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Finite groups in which the degrees
of non-linear constituents
of some induced characters are distinct

By YAKOV BERKOVICH (Afula)

BERKOVICH, CHILLAG and HERZOG [1] classified all finite groups G,
in which the degrees of the non-linear irreducible characters are distinct.
If G is such a non-abelian group, then one of the following assertions holds
[1]:

(a) G = ES(m, 2), an extra-special group of order 21+2™;

(b)y G = (C(p™ — 1), E(p™)), a Frobenius group with elementary
abelian kernel E(p™) of order p™ (p is a prime), and a complementary
cyclic factor C(p™ — 1) of order p™ — 1;

(c) G =(Q(8),E(9)), a Frobenius group with the elementary abelian
kernel F(9) of order 9, and a complementary factor Q(8), the ordinary
quaternion group of order 8.

In this note we study a more general class of groups, which we call
D-groups:

D:If 1 < N <G', Nisnormal in G, and 1y # X € Irr(N), then
the degrees of the irreducible constituents of the induced character A& are
distinct.

Let Irr1(G) denote the set of all non-linear irreducible characters of
G.

We denote by Irr(y) the set of all irreducible constituents of the char-
acter x. Let Irry () denote the set of all non-linear irreducible constituents
of the character x, and cdi(x) = {¢(1) | ¢ € Irr1(x)}. A character x is
said to be a D-character if the sets cdi(x) and Irrq(x) contain the same
number of elements.

Lemma 1. Suppose that H is a non-trivial normal subgroup of a non-
abelian group G, G/H ~ C(m) (C(m) is a cyclic group of order m). If,
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226 Yakov Berkovich

for some non-principal A € Irr(H), the character \® is a D-character, then
Irry (A\9)] < 1.

PROOF. Suppose that y, 7 € Irr; (A%). Then
(Xm,A) =1= (T, )

by Clifford’s theory. So by Clifford’s theorem x(1) = 7(1) and x = 7
since x, 7 are non-linear irreducible constituents of the same degree of the
D-character \¢. O

Corollary 1.1. Suppose that 1 < G' < G, G/G" ~ C(m). If, for
every non-principal A € Irr(G'), the character \¢ is a D-character, then

G = (C(m),G"), a Frobenius group with a complementary factor C(m)
and the kernel G'.

PROOF. Iflgr # A € Irr(G’) then Irr(AY) = Trry (A\Y), so by Lemma 1,

A\¢ € Irr(G). Now the result follows from [2, Corollary 2.5] (see also [5,
corollary 37.5.4]).

Remark. If G' < N < G and a non-principal A € Irr(N), then all

irreducible constituents of the character A¢ have the same degree (see [4],
Problem 6.2).

Lemma 2. Suppose that H is a non-trivial normal subgroup of G,
G/H ~ Q(8) and, for some non-principal A € Irr(H) the character A% is a
D-character. Then \® has at most one non-linear irreducible constituent.

PROOF. Let
A = eyt 4.+ esx®, Irr(A) = {x%, ..., x°}
By Clifford’s theory ej,...,es are degrees of irreducible projective rep-

resentations of the group Ig(A\)/H, where Ig()\) is the inertia group of
A in G. Since the Schur’s multiplier of any subgroup of Q(8) is trivial
then in fact ey, ... ,es are degrees of ordinary irreducible representations
of I¢(N\)/H. Hence e; < 2 for all i.

Suppose that distinct !, x? € Irr; (A¥). By reciprocity and Clifford’s
theorem ey # e5. Let e; > e3. Then e; = 2, e = 1. Since e; = 2 then
Ic(\)/H ~Q(8), i.e., Ic(A) = G and A is invariant under G. Then

Xi =2\, Xu =

and X is non-linear (since x? is non-linear). Hence Irr;(AY) = Irr(A\¥) by
reciprocity. Therefore s = 2 and

G+ HIA(L) = 8A(1) = X9(1) = exx"(1) + exn®(1) = 5A(1),

a contradiction. O
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Corollary 2.1. Suppose that H is a non-trivial normal subgroup of
G, G/H ~ Q(8) and H < G'. If for every non-principal \ € Irr(H) the
character \¢ is a D-character, then G = (Q(8),G’).

See the proof of Corollary 1.1.
Lemma 3. Let p be a prime. Suppose that

pn — pk + a1p2c(1) 4o+ GSPQC(S)’

where s,n, k,a1,... ,as, c(1),...,¢(s) are positive integers. Then
(a) k> 2¢(1).
(b) Ifa; <p*—pthens=1,k=2c(1),n=2c(1)+1,a; =p—1.

