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On genuine g-Bernstein—Durrmeyer operators

By NAZIM I. MAHMUDOV (Gazimagusa) and PEMBE SABANCIGIL (Gazimagusa)

Abstract. In the present paper, we introduce genuine ¢-Bernstein—-Durrmeyer op-
erators and estimate the rate of convergence for continuous functions in terms of modulus
of continuity. Furthermore we study some direct results for the genuine g-Bernstein—
Durrmeyer operators.

1. Introduction
Let ¢ > 0. For any n € N U {0}, the g-integer [n] = [n], is defined by
[n]:=14q+---+¢"', [0] :=0;

and the g-factorial [n]! = [n],! by

For integers 0 < k < n, the g-binomial is defined by

n| _ [n]!
k|l [k n— k]
Define
n—1 oo
A—a)y:=]]0-c2), (Q-2):=]][0-q¢),
s=0 s=0
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n n— n
Pos(g; ) = M FA—2)27% pun(ga) = 2™,

(1 - x)gov

Poo,k(q;2) == W

bon(g;z) = | ¢ a1l - x)nk
k8= (l-—z+gqz)...1l—x+q" 'a)

The g-analogue of integration in the interval [0, A] (see [10]) is defined by

oo

/ Fdgt = A0 - )3 f(Ag™) q", D<q<1.
n=0
In the last two decades interesting generalizations of Bernstein polynomials were
proposed by Lupag [11]

Ry q(f, ) Zf(i)mﬂL)

and by Phillips [17]

anv Zf(fl)pnkqa )

The ¢-Bernstein polynomials quickly gained the popularity, see [6]-[9], [12]-[14],
[16]-[24]. A comprehensive review of the results on this class along with extensive
bibliography is given in [13]. To approximate continuous functions, V. GUPTA
and H. WANG [7] defined the g-Durrmeyer type operators as

n 1
M q(fi2) == f(0)pno(g;x) + [0+ 1] qu "puk(q; @ / Prk—1(¢; qt) f(t)dqt,
0

=1

and studied estimation of the rate of convergence for continuous functions in terms
of modulus of continuity. In [8], the authors studied some direct local and global
approximation theorems for the g-Durrmeyer operators M, , for 0 < ¢ < 1.
Some other analogues of the Bernstein-Durrmeyer operators related to the g¢-
Bernstein basis functions py, x(¢; ) have been studied by M. M. DERRIENNIC [2]
and V. GUPTA [6].

Motivation for this work are [6]-[8] and in this paper we introduce the fol-
lowing so called genuine g-Phillips-Durrmeyer and genuine g-Lupas-Durrmeyer
operators.
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Definition 1. For f € C]0,1], we define the following ¢-Phillips—Durrmeyer
operator:

Un,Q(f§ .’L') = f(())pn,O(q; .’L‘) + f(l)pn,n(q§ .’L')

+[n—1] qu*kpn,k(q;x)/o Pr—2,k-1(¢; qt) f(t)dgt, (1)

k=1
where for n = 1 the sum is empty, i.e., equal to 0.

Definition 2. For f € C[0,1], we define the following g-Lupag-Durrmeyer
operator:

Ry, (f;x) = f(0)bno(g; ) + f(1)bn,n(g;x)

n—1 1
+[n*1]Zq1’kbn,k(q;l’)/ Pn-2k-1(q;qt) f(t)dgt,  (2)
k=1 0

where for n = 1 the sum is equal to 0.

Classical genuine Bernstein—Durrmeyer operators were independently intro-
duced by W. CHEN [1] in 1987, and by T. N. T. GOODMAN & A. SHARMA [5]
later in 1991 and investigated by many authors, see for example [15], [4]. They
possess many interesting properties, in particular they reproduce linear functions
and thus interpolates every function f € C[0,1] at 0 and 1.

In the present paper, we study some approximation properties of the gen-
uine ¢-Phillips—Durrmeyer operators {U,, 4(f)} and g-Lupag-Durrmeyer operators
{R;, ,(f;2)} defined by (1) and (2) respectively, for 0 < ¢ < 1. We estimate the
rate of convergence for these operators and investigate the local and global direct
approximation properties of U, , and R}, .

2. Estimation of moments for U, 4

In this section we obtain explicit formula for U, ,(t™;z) for m =0, 1,2 and
Un,q((t — 33)23 ).

