f(3)f(8) = f(24) = f(11) + f(13) we have

1
3
(f(3))2(f(4) + 4) =

1
3
f(3)(9f(4)− 12).

Hence

f(3) =
9f(4)− 12
f(4) + 4

=





1, if f(4) = 2,

3, if f(4) = 4.

This completes the proof of Lemma 1. ¤

Motivated by Lemma 1 we state the following conjecture:

Conjecture 2. If f is a multiplicative function such that f(2) = 2 and f(p)+
f(q) = f(p + q) for all odd primes p, q, then

f(2n) =
1
3
f(3)((n− 3)f(4) + 12− 2n),

f(2n− 1) =
1
3
f(3)((n− 2)f(4) + 7− 2n), n = 3, 4, . . . .

Lemma 2. Let f , g be as in Theorem 2. If every even number 2m with

4 ≤ 2m ≤ 2N can be written as the sum of two primes, then f(n) = g(n) for all

n ≤ N .

Proof is similar to [4, Lemma 3]. We omit the proof.

Lemma 3. For every prime p > 1010 there exist at least 3×107 primes q < p

such that p + q ∈ H, where

H = {n : vp(n) ≤ 1 if p > 1000; pvp(n)+1 < 109 if p < 1000}

and vp(n) denotes the exponent on p in the prime factorization of n.

Proof. Following the proof of [4, Lemma 5] we have the number N(p) of
primes q < p with p + q ∈ H satisfies

N(p) ≥ 0.3
p− 1

log(p− 1)
≥ 0.3× 1010

10 log 10
> 3× 107.

This completes the proof of Lemma 3. ¤
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Lemma 4 ([4, Lemma 6]). Almost every even positive integer is expressible

as the sum of two primes.

Lemma 5 ([4, Lemma 7]). For any positive integer n, put

Hn = {mn : m ∈ H, (m, n) = 1} if 2 | n;

Hn = {2mn : 2m ∈ H, (m, n) = 1} if 2 - n.

Then Hn satisfies the following properties:

(i) Every element of Hn is even.

(ii) The set Hn has positive lower density.

Lemma 6 ([4, Lemma 8]). If n ∈ H, then every positive divisor of n must

lie in H.

Lemma 7. Let f , g be as in Theorem 2. Then f(n) = g(n) for all n ∈ H.

Proof. Since the Goldbach conjecture is true for n ≤ 2 × 1010, we have
f(n) = g(n) for all n ≤ 1010 from Lemma 2. Now let n ∈ H with n ≥ 1010, and
assume that f(m) = g(m) for all m < n with m ∈ H. If n is not a prime power,
then n = mk with m > 1, k > 1 and (m, k) = 1. By Lemma 6 we have m, k ∈ H.
Thus f(n) = f(m)f(k) = g(m)g(k) = g(n). If n is a prime power, then, by n ∈ H

and n ≥ 1010, n must be prime. By Lemma 3 there exists an odd prime q < n

with n + q ∈ H. If n + q is a prime power, then, by n + q ∈ H and n + q ≥ 1010,
n+ q must be prime. This contradicts that both n and q are odd primes. If n+ q

is not a prime power, then n + q = m′k′ with m′ > 1, k′ > 1 and (m′, k′) = 1.
By Lemma 6 we have m′, k′ ∈ H. Since q < n, we have m′ < n and k′ < n. Thus
f(n)+f(q) = f(n+q) = f(m′)f(k′) = g(m′)g(k′) = g(n+q) = g(n)+g(q). Since
q is prime, we have q ∈ H. By q < n we have f(q) = g(q). Hence f(n) = g(n).
This completes the proof of Lemma 7. ¤

Proof of Theorem 2. Assume that f(3) = 0. Define a multiplicative
function g3 by g3(2) = f(2), g3(3) = 0, g3(4) = f(4), g3(n) = 0 (n ≥ 5).
Then g3(p) + g3(q) = g3(p + q) for all odd primes p, q. By Lemma 7 we have
f(n) = g3(n) for all n ∈ H. Since p0 ∈ H, we have f(p0) = g3(p0) = 0, a
contradiction. Hence f(3) 6= 0. By Lemma 1 there exists i ∈ {1, 2} such that
f(n) = gi(n) for n = 1, 2, 3, 4. By Lemma 7 we have f(n) = gi(n) for all n ∈ H.
If Theorem 2 is false, let n be the minimal counter-example. For each k ∈ Hn,
let k = nm, we have m ∈ H, (n,m) = 1, 2|k and then f(m) = gi(m). Since every
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prime lies in H, we have f(p) = gi(p) for all primes p. Thus, if k is the sum of
two odd primes, then f(k) = gi(k). By gi(m) 6= 0 and

gi(n)gi(m) = gi(k) = f(k) = f(n)f(m) = f(n)gi(m)

we have f(n) = gi(n), a contradiction. Hence no element of Hn is the sum of two
odd primes. By Lemma 4, Hn has zero density. This contradicts Lemma 5. Since
g(n) = f(n) = gi(n) for n = 1, 2, 3, 4, the same arguments give g(n) = gi(n) for
all n. This completes the proof of Theorem 2. ¤

Proof of Theorem 1. By the initial part of the proof of Theorem 2 we
have f(3) 6= 0. By Lemma 1 there exists i ∈ {1, 2} such that f(n) = gi(n) for
n = 1, 2, 3, 4. By Theorem 2 we have f = g1 or f = g2. This completes the proof
of Theorem 1. ¤
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