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On the distribution mod 1 of ao(n)

By IMRE KATAI (Budapest)

Abstract. The sequence z, = F(n)+ac(n) (mod 1) is investigated, where o(n) =
sum of divisors of n, F' is an additive arithmetical function. In an earlier paper De Kon-
inck and the author proved that x,, mod 1 is uniformly distributed if the approximation
type of « is finite, and formulated the conjecture that it holds for every irrational a.

In this paper it is proved that the conjecture is not true in general, and it is true
if « € K*. K" is defined as follows. Let M, = Hp p"P, p runs over the primes and r,
is the integer part of the number stated in the right hand side of (2.7). Let K = K5
be the set of those irrational «, for which ming |y, |[Hallz > 1 holds for every large z,
K*={a|ja€ K} for every j =1,2,....

§ 1. Introduction

According to a reformulated version of a well known theorem of H. Daboussi
(see DABOUSSI and DELANGE [1], [2]), for every additive arithmetical function
F(n) and any irrational «, the sequence l,, := F(n)+ an is uniformly distributed
modulo 1. This famous theorem has a plenty of generalizations. It was proved in
[3] that the same assertion holds for I,, = F(n) + Q(n), where Q(z) = ag+ a1z +
-+ 4 agz® € R[z], and at least one of oy, ..., ay is irrational.

Let ||z|| stand for the distance between x and the closest integer. In [4] we
proved the following result.

Theorem A. Let o be a positive irrational number such that for each real
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number k > 1 there exists a positive constant ¢ = ¢(k, ) for which the inequality
c
gl > prs (1.1)

holds for every positive integer q. Then l,, = ao(n)+F(n) is uniformly distributed
modulo 1 for every additive arithmetical function F(n). Here o(n) is the sum of
divisors of n.

We mentioned that similar assertion can be proved for the integer valued
multiplicative function h instead of o, where h(p) = Q(p) for every prime p and
h(p®) = O(p®?) for some fixed number d for every prime p and every integer
a > 2, where

Pl agx 4 ap € Za),

Q(x) = arz® + ap_1x
k>1,a; > 0.
Especially, it is true for h(n) = ¢(n), where ¢(n) is Euler’s totient function.
We formulated the conjecture that the assertion of Theorem A is true for
every irrational a. We shall improve our theorem, and show that our conjecture
is not true in general.

In [5] the function

A(a,x)zw AR > Xp Xpe (apips)
p1p2<zT
p1<p2

has been considered, where

>

p1p2<T
p1<p2

It was proved that A(«, z) — 0 if « is not too well approximable by rationals, and
the conjecture was formulated that this is true for every irrational a. HUIXUE
Lao [6] proved that A(«a,2z) — 0 if a was of finite type, in the sense that there
exists a positive number o such that ||[na| > n~7 for all sufficiently large n.

Finally Professor GLYN HARMAN [7] proved the conjecture. The main novelty
of his method was that he could handle the case by the so called “major arc”
estimate when a was very well approximable by rationals. Combining our method
with his method we are able to prove the following theorems.
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§ 2. Formulation of the results

2.1. Let P be the whole set of primes, p, ¢ with or without indices denote prime
numbers.
It is known that

1 log1
Yoo—< clLng (k € N) (2.1)
p=—1 (mod k) p (P( )
p<x

if x > 10 (say), where ¢; is an absolute constant. (For a proof see [11]).
Let ¢ > 0 be a constant, > 10. Assume that S is such an integer depending
on z for which

#{n<z|on)=0 (modS)} > cx. (2.2)

Let us write every n as K'm, where K is the square full part and m is the square
free part of n. It is clear that

T Cx
#n<z|K>YI< > —<——. (2.3)
iy K VY
Assume that ¥ = (2%)2
Then
#{n<z|n=Km, K<Y, o(K)o(m)=0 (mod S)} > g:v (2.4)

Let us write

S=]]»". (2.5)
Assume that p > czloglogz. If v, > 1, then counting the integers m < z in (2.4)
satisfying p | o(m) is bounded by (see (2.1))

log 1
Z z _ azlog 1og:v
=1 1 p

q<z

and the right hand side should be larger than gz. Thus p—1 < 2% loglog xz. We
proved that v, =0 if p > 2% loglogx + 1.
Let now ¥V < p < 2% loglogx + 1. We count those integers n for which
p¥ | o(n), i.e. p?» | o(m). This can be overestimated by the sum
Tp Tp
1 1 (c1loglogx)”
DN > S-S
' r
r=1 a1t +or=y, q1<---‘<qT<w Q-4 =1 oty P pp)
p¥i|g;—1