Lemma 3. We have
Ung(Liz) =1, U,4(t;z) =z,

Uno(ta) = & +[?z)i(i] D) 4 a2
(14 q)z(1 —x) < 2

[n+ 1) ~ [n+1]

Umq((t—a:)Q;m) = z(1 —z).
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Proor. Note that for s = 0,1,..., by the definition of g-Beta function
(see [10]) we have

1 1
s n— 2 — S— n—1—k
/ t°Pn—ok_1(q; qt)dgt = lk 11 q* 1/ A O O T A
0 - 0

_ " =2k + s — 1]t
k- 1n+s—1) 3)

In order to prove the theorem we shall use the following identities (see [16]):

ank gz ank gz [:] ank e :r 2+x(1[n_]x).

Using Definition 1 and (3) it is easily seen that U, 4(1; x) = 1 and using the above
identities we have U, 4(t; ) = « and

n—1 1
Ung(t%32) = pun(g:2) + [0 = 11> q" Fpnslgiz) / P k—1(g; qt)dyt
k=1 0
(K] + q[k]?
_‘pnn qa +'§:ZM/ q7 [n+_”
n—1 n—1
B (K] g[n] [£]? .
= pn,n(‘L + ZO TL pn k q7 [ + 1] Pt [ann,k((L x)
1
= pn,n(Q? .’L‘) + [n n 1] ((E - pn,n(Q§ (E))
gln] (o zl-=) .
%[n_%1]<x *ﬁ [n] pnm(qﬁd
_Otqu(-a)
[n+1]
Lemma is proved. O

Lemma 4. U, 4(t™;x) is a polynomial of degree less than or equal to
min(m,n).

PROOF. Simple calculations shows that

n—1

1
Ung(t™32) = [n =11 ¢" *pui(y; x)/ Pr—2,k-1(¢; qt)t" dgt + pnn(q; )
k=1 0
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=[n—1] an,k(Q; x) {Z — f]]:[[s I Z —~ H: + Pon(g; )

[n—1]! —|—m—1]
= ank s — + Pnn(q;2)

n+m—1] 1!
—anl[k][kﬂ] [k +m — 1pni(@z) + pon(q;z)
= [n+m_ 1]' P Pn,k\4; Pn,n\q;

n—1] &
=—— kllk+1 k — 1pn.k(q;
EE— [k+1]...[k+m —1pp k(g z).
k:l
Now using
m—1 m
K[k +1] ... [k +m—1] = T] (¢°[k] + [s]) = Y co(m) (K],
s=0 s=1
where cs(m) > 0, s = 1,2,...,m, are the constants independent of k, we get
’]’L—]_ n m
n tm; = s n ’
Unq (t™;2) = n+m_1,;;c ]"Pn (g5 )
[n—1)! -
= s
[n+m—1]! g na (#5.2),

where B,, 4 is the g-Bernstein operator. Since B, 4(t°; ) is a polynomial of degree
less than or equal to min(s,n) and cs(m) > 0, s = 1,2,...,m, it follows that
Un,q(t™; x) is a polynomial of degree less than or equal to min(m,n). a

3. Convergence of genuine g-Phillips—Durrmeyer operators

Theorem 5. Let 0 < ¢, < 1. Then the sequence {U, 4, (f)} converges to f
uniformly on [0, 1] for each f € C[0,1] if and only if lim, 0o qn = 1.

PRrOOF. The proof is standard, see for example [14], [6]. From the definition
of {U, (f)} and Lemma 3 it follows that the operators U, 4, are positive linear
operators on C[0, 1] and reproduce linear functions. The well-known Korovkin
theorem implies that U, 4, (f) converges to f uniformly on [0, 1] as n — oo for
any f € C[0,1] if and only if

Un.q., (tz;a:) — 72 (4)
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uniformly on [0, 1] as n — oo. If ¢, — 1, then [n],, — oo and hence (4) follows
from Lemma 3. On the other hand, if we assume that for any f € C[0,1], U, q, (f)
converges to f uniformly on [0, 1] as n — oo, then g, — 1. In fact, if the sequence
{¢n} does not tend to 1, then it must contain a subsequence {g,,} such that
dn, € (0,1), ¢, — qo €[0,1) as k — oo. Thus,

1 1—gn,

[ng + 1]an 1— (an)""'+1 0

as k — oo. Taking n = ng, ¢ = g, in Uy q, (t2;x), by Lemma 3, we obtain
Unian, (tz%x) — (1 =)+ ¢@ga* # 2*

as k — oo, which leads to a contradiction. Hence, ¢, — 1. This completes the
proof of theorem. O