We omit an easy proof of this lemma.
Let G be a group, c¢d(G) = {x(1) | x € Irr(G) }. Then

d(G): (a0'17a1'd17~-- 7at'dt)

denotes that |G : G'| = ag, and Irr(G) contains exactly a; characters of
degree d;, i € {1,... ,t}. Usually we assume that 1 < d; < ... < d;.

Lemma 4 (see [1]). Suppose that G is a non-abelian p-group, d(G) =
(p* - 1,a1 - p°M, ... ay - p*®). If ay < p?> — p then G ~ ES(m,p).

PRrROOF. Let |G| = p™. Then

pn _ pk: + a1p2c(1) + ... atPQC(t)-

By the condition ¢t > 1. Hence (Lemma 3)
t=1, k=2c(1)=n—-1, ay=p-1

Therefore |G'| = p and ¢(1) = (n — 1)/2. If x € Irr(G) is a non-linear
character then ) ) .
Pt =x(1)” <G Z(G) < p"

Then |Z(G)| =p=1|G| = G =Z(G) and G ~ ES(m,p). O

Lemma 5. Suppose that N is a non-trivial normal subgroup of G,
N < @', G/N is a p-group. If for some non-principal A € Irr(N) the
character \® is a D-character, then \¢ = ex with x € Irr(G).

PROOF. Let
N =ext + . ex®, (M) =L XL
Since N < G’ and \ # 1y, then all x* are non-linear. Let
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be Clifford’s decomposition, A\; = A. Then x*(1) = e;nA(1),

G NIX1) = X9 (1) =nA(1) (e2 +... 4+ €2),
|G : N| =n(ef +...+¢€2).

Here n = |G : I(\)| is a power of p since N < Ig(A). If |[Ig(A) : N| = p©,

then ) )
p*=ei+...+e;.

Since Ig(A)/N is a p-group then ej,...,es are powers of p. If i # j
then e;nA(1) = x(1) # x?(1) = e;n\(1) = e; # e;. Suppose that
1< ...<es, e, =p°D. If s> 1 then

pe—280) 1 4 R2B@-BM) L | p2B)=BL)

which is impossible. Hence s = 1 and A\ = e;x!, x! € Irr(G). O

Lemma 6. Suppose that G = (A, H) is a Frobenius group, 1 < N <
H and N is a normal in G, H/N is a p-group. If a non-principal X € Irr(N)
and the character \® is a D-character, then \¢ = et) where ¢ € Irr(G).

PROOF. Suppose that
N=ext + . ex®, (M) =L LX)
Obviously N < G, so that x!,...,x* are non-linear. Let
X = eilA + ...+ )
be the Clifford’s decomposition, Ay = A. Then x*(1) = e;n\(1), |G : N| =
n(e? + ... = €2). Since (A4, N) is a Frobenius group then I5(\) < H, so
that n = |A|ng. Therefore
|G:N|=|G:H||H:N|=|A||H:N|=|Ano(e? + ...+ ¢€?),

S

|H:Nng' =el+...+e2

Since N < Ig(A) < H then ng is a power of p. As before ey,... ,es are
distinct powers of p (as degrees of irreducible projective representations of
a p-group Ig(A)/N). As in Lemma 5 this implies s =1. O

Lemma 7. Suppose that H is a normal Hall subgroup of a group G.
Then H N ®(G) = ®(H); here ®(G) is the Frattini subgroup of G.

PRrROOF. The inclusion ®(H) < &(G) follows from the modular law.
So we may assume without loss of generality that ®(H) = 1. Suppose
that D = H N ®(G) > 1. Let A be the least subgroup of H such that
AD = H and D does not contained in A (A exists since D > 1 and



Finite groups in which the degrees ... 229

®(H) =1). Let D; = AN D. From the choice of A it follows easily that
Dy < ®(A). Since D is abelian, then Ny(D;1) > (A, D) = H. Then as
it is known Dy < ®(H) = 1. Thus 1 = Dy = AN D, and H = AD, a
semi-direct product. Since D is abelian then by Gaschutz’s theorem [3,
§1.17] there exists a subgroup F' in G such that G = FD and FN D = 1.
Since 1 < D < ®(G) one obtains a contradiction. Thus D = 1 and
HN®(G)=1=o(H). O

Lemma 8 (see [5, Lemma 37.3.3]). Suppose that P is a non-trivial
minimal normal p-subgroup of a group G = CP, C NP =1 and a cyclic
subgroup C' of order b acts on P faithfully. Let m be the order of p(mod b).
Then |P| = p™.