< 2x (cﬂogloga:)wp
! p—1 .
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This number should be larger than cz, consequently

2 log 1 Tr
2 (c1 og ogx> e
'71)! p—1

ie.

cieloglog x
p—1

Assume that p < Y. If p?» | o(n), then p’»= | o(m), where p* | o(K) <

Kloglog K < Y loglogY, whence we obtain that A < ¢4. Furthermore as above

T < if x is large enough. (2.6)

we obtain that v, — A < % and so we have

log 1
Geos og s 1ogac if Y <p< 2%logloga:—l—l
p—
log 1
Yp < G1e 708087 +cy ifp<Y (2.7)
p—1
. 2cq
=0 if p> —loglogx + 1.
c
We proved

Lemma 1. Assume that ¢ > 0 is a constant, and with some integer S
1
—#{n<z|on)=0 (modS)}>c
x

Let S = [[p». Assume that z is large enough, © > yo. Then for the exponents
vp (2.7) hold true. Consequently S < exp(cie(loglog x)[(logloglogz) + c5]) with
suitable constants ¢y, cs.

Remark. For some m let a,(m) be that exponent for which p® (™ ||o(m).
One can prove that

loglog = <1og logx>%

ap(m) > (p—1)p p

(2.8)

holds for 2 < p < y/loglogz for all but o(z) integers m < z. Let [, := integer
part of the right hand side of (2.8).

Let T=T, = Hpg\/ﬁplp' Then

T#n<alom)=0 (mod T)}=(1+o0.(1).

As a consequence we have
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Lemma 2. Let o be such an irrational number for which there is a sequence
1 < T9 < ... tending to infinity and there is a sequence of integers D,, dividing
T, such that ||aD, ||z, — 0 (v — o0). Then

xi Z e(ac(n)) =1 (v — )

v

n<x,
and for all € > 0:
1
—#in<a | llac(n)|>e} =0 (¥ —o0). (2.9)
Remark. Let a = 2%1 + 2%2 + ..., where tg41 = 23" Assume that t1, .o, t,

Z1,...,2k—1 are chosen. Let z; = exp(exp(tr + 1)), tg+1 > 3exp(ty + 1). Then

ac(n) = (271 +- 4 2%) o(n) + (2;1 +.. ) o(n) = u(n) + v(n),

and for n <z, u(n) is integer for all but o(xy) integers, and from the known
inequality o(n) < nloglogn we obtain that

2z loglogzy  2xp(ty +1)

v(n) < otht1 T 2t =k

logn, = exp(tr + 1) + log(ty + 1) — tr11 log2 + log 2,

and since x4 log2 > 3(log 2) exp(tx + 1), we have
log g, < (log g) exp(ty + 1) +log(ty + 1) — —oo,
and so g — 0.
We clearly have (2.9).
2.2, Let

M, = Hprpv
p

where 7, is defined by the integer parts of the numbers stated on the right hand
side of (2.7).
Let K be the set of those irrational o, for which
min [|Hallz > 1 (2.10)
H|M,
holds for every large x. Let KC* be the set of those o for which ja € K for every
jeN.
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Theorem 1. Let o € K*. For some additive arithmetical function F let
l, = F(n) + ao(n). Then the sequence l, (n € N) is uniformly distributed
mod 1, and the discrepancy can be overestimated by a sequence of real numbers
0z, which does not depend on F, and g, — 0.

Another formulation of Theorem 1 is

Theorem A’. Let a € K*, M = set of complex valued multiplicative func-
tions satisfying |f(n)| < 1. Then

1
sup —
fem T

> f(n)e(o(n)a)

n<x

—0 (as x— 00).

Remark. The above theorems remain valid if we change o(n) by ¢(n), where
©(n) is Euler’s totient function.

2.3. Let @ > 3 be an integer (1 <)l; < -+ < (< Q) be coprime to @,
h < ¢(Q). Let B be the semigroup generated by the prime numbers p belonging
to the arithmetical progressions =1; (mod @) (j =1,...,h). Let Np(x) be the
number of elements of B less than or equal to x.

Theorem 2. Let o be an irrational number. Then

lim sup f(n)e(na)| =0
neB

§ 3. Proof of Theorem 1.

It is enough to prove that if & € K*, then

i Y elao(n)) =0 (z— o). (3.1)

n<z

The further part of the proof is the same as in [4].