Definition 6. Let ¢ € (0,1) be fixed. We define

f(O)H (1—q¢°x)
s=0
Uoo,q(f?-f) = 1 qu kpoo k Qa fO Poo,k— 1(q, qt)f(t)dqt ifxe [O7 1)7
f(l) —
Define
1(0) if k=0,
A i (f) == 106" [ pazper(@at) f(t)dgt if1 <k <n—1,
f(l) if k =n,
ql—k 1 BVt kS 1
Ao a(f) = d T=g do Poesmr(@a) f(D)dgt 8k 21,
70 if k=0,

then Uy, ¢(f;2) and Us,q(f; x) can be rewritten in the following form

anv ZAnk pnkQa ) $€[071L

ooqfv ZAook pookq7 )a IE[Ovl)
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It is easily seen from

L R+ s 1)
/ t*Dook—1(q; qt)dgt = (1 — q)”lw
0 [k —1]!

that
Usog(Liz) =1, Usyq(tiz) =2, Usy, (t2;x) = (1 — q2) (1 — ) + 22

Lemma 7. For f € C[0,1], we have |Up of] < | f||-

PRrROOF. Using Definition 1 and Lemma 3, we have

|Unq(f32)] < [£(0)|pn,o(q; x) + | f(1)|pnn(g; z)

n—1 1
+n =1 ¢" Fpurle w)/ Pr—2,k—1(q; qt)| £ ()|dgt
k=1 0
< [ f1Un,q(L;2) = [ f]]- O

Lemma 8. Let f € C[0,1]. Then we have

|Anie(f = FON)] < Ane(If = FQ)) Sw(f,¢" ) A +¢"2), 0<k<n,
[ Aok (f = FD)| < Ao i(If = D)) S w(f,¢" ) A+ ¢""2), k>0, n>0.

PrOOF. For 1 <k <n —1 we have
1
|An 1k (f) = An k(1) f(1)] < [0 — 1]611_"'/0 Pn—2k-1(q; )| f(t) — f(1)|dqt

1 _
<[n-— 1]q1_k/0 w(f,q"?) (1 + 2";) Pr—2,k—1(q; qt)dgt
=w(f,q"?) (1 +q " (1 U )

[
=uthd™) (1 - W) <w(fiq" (1 + ).
If k=0 or k =n then

[Ano(f) = Ano(D) f()] = [£(0) = f()] S w(f,1) =w(f,q " T2¢"?)
<w(f,q" ) (1+q"?),

|An7n(f) - An7n(1)f(1)| =0.

Similarly one can prove the second inequality. O
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Theorem 9. Let 0 < ¢ < 1 and n > 3. Then for each f € C[0,1] the
sequence {Uy, ¢(f;x)} converges to f(x) uniformly on [0,1]. Furthermore,

1Unq(f) = Useug () < Cqw(f,q"72),

where Cy = 1170(1 + 4.

PRrROOF. The proof is similar to the one of Theorem 3 in [7]. For z € [0,1),
by the definitions of U, 4(f;x) and U 4(f; ), we know that

[Ung(f:2) = Uso,q(f12)] < Z [An e (f = f(1)) = Aso e (f = f(1))[Pnr(g; )

k=0

+ D Aao k (F=F)] 1Pk (05 %) = Pook (@) + Y [Aso k(= F(1))[Pock (g3 %)
k=0

= k=n-+1

— I+ I + Is.

From [7] we have the following estimation

n—k

q
1Pn k(45 2) = Pook(q; )| < (Prk (@ %) + Poo,i(q: ).

I—gq
Using the above inequality and Lemma 8, for 1 < k <n — 1 we have
[An i (f = f(1)) = Aso e (f = f(1))]
1
< [ a4 - f)
0

1
[n — 1pn—2k-1(q;qt) — iqpoo,k—l(q; qt)| dgt

1
[n—1] = ——| Poo,k—1(q; gt)dqt

Yok _
< [ aHis - sy —

1
+/0 @) = FD)|[n = 1|pn—2.k-1(q; gt) — Poo,k—1(q; qt)|dyt
n—k—1

< 0" oe(1f = D + T~ Ans(] = S D))
0" = Awi(f — FO)))
<S¢ lw(fod )L+ ¢ )+ 2q:_kq1“’(f7 ¢"")(L+¢" ")

6
< . n—2 .
<1T qw(f, q""")
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On the other hand if £ = 0 or kK = n then
[Ano(f — f(1)) = A o(f — f(1))] =

and

[Ann(f = f(1)) = Ason(f — F(1))]
= [Ason(f = FW) £ Ason(|f = F)]) £ A+ ¢*)w(f,¢"72) < 20(f.4"72).