PROOF (A. MANN). Put EF = Endgpp)c(P). Then E is a finite

skew field (Schur’s lemma). By Wedderburn’s theorem E is commutative.
Obviously C C E. So all E-subspaces of P are trivial. Therefore dimg P =
1. Let F be the least subfield of E containing C. As above dimp P = 1.
Hence |E| = |P| = |F|, F = E. Put |E| = p". Then |C||(p"™ —1). Since C
generates F as field then n is the least positive integer such that p” =
(mod b). O

Main Theorem. Suppose that G is a non-abelian solvable D-group.
Then one and only one of the following assertions holds:

(a) G = ES(m, p), an extra-special p-group of order p**2m,

(b) G = (Q(8),E(p™)), Q(8) acts on E(p") irreducibly.
(c) G =(C(s),E(p™)), C(s) acts on E(p") irreducibly (in particular
n is the order of p (mod s)).

PROOF. It is easy to see that groups (a)—(c) are in fact D-groups.
Suppose that R is a minimal normal subgroup of G such that R < G'.

Let |R| = p".

(i) G/R is a D-group.
This is obvious.

(ii) If G is nilpotent then G ~ ES(m, p).

PROOF. Suppose that G = P x @ where P € Syl (G) is non-abelian,

Q > 1 (so we may assume that R < P). Let 1z # X € Irr(R), x € Irr(A9);
X is non-linear since R < G’. Let u be a non-principal linear character of
Q. Then x x 1g, x X p are distinct non-linear irreducible constituents of

A& of the same degree, a contradiction. Thus G is a p-group.
Let a non-principal A € Irr(R). Then (Lemma 5) A¢ = ex, x € Irr(G).
Since A is G-invariant then e = x(1) (Clifford) and

XY =x()x, |G Rl =X9(1) = x(1)* < |G : Z(G)| = R=Z(G).
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If |G| = p™ then Irr(G) contains exactly p — 1 characters of degree

p(»~1/2 Since n — 1 is even then n — 2 is odd. Hence G/R is abelian.
Then R = G’ = Z(G) has order p, and G = ES(m,p). O

In the sequel we suppose that G is non-nilpotent.

(iii) If G/R is abelian then G = (C(s), R).

PRrROOF. By the condition R = G’. Since G is non-nilpotent then R
does not contained in ®(G). So G = AR, AN R = 1; here A is a max-
imal subgroup of G. Obviously A is abelian, Z(G) < A and G/Z(G) =
(C(s), E(p™)). In particular every non-principal character from Irr(R)
belongs to the G-orbit of length s. If a non-principal A € Irr(R) then
I6(\) = RZ(G) and cd(G) = {1,s}. Since A“ has no linear constituents
then by the condition A\ = ey with x € Irr(G), x(1) = s. So by the
Clifford’s theorem e = 1. Then |G : R| = A\9(1) = x(1) = s = Z(G) =1
and G = (C(s), E(p™)). O

(iv) If G’ is abelian (and G is non-nilpotent) then G = (C(s), E(p")) =
(C(s),R), i.e. G' = R is a minimal normal subgroup of G.

PROOF. In view of (iii) we may assume that R < G’.
Let T be the greatest normal subgroup of G which is properly con-
tained in G’. It has been proved in (iii) that

G/T € {ES(m,q)}, (C(s),E(¢™)); here q is a prime.

(liv) G/T ~ ES(m,q).

In view of (ii), ¢ does not divide |T'| (we recall that T is abelian). Now
T > 1 since G is non-nilpotent.

So G = QT where Q € Syl (G). If a non-principal A € Irr(T) then
N¢ = ex, ¥ € Irr(G) (Lemma 5). In particular y vanishes on G — T,
and so also on Q% = @Q — {1}. Hence |Q||x(1). Since A9(1) = |Q| then
A¢ = y for any choice of non-principal A € Irr(T). Hence G = (Q,T) (see
[5, Corollary 37.5.4])]. Then G’ = (Q',T) is non-abelian, a contradiction.

(2iv) G/T = (C(s), E(¢™)), the subgroup E(q™) is a minimal normal
subgroup of G/T.

Then G/G’ ~ C(s),s0 G = (C(s),G") (Corollary 1.1), cd(G) = {1, s}.
Let a non-principal A € Irr(7). Since A“ has no linear constituents then
N = ey, x € Irr(G) (Lemma 6), x(1) = s. Since every non-principal
irreducible character of T" has exactly s conjugates under G, then e = 1
(Clifford) and A¥ = x € Irr(G). In this case G is a Frobenius group with
the kernel T' [5, Corollary 37.5.4], a contradiction since a Frobenius group
has only one Frobenius kernel. O
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(v) If G/G" = C(s) then G = (C(s),G"), G' € Syl,(G), ®(G') =
O(G).

