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On the distribution mod 1 of ασ(n)

By IMRE KÁTAI (Budapest)

Abstract. The sequence xn = F (n)+ασ(n) (mod 1) is investigated, where σ(n) =

sum of divisors of n, F is an additive arithmetical function. In an earlier paper De Kon-

inck and the author proved that xn mod 1 is uniformly distributed if the approximation

type of α is finite, and formulated the conjecture that it holds for every irrational α.

In this paper it is proved that the conjecture is not true in general, and it is true

if α ∈ K∗. K∗ is defined as follows. Let Mx =
Q

p
prp , p runs over the primes and rp

is the integer part of the number stated in the right hand side of (2.7). Let K = Kx

be the set of those irrational α, for which minH|Mx
‖Hα‖x > 1 holds for every large x,

K∗ = {α | jα ∈ K} for every j = 1, 2, . . . .

§ 1. Introduction

According to a reformulated version of a well known theorem of H. Daboussi

(see Daboussi and Delange [1], [2]), for every additive arithmetical function

F (n) and any irrational α, the sequence ln := F (n)+ αn is uniformly distributed

modulo 1. This famous theorem has a plenty of generalizations. It was proved in

[3] that the same assertion holds for ln = F (n)+Q(n), where Q(x) = α0 +α1x+

· · · + αkxk ∈ R[x], and at least one of α1, . . . , αk is irrational.

Let ‖x‖ stand for the distance between x and the closest integer. In [4] we

proved the following result.

Theorem A. Let α be a positive irrational number such that for each real
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number κ > 1 there exists a positive constant c = c(κ, α) for which the inequality

‖αq‖ >
c

qκ
(1.1)

holds for every positive integer q. Then ln = ασ(n)+F (n) is uniformly distributed

modulo 1 for every additive arithmetical function F (n). Here σ(n) is the sum of

divisors of n.

We mentioned that similar assertion can be proved for the integer valued

multiplicative function h instead of σ, where h(p) = Q(p) for every prime p and

h(pa) = O(pad) for some fixed number d for every prime p and every integer

a ≥ 2, where

Q(x) = akxk + ak−1x
k−1 + · · · + a1x + a0 ∈ Z[x],

k ≥ 1, ak > 0.

Especially, it is true for h(n) = ϕ(n), where ϕ(n) is Euler’s totient function.

We formulated the conjecture that the assertion of Theorem A is true for

every irrational α. We shall improve our theorem, and show that our conjecture

is not true in general.

In [5] the function

∆ (α, x) =
1

π2(x)
max

|Xp|≤1

∣

∣

∣

∣

∣

∣

∣

∑

p1p2≤x
p1<p2

Xp1
Xp2

e (αp1p2)

∣

∣

∣

∣

∣

∣

∣

has been considered, where

π2(x) =
∑

p1p2≤x
p1<p2

1.

It was proved that ∆(α, x) → 0 if α is not too well approximable by rationals, and

the conjecture was formulated that this is true for every irrational α. Huixue

Lao [6] proved that ∆(α, x) → 0 if α was of finite type, in the sense that there

exists a positive number σ such that ‖nα‖ > n−σ for all sufficiently large n.

Finally Professor Glyn Harman [7] proved the conjecture. The main novelty

of his method was that he could handle the case by the so called “major arc”

estimate when α was very well approximable by rationals. Combining our method

with his method we are able to prove the following theorems.
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§ 2. Formulation of the results

2.1. Let P be the whole set of primes, p, q with or without indices denote prime

numbers.

It is known that
∑

p≡−1 (mod k)
p<x

1

p
≤ c1

log log x

ϕ(k)
(k ∈ N) (2.1)

if x > 10 (say), where c1 is an absolute constant. (For a proof see [11]).

Let c > 0 be a constant, x > 10. Assume that S is such an integer depending

on x for which

#{n ≤ x | σ(n) ≡ 0 (mod S)} > cx. (2.2)

Let us write every n as Km, where K is the square full part and m is the square

free part of n. It is clear that

#{n ≤ x | K > Y } ≤
∑

K>Y

x

K
≤ c2x√

Y
. (2.3)

Assume that Y =
(

2c2

c

)2
.