We start with estimation of I; and Ig We have

I < (1+2> (fiq"? ank ¢ ) = <16q+2) w(f,q"?)

and )
L<w(f,q"%) Y (14" ")pac k(g v)
k=n-+1
< 2w(f,q" Z Poo k() < 2w(f, " ).
k=n-+1
Finally we estimate I as follows:
n—k
n q
I <Z (£,¢" ) A+ ¢ ") T (Pn k(6 2) + Poc k(a:2)
q
k=0
2 n

_ 4 ne
——w(£,0") D> Pnk(@: ) + Pooi(@37)) < —w(f,q" 7).
k=0 1—=q
Thus we conclude that for z € [0,1] (if z = 1 then U, 4(f;1) — U ¢(f;1) = 0)

[Un,q(f;2) = Uso,q(f32)] < Cqw(f, qn72)7
10

where C; = g T 4. O

Theorem 10. Let 0 < ¢ < 1 be fixed and let f € C[0,1]. Then Uy o(f;2) =
f(z) for all z € [0,1] if and only if f is linear.

PROOF. It immediately follows from Theorem 9 of [22] and the inequality

U g52) = (1 —¢*z(1 —2) + 2> > 2%, forall z € (0,1). O

At last, we discuss the approximating property of the operators Uy 4.

Theorem 11. For any f € C[0,1], {Usx 4(f)} converges to f uniformly on
[0,1] as¢q T 1.

PROOF. The proof is standard and follows from the Korovkin theorem, since
the operators Uy, 4 are positive linear operators on C[0, 1], reproduce linear func-
tions and

Usog(t*;2) = (1 — ¢H)2(1 — 2) + 2% — 2°

uniformly on [0,1] as ¢ T 1. O
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4. Approximation properties of g-Phillips—Durrmeyer operators
We begin by considering the following K-functional:
Ks(f,0%) = inf{|lf - gll +6*|lg"| : g € C*[0,1]}, 5 >0,
where
C%0,1]:={g:9,4,9" € C[0,1]}.

Then, in view of a known result [3], there exists an absolute constant Cy > 0 such
that

KQ(f752) < COW?(fv(s) (5)

where

wa(f,6) == sup sup  [f(z +2h) = 2f(z + h) + f(2)]
0<h<6é z,z+2h€[0,1]

is the second modulus of smoothness of f € C[0,1].
Our first main result in this section is a local approximation property of U, 4
stated below.

Theorem 12. There exists an absolute constant C' > 0 such that

= )] < Cn [ 1 [FL=2)
Una(fi2) — £ )I§02<f, T )

where f € C[0,1], 0 < ¢ < 1 and z € [0, 1].
ProoF. Using the Taylor formula
t

o(t) = g(x) + ¢/ (@)t — 2) + / (t — u)g"(w)du, g€ C?[0,1],

T

we obtain that

Unglg;z) = g(x) + Un,q(Lt(t —u)g" (u)du; $>, g € C?0,1].

)

< g [|Un,q((t — 2)%2) < |lg”|

Hence, by Lemma 3

t
Una(g52) - ) < U (| [ 16 = ullg" @

2
[n+ 1)

(1 —x).
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Now for f € C[0,1] and g € C?[0,1] we obtain, in view of Lemma 7,

Un,q(f;2) = f(@)] < [Ung(f = g;2)| + [Ung(g:2) — 9(2) + [ f(z) — g(z)|

2
<2lf ~ ol +1g" I g

z(1 —z).

Taking the infimum on the right hand side over all g € C?[0,1], we obtain

1
Ul i) = @) < 282 (. ol =) ®
Now the desired inequality follows from (5) and (6). O

We next present the direct global approximation theorem for the operators
U,.,q- In order to state the theorem we need the weighted K-functional of second
order for f € C|0, 1] defined by

Ko 4(f,6%) == inf{||f — gl + 6*10°" | : g € W?(9)}, 6>0, ¢*(x) = 2(1 —x)
where
W2(¢) :={g € C[0,1] : ¢’ € AC1c[0,1], ¢%¢" € C[0,1]},

and ¢’ € ACoc[0, 1] means that g is differentiable and ¢’ is absolutely continuous
in every closed interval [a,b] C [0,1]. Moreover, the Ditzian-Totik modulus of
second order is given by

wy(f,0):= sup  sup |f(x—@(x)h) — 2f(x) + f(z + ¢(x)h)|.

0<h<6 z+he(z)€(0,1]

It is well known that the K-functional K» 4(f,d%) and the Ditzian—Totik modulus
wg (f,6) are equivalent (see [3]).