Proor. By Corollary 1.1, G = (C(s),G’). In particular G’ is nilpo-
tent (Thompson). Since G'/G” is a minimal normal subgroup of G/G"” by
(iv), then G'/G" is primary = G’ is primary, say, G’ is a p-group. In
particular G” € Syl,(G). Now ®(G') = ®(G) (Lemma 7). O

(vi) If G/R ~ ES(m,q) then G = (Q(8), R).

ProOF. Recall that R is a minimal normal subgroup of order p™ in
G and G is non-nilpotent. So ¢ # p. Now R < G’ by the choice of R. In
view of (iv) we may assume that G’ is non-abelian. We have |G’| = ¢p™.
Since G’ is non-abelian, it is non-nilpotent. Hence Z(G') < R =1 =
G" = (Z(Q), R) where Q € Syl (G), @ ~ ES(m,q). If a non-principal
A € Irr(R) then \¢ = ey, x € Irr(G) (Lemma 5). In particular, y vanishes
on G — R, and, as in (2iv) one obtains G = (Q, R). Hence Q = Q(8),
G =(Q®),R)=(Q@B),E(p")). O

(vii) If G/G" ~ ES(m,q) and G” > 1 then G = (Q(8), E(p™)) and
E(p™) is a minimal normal subgroup of G.

PrRoOOF. Let T be the greatest normal subgroup of G which is prop-
erly contained in G”. Then by (vi), G/T ~ (Q(8), E(p™)). In particular
G/G" ~ Q(8). Hence G = (Q(8),G"”) by Corollary 2.1. Then G” is
abelian (Burnside) and cd(G) = {1,2,8}. If a non-principal A\ € Irr(7)
then \¢ = ey, x € Irr(G) (Lemma 6). Now A belongs to a G-orbit of
length 8 = x(1). Hence e = 1 by the Clifford’s theorem. Thus A“ = y and
x(1) =8 = A\9(1) = |G : T|, a contradiction. Hence T =1. O

 (viii) If G/G" = (C(s), E(p™)) then G" = 1. In particular G’ is a

minimal normal subgroup of G.

PROOF. Ome has G = (C(s),G") where G' € Syl (G) by (v). If
G" =1 then the result follows from (iv). Suppose that G” > 1. Without
loss of generality we may assume that G is a minimal normal subgroup of
G. Since G” < Z(G') then G” is a minimal normal subgroup of C(s)G".
So (Lemma 8) |G”| = |G'/G"| = p™. Take an element z in G’ —G"”. Then
the mapping ¢ : G’ — G” which is defined by p(a) = [z,a] (a € G') is
a homomorphism. Obviously the kernel of ¢ is equal to Cg/(z). Hence
[z, G’], the image of ¢ is a proper subgroup of G”. Take a non-principal
A € Irr(G”) such that [z,G'] < ker A. Then zker A\ < Z(G'/ker ). Now
AG = ex, x € Irr(@) (Lemma 6). So [4, Theorem 6.11] A& = e, ¢ €
Irr(G”). Obviously

ker ) = ker \.
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Since A is G’-invariant then e = (1) (Clifford). Now
G" G| =2 (1) = ¥(1)? < |G/ ker ) : Z(G' [ ker )|,

so that |Z(G'/ker¢)| = p. Hence Z(G'/kery) = G”/ker, a contradic-
tion since zkerA € Z(G'/ker \) — G”/ker \. Thus G”" = 1. The theorem
is proved. 0O

Corollary [1]. Suppose that the degrees of the non-linear irreducible
characters of a non-abelian solvable group G are distinct. Then

G e {ES(m72)7 (Q(S),E(Q)), (C(pn - 1)7 E(pn))}

PrOOF. Obviously G is a D-group. Hence by the Main Theorem we
have to consider the following three cases.

(i) G ~ ES(m,p).

In this case Irr(G) contains exactly p — 1 characters of degree p™.
Hence p—1=1,p=2, G ~ ES(m,?2).

(ii) G = (Q(8), E(p™)).

In this case Irr(G) contains exactly (p™ — 1)/8 characters of degree 8.
Therefore (p" —1)/8 =1, p" =9, G = (Q(8), E(9)).

(iii) G = (C(s), E(p™))-

In this case Irr(G) contains exactly (p™ — 1)/s characters of degree s.
So(p"—-1)/s=1,s=p"—1,G=(C(p"—-1),E(p")). O

Note that all non-abelian simple groups are D-groups.