Let P(n) be the largest prime factor of n. Let € > 0 be fixed. Writing each
integer n < x as n = pm, where P(n) = p, we have that if N7 = Nq(z) := {n <
x: P(n) < 2}, then

1
lim lim —#MN; = 0.

e—0x—00 I

On the other hand the contribution of those integers n for which P(n)? | n is
negligible.
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Let
No = Na(z) := {n < x:P(n) >2°, P(n)?{n}.
Let
Z e(ao(n)) = Z Yims
neN, m<gl—e
where

S = e (ao(m)) ( 3 claomp) - 3 e(aa<m>p>>

p<i; p<P(m)

= e(aa(m))(Eg) - 25,3)).

In [4] we proved that 22531) < E%m + %@ = o(x). Let 7 = (o 270
(1)

In order to estimate X;,’, we shall approximate ao(m) by rational number ‘;—m
satisfying
Ay, 1
aa(m)—— < I} 1SQW<T'
dm qmT

In [4] we deduced from a theorem of I. M. Vinogradov that

X

P <« —mif g, > (logz)’ (3.2)
log

(see Lemma 1 in [4]).
1

qm T’

Assume now that ¢, < (logz)*. Let v = ao(m). Then ‘7 — fn
Em =2 p<z e(1P)-
By using Lemma 3.1 in VAUGHAN [8], after partial summation we obtain that

T

)] S0 I Q. —
gmm(log %)

m

(3.3)

The sum of |25711)| with ¢, > (%)2 is smaller than < eg2- > L < ecx with an

absolute constant ¢. To prove (3.1) it is enough to prove that for every fixed

1< (%)2, the number of those m < 2'~¢ for which g, = is o(z'~¢), as z — oco.
It is enough to prove that for every U € [2°, 21 =] and for every [ < (%)2 the
number of m € [U, 2U] satisfying ¢, = [ is 0,(1)U.
Let (U <)my,...,mp(< 2U) be those numbers for which |lac(m;)|| < L.

T

Let 8 = la. Since a € K*, therefore 3 € K*, and so 3 € K. Let Ry, be the

integer closest to So(m;). Then |3 — UI?;:)‘ < a(nllj)T. If UI(%:Z) # U}?:Lj), (i # J)
then

1 Ry, Ry,
a(mi)o(ms)

IN
|

o(mi)  o(ms)
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which is impossible. Thus % — R (j=1,...,T), (R,S) = 1. Thus
Ro(mj) =0 mod S, and so o(m;) =0 mod S (j =1,...,T). Let us assume
that T > c¢U with a positive constant. Then S should be very special: S | My.

But this is impossible since 8 € K. The proof is completed.

§ 4. Proof of Theorem 2

The proof depends on the following

Lemma 3. Let « be an irrational number.

Then
1

Mo o lom) =0 (2= 00), @D

n<z
neB

consequently the sequence na (n € B) is uniformly distributed mod 1.

First we deduce Theorem 2 from Lemma 3.
Let

S(z) =Y f(n)e(na). (4.2)
=

Let K be a positive number, p; < -+ < pr be such primes p; € B for which

and p; > K2.
Let Px = {p1,-..,pr},

wpy (n) = Z 1. (4.3)
v

One can prove the analogue of the Turan—Kubilius inequality, namely that

D (wpe(n) — Ag)? < CAg, (4.4)
e

Np(x)

whence we obtain that

1
No() ; lwp, (n) — Ag| < \/CAk. (4.5)

neB
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Let

Zf e(na)wp, (n).

n<z
neB

We have
|ArS(z)| < |S1(2)] + VC Ak Ng(z).
We have
= > f(pm)e(pma).

pm<x
pmeB
PEPK

= Y [)f(m)e(pma).

pm<z
pmeB
pPEPK

Let

We have

T
1
|1 (z) — (|<2Z1<CNB Zpﬁc ().
j=1 17

pir<e
p?veB

Furthermore

So(x) = > f(m)Sm, T = f (pj) e (apym).

Thus

1Sa(@)> < D 1fm)P D Sl =

m< £ m<-L
=p1 =p1
meB meB

It is clear that S < Np(-) < -Np(z).

H= Z Z f(pi)f(pj)e ((pi — pj)am) = Hi + Ha.

meB p;,p; <=
pi,p; EB

In H; we sum over those m, p;, p; for which ¢ = j, consequently

o < ZNB (pj) < eNp(zx )ZT:i

=1 =1 Pi

(4.7)

(4.8)

(4.10)

(4.11)

(4.12)
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i.e.
Hy < c3ArgNp(x),

where c3 is an absolute constant.
In Hy we sum over those (m,p;, p;) for which ¢ # j. Changing the order of
summation, for fixed i, j

> e (a(pi — p;)m)
m<min (p— %)
meNz(x)

is o(Ng(z)) due to Lemma 3, since «(p; — p;) is an irrational number also.
Hence we obtain that, for every large =, with a constant C,