Theorem 13. There exists an absolute constant C' > 0 such that

_ ofp 1
||Un,q(f) fll < Cuwy <f7 I+ 1]> )

where f € C[0,1], 0 < ¢ < 1.
PRrROOF. From the Taylor expansion
t

o(t) = g(o) + ¢ (2)(¢t — 2) + / (t - )g" (s)ds,

x
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and Lemma 3, we see that

t
Unalgs ) — 9(a)| < U(\ [ it sl s)ias

o)
——ds

< 1¢*9"|Un < ;x)-
” ” >4 . (bQ(S)
Let s=t+7(z —t), 7 € [0,1]. Using the concavity of ¢? we have

"t — sl

[t — s _ Tlx — < Tz —t |z — ¢
P*s) At +T(x—1) T #2(t) + (P (x) — ¢2(t) T P*(x)

Therefore

t t 2
[t — s |z — ¢ _(t—sc)
. P0) ‘“H . P@) ds“ 202)
and 1

Un,qg((t _$>2§$)-

|U717Q(g7x) _g(x)l S ||¢2g//||¢2(1,)

Because the operator U, 4 is bounded (see Lemma 7) we obtain for f € CI0, 1],
by Lemma 3 that

Un.q(f;2) = f(@)] < |[Ung(f = g;2)[ + [Unq(g; 2) — g(2)| + | f(2) — g()]|

<2|f =gl +ll¢*g" |l

n+1]
Taking the infimum on the right hand side over all g € W?2(¢) we obtain
1
U, — [l < 2K y— .
Ul 11 < 22 (ot
Now, from the fact that K 4(f,d?) and wé(f, 0) are equivalent we obtain the
assertion. (]

Corollary 14. Assume that ¢ = g, — 1 as n — oo. Then the sequence
{Un,q(f)} converges to f uniformly on [0,1] for each f € C|0,1].

Remark 15. In [8] it is proved that for the operator M, ,(f;x) the following
local and global inequalities hold

(M glf;2) — f(2)] < Cuy (f, [nl”] (x(l —a)+ [niﬂ)) o (f, mﬁ)

- w? L Wa _

where f € C[0,1] and 0 < ¢ < 1.

Since the operator U, ,(f;z) preserves linear functions, first modulus of con-
tinuities do not appear in our estimations.
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5. g-Lupas—Durrmeyer operators

It was proved in [11] and [14] that R, ,(f,z) reproduce linear functions and
Ry, 4 (1%, z) was explicitly evaluated:

2 _
Rn,q(t27 ) = qr z(1—x)

+ .
l—z+4+qx [n](1—2+qx)
Lemma 16. Let 0 < ¢ < 1. Then for all x € [0,1] we have

R;‘L’q(l;x) =1, R:‘Lyq(t;x) =z,

2 2
A RS q°[n]x
Rn,q(twr)*

qz(l —x)
n+1]  [n+11l-z+qx) n+1(1—-2+qx)

Ry ((t— 2)%52) < Ung((t—2)%2) =~ L1 — ).

[n+ 1]
Proor. We prove only the last inequality. It is clear that
2
qx x(1—x) 5
R, ((t—x)%z) = —
allt=2)%57) 1fx+qx+[n}(lfx+qx) *

2(l — ) — (1 - g)[n]a*(1 — =)
[P(1 — 2+ qx)
_rz(l-2)l—az+q"z)  x(l-z) PRI
ST H-ere < @ el O
Using the inequality (7) we get desired estimation.

* 2, _ ¥ 2. * . 2
Rn’q((t —z)%5x) = Rn’q(t ;x) — Zan,q(t,a?) 4+

s nls? wi-a)
m+1]  n+1](1-z+qx) [n+1](1—-2+qx)

v, o) [ d-m) )
i e (et B0 s ve)

z gln] (z(1—=z) 2 o 1+44g
—x° = 1—x). O

<Err e (o) = e
Using Lemma 16 and mimic the proofs of Theorems 12 and 13 we may easily

obtain local and global approximation results for R  (f)
Theorem 17. There exists an absolute constant C' > 0 such that

H&Aﬁ@—f@ﬂ§0m<ﬂ ﬁj;?),

where f € C[0,1], 0 < ¢ < 1 and = € [0, 1].
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Theorem 18. There exists an absolute constant C' > 0 such that

IR () — £l < Cuf [ f,———

Vin+1] )’

where f € C[0,1], 0 < ¢ < 1.

(1]
2]

[10]
[11]
[12]
[13
[14]
[15]
[16]
[17]

(18]
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