Then

#{n ≤ x | n = Km, K < Y, σ(K)σ(m) ≡ 0 (mod S)} >
c

2
x. (2.4)

Let us write

S =
∏

pγp . (2.5)

Assume that p > c3 log log x. If γp ≥ 1, then counting the integers m ≤ x in (2.4)

satisfying p | σ(m) is bounded by (see (2.1))

∑

q≡−1(p)
q≤x

x

q
<

c1x log log x

p − 1

and the right hand side should be larger than c
2x. Thus p− 1 < 2c1

c
log log x. We

proved that γp = 0 if p ≥ 2c1

c
log log x + 1.

Let now Y < p ≤ 2c1

c
log log x + 1. We count those integers n for which

pγp | σ(n), i.e. pγp | σ(m). This can be overestimated by the sum

x

γp
∑

r=1

∑

α1+···+αr=γp

∑

q1<···<qr<x
p

αj |qj−1

1

q1 . . . qr

≤ x

γp
∑

r=1

1

r!

∑

α1+···+αr=γp

(c1 log log x)r

ϕ(pα1) . . . ϕ(pαr )

≤ 2x

γp!

(

c1 log log x

p − 1

)γp

.
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This number should be larger than cx, consequently

2

γp!

(

c1 log log x

p − 1

)γp

> c,

i.e.

γp ≤ c1e log log x

p − 1
if x is large enough. (2.6)

Assume that p < Y . If pγp | σ(n), then pγp−Λ | σ(m), where pΛ | σ(K) ≪
K log log K ≪ Y log log Y , whence we obtain that Λ < c4. Furthermore as above

we obtain that γp − Λ ≤ c1e log log x
p−1 and so we have

γp ≤



































c1e log log x

p − 1
if Y < p ≤ 2c1

c
log log x + 1

c1e log log x

p − 1
+ c4 if p ≤ Y

= 0 if p >
2c1

c
log log x + 1.

(2.7)

We proved

Lemma 1. Assume that c > 0 is a constant, and with some integer S

1

x
#{n ≤ x | σ(n) ≡ 0 (mod S)} > c.

Let S =
∏

pγp . Assume that x is large enough, x > y0. Then for the exponents

γp (2.7) hold true. Consequently S ≪ exp(c1e(log log x)[(log log log x) + c5]) with

suitable constants c1, c5.

Remark. For some m let αp(m) be that exponent for which pαp(m)‖σ(m).

One can prove that

αp(m) >
log log x

(p − 1) p
−
(

log log x

p

)
3
4

(2.8)

holds for 2 ≤ p ≤ √
log log x for all but o(x) integers m ≤ x. Let lp := integer

part of the right hand side of (2.8).

Let T = Tx =
∏

p≤√
x2

plp . Then

1

x
#{n ≤ x | σ(n) ≡ 0 (mod T )} = (1 + ox(1)) .

As a consequence we have
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Lemma 2. Let α be such an irrational number for which there is a sequence

x1 < x2 < . . . tending to infinity and there is a sequence of integers Dν dividing

Tν such that ‖αDν‖xν → 0 (ν → ∞). Then

1

xν

∑

n≤xν

e (ασ(n)) → 1 (ν → ∞)

and for all ε > 0:

1

xν

#{n ≤ xν | ‖ασ(n)‖ > ε} → 0 (ν → ∞) . (2.9)

Remark. Let α = 1
2t1

+ 1
2t2

+ . . . , where tk+1 = 23tk. Assume that t1, . . . , tk,

x1, . . . , xk−1 are chosen. Let xk = exp(exp(tk + 1)), tk+1 > 3 exp(tk + 1). Then

ασ(n) =

(

1

2t1
+ · · · + 1

2tk

)

σ(n) +

(

1

2tk+1
+ . . .