Next we consider D-groups, i.e. groups G, satisfying the following
condition:

D : If N > 1 is any normal subgroup of G and 1y # X € Irr(N) then
A\ is a D—character.
Obviously D-groups are D-groups.

Theorem 9. If G is a non-solvable D-group then G’ = G.

PROOF. Suppose that G’ < G. Let H “be the last term of the derived
series of G. Then G/H is a non-identity D-group. Since G/H is also a
D-group, we have to consider the following four possibilities.

(i) G/H ~ ES(m,p).

If 17 # A\ € Irr(H) then A9 = ex, x € Irr(G) (Lemma 5). If 7 €
Irr(G) and H does not contained in ker 7 then (7, 15) = 0, so u& = fr
for a certain non-linear p € Irr(H). Then p divides x(1) for all x € Irr(G)
such that H does not contained in ker x. If ¢ € Irr(G) is non-linear and
H <kery, then ¢ € Irt(G/H) so that ¢(1) = p™. Thus p divides degrees
of all non-linear irreducible characters of G. By Thompson’s theorem
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[4, corollary 12.2] the group G has a normal p-complement, and this p-
complement coincides with H since H' = H. Let P € Syl,(G). Then for
a non-principal A € Irr(H), the character \* = ex (Lemma 5) vanishes
on P# C G — H. So |P||x(1), e = 1 and A\¢ = y is irreducible. Hence
G = (P,H) [5, corollary 37.5.4], H is nilpotent by Thompson’s theorem
[5, theorem 37.3.3], G is solvable, a contradiction.

(ii) G/H ~ (Q(8), E(p"))-

Then G/G"” ~ Q(8) and G = (Q(8),G”) by Corollary 2.1, G is
abelian (Burnside), G is solvable, a contradiction.

(iii) G/H ~ (C(s),P/H), P/H € Syl,(G/H).

Then P/H = G'/H, G/G' ~ C(s) and G = (C(s),G") (Corollary
1.1), G’ is nilpotent (Thompson), G is solvable, a contradiction.

(iv) G/H is abelian.

Then H = G’. Let n = expG/H, and let G’ < T < G be such that
G/T ~ C(n). Take a non-linear x € Irr(G). Then by Clifford’s theory

XT:Al—l—...—i—)\S,

where A\1,... , s € Irr(T) are pairwise distinct of the same degree, and

T Nkerx = ker xr = ﬂ ker \;.
i=1

Since G/ ker  is non-abelian then G /(T'Nker x) is non-abelian. Hence
all \; are non-linear since 7" = G’. So AY = x by reciprocity and Lemma 1.
In particular n | x(1) for all x € Irr;(G). Therefore for all prime divisors
p of n the group G has a normal p-complement [4, corollary 12.2]. So
H = @’ is a Hall subgroup of G.

Take a non-principal A € Irr(H). Since G is a D-group then A% = ey
by [4, problem 6.2]. Hence  vanishes on R# where R is a complement to
H (R exists by Schur-Zassenhaus theorem). Then |R| | x(1). Since R and
H are Hall subgroups of G' and

AC(1) =[G HIX1) = [RIM1),  (IBLAQ) =1, A1) | x(1)

then A9(1) = x(1), A = x for all non-principal A € Irr(H). Therefore
G = (R,H) [5, corollary 37.5.4], H is nilpotent (Thompson [5, theorem
37.3.3]), a contradiction. O

Let a Dg-group be a group in which the degrees of the non-linear irre-
ducible characters are distinct. Since all non-linear irreducible characters
of Dy-group G are rational-valued, then G’ < G[1] (it is a corollary of

well-known Feit—Seitz theorem). Hence G is solvable by Theorem 9. We
have obtained a new proof of the main theorem of note [1].
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Remark. If for any N > G’ it follows from 1y # A € Irr(N) that the

character \“ is a D—character, then G is solvable or G’ = G. My proof of
this assertion uses the classification of finite simple groups.

Conjecture. Non-solvable D—groups are simple.

A character x of a group G is said to be a Dy—character if |Irrq (x)| >
ledi(x)| — 1. A group G is said to be a Di—group if for any non-identity
normal subgroup N of G, N < G’, and for any non-principal A € Irr(N)
the character A€ is a D;—character.

Question. Classify all Di—groups.

Acknowledgement. My deep thanks to Prof. AVINOAM MANN for use-
ful discussions, and to the referee for many remarks and suggestions (in
particular the assertion that G’ is a minimal normal subgroup of G in the
part (c) of the Main Theorem due to the referee).
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