A]\I;S < CAg + 2 %\/AK, (4.13)
consequently
limsup 12 Ve 2, 2 (4.14)

e—oo Np(x) =~ VAKx K? KAk
Since K is arbitrarily large, Ax > K, we obtain that the left hand side of (4.14)
is 0.
Finally we prove Lemma 3.
Let € > 0 be fixed. Let us write each n € B as n = pm, where P(n) = p is
the largest prime factor of n. Let N7 = Ni(z) :== {n <z, n € B, P(n) < z°}.
On can prove easily that

#Nl(.%') < eNg(z).
According to a well kown theorem due to WIRSING [10]

X

(log z)

Na(z) = c = (1+0,(1))

_h
¢ (Q)

we obtain that Ng(%) < £Np(z) if 1 < u < 2, where (0 <)A < 1, ¢ = ¢()). Let
NQ = B\Nl Then

Z e(an) = Z Z e(apm) = Z PO

neN> m<z!™c P(m)<p<Z
n<z meB peEB

E=1-
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Further write

Y= e(amp) — E e(amp) = ES) — 257?.
p<E p<P(m)
peEB peEB

Assume that 1 < m < z'~¢. Let 7,,, = = (log x) 40,

1< gm < 7y (am7Q7n) =1 (415)

Am |~ 9mTm

According to a result of A. BALOG and A PERELLI [9], if |a— %‘ <%, (a,q) =1,
h = (gq,d), then

Z A(n)e(na) <« (;—\]/V_ + @ + (%) _)> (log N)?. (4.16)
n<N

n=f (mod d)

By using partial integration, the inequality remains true, if the left hand side
is changed to

Z e(pa). (4.17)

p<N
p=f (mod d)

Let us apply the inequality (4.16), (4.17) for am instead of «, and for d = @,
f =1, in the case if 7, > (log z)*°
Since [, @, d are bounded as x — oo, we obtain that

1 1
»(1) r (E m)2 (2)5 1 3 i e
W <= — + (- +( (logz)° < oz 27 + !

and so

PN RS

Y| o T
> 5 < gy

gm > (log )40
It is clear that

—l)a>_{17 ifp=1 (mod Q),

0, otherwise.

We have

2
T M:
3-
1
/-\
ol
—_

)z ((mg))
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whence
Q-1 a Q-1
|E£}}L)|§Z Ze<<am+§>p)|—2‘2$?a
a=0 p<% a=0

If (4.15) holds, then
a E,, 1
am + a - Z < ot
where 7= = ‘;7"; + %, (Em, L) = 1. Tt is clear that %" < Ly < qnQ if g, > Q.
Let us assume that g, < (logz)*°. By using Lemma 3.1 in VAUGHAN [§],
after partial summation, we obtain that

(b —_—
ma < Ly,mlog =

Hence we obtain that

1 Np(z)
1) L B\L)
I N

Lyn,>R m<gl—e

Let a be any of a =0,1,...,Q — 1.
Let [ be a fixed integer, and consider those m for which ¢, = [. Let 2 < U <
217¢, and consider the set of integers m € B in [U, 2U] for which

a 1
’ma -2 < —.
l (T,
Assume that these numbers are mq, ..., mp. Then ‘la—aﬁ‘ < mi If ‘la—(:nﬂ <

1

MyuTm

holds for u = 17, j, then

el 2 (1 1)
m; m; Tm; m; m;

7

which implies that 22« = £ (4 =1,...,T), (R,S) = 1. Thus R,,, =0 (mod S)

m, S
(u=1,...,T). S cannot be bounded as x — co. Hence we obtain that
Np (2U
T <#{me[U,2U], meB, m=0 (modS)}< %

Since « is irrational, therefore S — oo as £ — oo uniformly as U varies in
[2¢, 217¢]. Thus we proved that

Y 1E0]=0s(1)Ns(2).

m<z!™®

meB
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In order to estimate Esn), observe that |Z(2 | < cloﬂ7 and so

2P(m)
S <e Y = Y 1=Ta+3s
m p<zl—e ngpr<1175
peB P(r)<p
p2r<z
reB

In ¥4 we sum over p < zf, and in X over p > z°. Then

Sa< Y P (P < Ng( ZL
A logp B P B(@ lo
p<z*® p<z
pEB
x°€ _ Ng(z)
Np(z'== = 0,(1)Ng(z),
< elogx s ) < elogx 0:(1)N5(7)
Furthermore,
Yp < Z Z < Y —-£<<l L = 0,(1)N5(z).
p? elogx
w€<p<w TS:2 I5<p<m
P(r)<p
reB

The proof is completed.
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