)

σ(n) = u(n) + v(n),

and for n ≤ xk, u(n) is integer for all but o(xk) integers, and from the known

inequality σ(n) ≤ n log log n we obtain that

v(n) ≤ 2xk log log xk

2tk+1
=

2xk(tk + 1)

2tk+1
= ηk,

log ηk = exp(tk + 1) + log(tk + 1) − tk+1 log 2 + log 2,

and since tk+1 log 2 > 3(log 2) exp(tk + 1), we have

log ηk ≤
(

log
e

8

)

exp(tk + 1) + log(tk + 1) → −∞,

and so ηk → 0.

We clearly have (2.9).

2.2. Let

Mx =
∏

p

prp ,

where rp is defined by the integer parts of the numbers stated on the right hand

side of (2.7).

Let K be the set of those irrational α, for which

min
H|Mx

‖Hα‖x > 1 (2.10)

holds for every large x. Let K∗ be the set of those α for which jα ∈ K for every

j ∈ N.
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Theorem 1. Let α ∈ K∗. For some additive arithmetical function F let

ln = F (n) + ασ(n). Then the sequence ln (n ∈ N) is uniformly distributed

mod 1, and the discrepancy can be overestimated by a sequence of real numbers

̺x, which does not depend on F , and ̺x → 0.

Another formulation of Theorem 1 is

Theorem A’. Let α ∈ K∗, M̃ = set of complex valued multiplicative func-

tions satisfying |f(n)| ≤ 1. Then

sup
f∈M̃

1

x

∣

∣

∣

∣

∣

∑

n≤x

f(n)e (σ(n)α)

∣

∣

∣

∣

∣

→ 0 (as x → ∞) .

Remark. The above theorems remain valid if we change σ(n) by ϕ(n), where

ϕ(n) is Euler’s totient function.

2.3. Let Q ≥ 3 be an integer (1 ≤)l1 < · · · < lh(< Q) be coprime to Q,

h < ϕ(Q). Let B be the semigroup generated by the prime numbers p belonging

to the arithmetical progressions ≡ lj (mod Q) (j = 1, . . . , h). Let NB(x) be the

number of elements of B less than or equal to x.

Theorem 2. Let α be an irrational number. Then

lim
x→∞

1

NB(x)
sup
f∈M̃

∣

∣

∣

∣

∣

∑

n≤x
n∈B

f(n)e(nα)

∣

∣

∣

∣

∣

= 0

§ 3. Proof of Theorem 1.

It is enough to prove that if α ∈ K∗, then

1

x

∑

n≤x

e (ασ(n)) → 0 (x → ∞) . (3.1)

The further part of the proof is the same as in [4].

Let P (n) be the largest prime factor of n. Let ε > 0 be fixed. Writing each

integer n ≤ x as n = pm, where P (n) = p, we have that if N1 = N1(x) := {n ≤
x : P (n) ≤ xε}, then

lim
ε→0

lim
x→∞

1

x
#N1 = 0.

On the other hand the contribution of those integers n for which P (n)2 | n is

negligible.
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Let

N2 = N2(x) := {n ≤ x : P (n) > xε, P (n)2 ∤ n}.
Let

∑

n∈N2

e (ασ(n)) =
∑

m≤x1−ε

Σm,

where

Σm = e (ασ(m))

(

∑

p< x
m

e(ασ(m)p) −
∑

p<P (m)

e(ασ(m)p)

)

= e(ασ(m))
(

Σ(1)
m − Σ(2)

m

)

.

In [4] we proved that
∑

Σ
(2)
m ≪ 1

ε2

x
(log x)2 + 1

ε
x

log x
= o(x). Let τ = x

(log x)30 .

In order to estimate Σ
(1)
m , we shall approximate ασ(m) by rational number am

qm

satisfying
∣

∣

∣

∣

ασ(m) − am

qm

∣

∣

∣

∣

<
1

qmτ
, 1 ≤ qm < τ.

In [4] we deduced from a theorem of I. M. Vinogradov that

Σ(1)
m ≪

x
m

log2 x
m

, if qm > (log x)
4

(3.2)

(see Lemma 1 in [4]).

Assume now that qm ≤ (log x)4. Let γ = ασ(m). Then
∣

∣γ − am

qm

∣

∣ < 1
qmτ

,

Σm =
∑

p≤ x
m

e(γp).

By using Lemma 3.1 in Vaughan [8], after partial summation we obtain that

Σ(1)
m ≪ x

qmm(log x
m

)
. (3.3)

The sum of |Σ(1)
m | with qm >

(

1
ε

)2
is smaller than ≪ ε x

log x

∑

1
m

≤ εcx with an

absolute constant c. To prove (3.1) it is enough to prove that for every fixed

l ≤
(

1
ε

)2
, the number of those m ≤ x1−ε for which qm = l is o(x1−ε), as x → ∞.

It is enough to prove that for every U ∈ [xε, x1−ε] and for every l ≤
(

1
ε

)2
the

number of m ∈ [U, 2U ] satisfying qm = l is ox(1)U .

Let (U ≤)m1, . . . , mR(< 2U) be those numbers for which ‖lασ(mj)‖ < 1
τ
.

Let β = lα. Since α ∈ K∗, therefore β ∈ K∗, and so β ∈ K. Let Rmj
be the

integer closest to βσ(mj). Then
∣

∣β − Rmj

σ(mj)

∣

∣ < 1
σ(mj)τ

. If
Rmi

σ(mi)
6= Rmj

σ(mj)
, (i 6= j)

then
1

σ(m1)σ(m2)
≤
∣

∣

∣

∣

Rm1

σ(m1)
− Rm2

σ(m2)

∣

∣

∣

∣

<
1

τ

(

1

σ(m1)
+

1

σ(m2)

)
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which is impossible. Thus
Rmj

σ(mj) = R
S

(j = 1, . . . , T ), (R, S) = 1. Thus

Rσ(mj) ≡ 0 mod S, and so σ(mj) ≡ 0 mod S (j = 1, . . . , T ). Let us assume

that T > cU with a positive constant. Then S should be very special: S | MU .

But this is impossible since β ∈ K. The proof is completed.

§ 4. Proof of Theorem 2

The proof depends on the following

Lemma 3. Let α be an irrational number.

Then
1

NB(x)

∑

n≤x
n∈B

e (αn) → 0 (x → ∞) , (4.1)

consequently the sequence nα (n ∈ B) is uniformly distributed mod 1.

First we deduce Theorem 2 from Lemma 3.

Let

S(x) =
∑

n≤x
n∈B

f(n)e(nα). (4.2)

Let K be a positive number, p1 < · · · < pT be such primes pj ∈ B for which

AK :=

T
∑

j=1

1

pj

> K,

and p1 > K2.

Let PK = {p1, . . . , pT },
ωPK

(n) =
∑

p|n
p∈PK

1. (4.3)

One can prove the analogue of the Turán–Kubilius inequality, namely that

1

NB(x)

∑

n≤x
n∈B

(ωPK
(n) − AK)

2 ≤ CAK , (4.4)

whence we obtain that

1

NB(x)

∑

n≤x
n∈B

|ωPK
(n) − AK | ≤

√

CAK . (4.5)
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Let

S1(x) =
∑

n≤x
n∈B

f(n)e(nα)ωPK
(n). (4.6)

We have

|AKS(x)| ≤ |S1(x)| +
√

CAKNB(x). (4.7)

We have

S1(x) =
∑

pm≤x
pm∈B
p∈PK

f (pm) e (pmα) . (4.8)

Let

S2(x) =
∑

pm≤x
pm∈B
p∈PK

f(p)f(m)e (pmα) . (4.9)

We have

|S1(x) − S2(x)| ≤ 2
∑

p2ν≤x

p2ν∈B

1 ≤ cNB(x)
T
∑

j=1

1

p2
j

≤ c

K
NB(x). (4.10)

Furthermore

S2(x) =
∑

m≤ x
p1

f(m)Σm, Σm =
∑

pj≤ x
m

f (pj) e (αpjm) . (4.11)

Thus

|S2(x)|2 ≤
∑

m≤ x
p1

m∈B

|f(m)|2
∑

m≤ x
p1

m∈B

|Σm|2 = S · H. (4.12)

It is clear that S ≪ NB
(

x
p1

)

≪ 1
p1

NB(x).

H =
∑

m∈B

∑

pi,pj≤ x
m

pi,pj∈B

f(pi)f(pj)e ((pi − pj)αm) = H1 + H2.

In H1 we sum over those m, pi, pj for which i = j, consequently

H1 ≪
T
∑

j=1

NB

(

x

pj

)

≤ cNB(x)

T
∑

j=1

1

pj

,
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i.e.

H1 ≤ c3AKNB(x),

where c3 is an absolute constant.

In H2 we sum over those (m, pi, pj) for which i 6= j. Changing the order of

summation, for fixed i, j

∑

m≤min
(

x
pi

, x
pj

)

m∈NB(x)

e (α(pi − pj)m)

is o(NB(x)) due to Lemma 3, since α(pi − pj) is an irrational number also.

Hence we obtain that, for every large x, with a constant C,

∣

∣

∣

∣

AKS(x)

NB(x)

∣

∣

∣

∣

≤
√

CAK + 2
AK

K2
+

2

K

√

AK , (4.13)

consequently

lim sup
x→∞

|S(x)|
NB(x)

≤
√

C√
AK

+
2

K2
+

2

K
√

AK

. (4.14)

Since K is arbitrarily large, AK > K, we obtain that the left hand side of (4.14)

is 0.

Finally we prove Lemma 3.

Let ε > 0 be fixed. Let us write each n ∈ B as n = pm, where P (n) = p is

the largest prime factor of n. Let N1 = N1(x) := {n ≤ x, n ∈ B, P (n) ≤ xε}.
On can prove easily that

#N1(x) ≪ εNB(x).

According to a well kown theorem due to Wirsing [10]

NB(x) = c
x

(log x)
E

(1 + ox(1))

E = 1 − h

ϕ (Q)
,

we obtain that NB
(

x
u

)

≤ c
u
NB(x) if 1 ≤ u ≤ xλ, where (0 ≤)λ < 1, c = c(λ). Let

N2 = B \ N1. Then

∑

n∈N2

n≤x

e(αn) =
∑

m≤x1−ε

m∈B

∑

P (m)<p< x
m

p∈B

e(αpm) =
∑

m

Σm.
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Further write

Σm =
∑

p< x
m

p∈B

e(αmp) −
∑

p<P (m)
p∈B

e(αmp) = Σ(1)
m − Σ(2)

m .

Assume that 1 ≤ m ≤ x1−ε. Let τm = x
m

(log x)−40,

∣

∣

∣

∣

αm − am

qm

∣

∣

∣

∣

≤ 1

qmτm

, 1 ≤ qm ≤ τm, (am, qm) = 1. (4.15)

According to a result of A. Balog and A Perelli [9], if
∣

∣α− a
q

∣

∣ ≤ 2
N

, (a, q) = 1,

h = (q, d), then

∑

n≤N
n≡f (mod d)

Λ(n)e(nα) ≪
(

hN

d
√

q
+

√
qN√
h

+

(

N

d

)
4
5

)

(log N)3. (4.16)

By using partial integration, the inequality remains true, if the left hand side

is changed to

∑

p≤N
p≡f (mod d)

e(pα). (4.17)

Let us apply the inequality (4.16), (4.17) for αm instead of α, and for d = Q,

f = lj, in the case if τm ≥ (log x)40.

Since lj , Q, d are bounded as x → ∞, we obtain that

Σ(1)
m ≪

{

x

m
√

qm

+
( x

m
qm

)
1
2

+
( x

m

)
4
5

}

(log x)3 ≪ x

m(log x)17
+

x
4
5

m
4
5

,

and so
∑

qm>(log x)40

|Σ(1)
m | ≪ x

(log x)16
.

It is clear that

1

ϕ(Q)

Q−1
∑

a=0

e

(

(p − l)a

Q

)

=

{

1, if p ≡ l (mod Q),

0, otherwise.

We have

Σ(1)
m =

h
∑

j=1

1

ϕ(Q)

Q−1
∑

a=0

e

(−alj

Q

)

∑

p< x
m

e

((

αm +
a

Q

)

p

)
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whence

|Σ(1)
m | ≤

Q−1
∑

a=0

∣

∣

∣

∣

∣

∑

p< x
m

e

((

αm +
a

Q

)

p

)

∣

∣

∣

∣

∣

=

Q−1
∑

a=0

∣

∣Σ(1)
m,a

∣

∣.

If (4.15) holds, then
∣

∣

∣

∣

αm +
a

Q
− Em

Lm

∣

∣

∣

∣

<
1

qmτm

,

where Em

Lm
= am

qm
+ a

q
, (Em, Lm) = 1. It is clear that qm

Q
≤ Lm ≤ qmQ if qm > Q.

Let us assume that qm ≤ (log x)40. By using Lemma 3.1 in Vaughan [8],

after partial summation, we obtain that

Σ(1)
m,a ≪ x

Lmm log x
m

.

Hence we obtain that

∑

Lm>R

Σ(1)
m,a ≪ x

R

∑

m≤x1−ε

1

m log x
m

≪ NB(x)

R
.

Let a be any of a = 0, 1, . . . , Q − 1.

Let l be a fixed integer, and consider those m for which qm = l. Let xε ≤ U ≤
x1−ε, and consider the set of integers m ∈ B in [U, 2U ] for which

∣

∣

∣
mα − am

l

∣

∣

∣
<

1

lτm

.

Assume that these numbers are m1, . . . , mT . Then
∣

∣lα− am

m

∣

∣ < 1
mτ

. If
∣

∣lα− amu

mu

∣

∣ <
1

muτm
holds for u = i, j, then

∣

∣

∣

∣

amj

mj

− ami

mi

∣

∣

∣

∣

<
2

τmi

(

1

mi

+
1

mj

)

which implies that
amu

mu
= R

S
(u = 1, . . . , T ), (R, S) = 1. Thus Rmu

≡ 0 (mod S)

(u = 1, . . . , T ). S cannot be bounded as x → ∞. Hence we obtain that

T ≤ #{m ∈ [U, 2U ], m ∈ B, m ≡ 0 (mod S)} ≤ NB (2U)

S
.

Since α is irrational, therefore S → ∞ as x → ∞ uniformly as U varies in

[xε, x1−ε]. Thus we proved that

∑

m
m≤x1−ε

m∈B

|Σ(1)
m | = ox(1)NB(x).
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In order to estimate Σ
(2)
m , observe that |Σ(2)

m | ≤ c
P (m)

log 2P (m) , and so

∑

m

∣

∣Σ(2)
m

∣

∣ ≤ c
∑

p≤x1−ε

p∈B

p

log p

∑

pr≤x1−ε

P (r)≤p

p2r≤x
r∈B

1 = ΣA + ΣB.

In ΣA we sum over p ≤ xε, and in ΣB over p > xε. Then

ΣA ≪
∑

p≤xε

p∈B

p

log p
· NB

(

x1−ε

p

)

≪ NB(x1−ε)
∑

p≤xε

1

log p

≪ xε

ε logx
NB(x1−ε) ≪ NB(x)

ε logx
= ox(1)NB(x),

Furthermore,

ΣB ≪
∑

xε<p≤x

p

log p

∑

r≤ x

p2

P (r)≤p
r∈B

1 ≪
∑

xε<p≤x

p

log p
· x

p2
≪ 1

ε

x

log x
= ox(1)NB(x).

The proof is completed.
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124 (2009), 289–298.

[8] R. C. Vaughan, The Hardy – Littlewood method, Cambridge Tracts in Mathematics 80

(1981).

[9] A. Balog and A. Perelli, Exponential sums over primes in an arithmetical progression,
Proc. Amer. Math. Soc. 93 (1985), 578–582.

[10] E. Wirsing, Das asymptotischen Verhalten von Summen über multiplikative Funktionen,
Math. Ann. 143 (1961), 75–102.
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