On the distribution mod 1 of $\alpha \sigma(n)$

By IMRE KÁTAI (Budapest)

Abstract

The sequence $x_{n}=F(n)+\alpha \sigma(n)(\bmod 1)$ is investigated, where $\sigma(n)=$ sum of divisors of n, F is an additive arithmetical function. In an earlier paper De Koninck and the author proved that $x_{n} \bmod 1$ is uniformly distributed if the approximation type of α is finite, and formulated the conjecture that it holds for every irrational α.

In this paper it is proved that the conjecture is not true in general, and it is true if $\alpha \in \mathcal{K}^{*}$. \mathcal{K}^{*} is defined as follows. Let $M_{x}=\prod_{p} p^{r_{p}}, p$ runs over the primes and r_{p} is the integer part of the number stated in the right hand side of (2.7). Let $\mathcal{K}=\mathcal{K}_{x}$ be the set of those irrational α, for which $\min _{H \mid M_{x}}\|H \alpha\| x>1$ holds for every large x, $\mathcal{K}^{*}=\{\alpha \mid j \alpha \in \mathcal{K}\}$ for every $j=1,2, \ldots$.

§ 1. Introduction

According to a reformulated version of a well known theorem of H . Daboussi (see Daboussi and Delange [1], [2]), for every additive arithmetical function $F(n)$ and any irrational α, the sequence $l_{n}:=F(n)+\alpha n$ is uniformly distributed modulo 1. This famous theorem has a plenty of generalizations. It was proved in [3] that the same assertion holds for $l_{n}=F(n)+Q(n)$, where $Q(x)=\alpha_{0}+\alpha_{1} x+$ $\cdots+\alpha_{k} x^{k} \in \mathbb{R}[x]$, and at least one of $\alpha_{1}, \ldots, \alpha_{k}$ is irrational.

Let $\|x\|$ stand for the distance between x and the closest integer. In [4] we proved the following result.

Theorem A. Let α be a positive irrational number such that for each real

[^0]number $\kappa>1$ there exists a positive constant $c=c(\kappa, \alpha)$ for which the inequality
\[

$$
\begin{equation*}
\|\alpha q\|>\frac{c}{q^{\kappa}} \tag{1.1}
\end{equation*}
$$

\]

holds for every positive integer q. Then $l_{n}=\alpha \sigma(n)+F(n)$ is uniformly distributed modulo 1 for every additive arithmetical function $F(n)$. Here $\sigma(n)$ is the sum of divisors of n.

We mentioned that similar assertion can be proved for the integer valued multiplicative function h instead of σ, where $h(p)=Q(p)$ for every prime p and $h\left(p^{a}\right)=\mathcal{O}\left(p^{a d}\right)$ for some fixed number d for every prime p and every integer $a \geq 2$, where

$$
Q(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]
$$

$k \geq 1, a_{k}>0$.
Especially, it is true for $h(n)=\varphi(n)$, where $\varphi(n)$ is Euler's totient function.
We formulated the conjecture that the assertion of Theorem A is true for every irrational α. We shall improve our theorem, and show that our conjecture is not true in general.

In [5] the function

$$
\Delta(\alpha, x)=\frac{1}{\pi_{2}(x)} \max _{\left|X_{p}\right| \leq 1}\left|\sum_{\substack{p_{1} p_{2} \leq x \\ p_{1}<\bar{p}_{2}}} X_{p_{1}} X_{p_{2}} e\left(\alpha p_{1} p_{2}\right)\right|
$$

has been considered, where

$$
\pi_{2}(x)=\sum_{\substack{p_{1} p_{2} \leq x \\ p_{1}<p_{2}}} 1
$$

It was proved that $\Delta(\alpha, x) \rightarrow 0$ if α is not too well approximable by rationals, and the conjecture was formulated that this is true for every irrational α. HuIXUE LaO [6] proved that $\Delta(\alpha, x) \rightarrow 0$ if α was of finite type, in the sense that there exists a positive number σ such that $\|n \alpha\|>n^{-\sigma}$ for all sufficiently large n.

Finally Professor Glyn Harman [7] proved the conjecture. The main novelty of his method was that he could handle the case by the so called "major arc" estimate when α was very well approximable by rationals. Combining our method with his method we are able to prove the following theorems.

\S 2. Formulation of the results

2.1. Let \mathcal{P} be the whole set of primes, p, q with or without indices denote prime numbers.

It is known that

$$
\begin{equation*}
\sum_{p \equiv-1}{\underset{p<x}{(\bmod k)}} \frac{1}{p} \leq c_{1} \frac{\log \log x}{\varphi(k)} \quad(k \in \mathbb{N}) \tag{2.1}
\end{equation*}
$$

if $x>10$ (say), where c_{1} is an absolute constant. (For a proof see [11]).
Let $c>0$ be a constant, $x>10$. Assume that S is such an integer depending on x for which

$$
\begin{equation*}
\#\{n \leq x \mid \sigma(n) \equiv 0 \quad(\bmod S)\}>c x \tag{2.2}
\end{equation*}
$$

Let us write every n as $K m$, where K is the square full part and m is the square free part of n. It is clear that

$$
\begin{equation*}
\#\{n \leq x \mid K>Y\} \leq \sum_{K>Y} \frac{x}{K} \leq \frac{c_{2} x}{\sqrt{Y}} \tag{2.3}
\end{equation*}
$$

Assume that $Y=\left(\frac{2 c_{2}}{c}\right)^{2}$.
Then

$$
\begin{equation*}
\#\{n \leq x \mid n=K m, K<Y, \sigma(K) \sigma(m) \equiv 0 \quad(\bmod S)\}>\frac{c}{2} x \tag{2.4}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
S=\prod p^{\gamma_{p}} \tag{2.5}
\end{equation*}
$$

Assume that $p>c_{3} \log \log x$. If $\gamma_{p} \geq 1$, then counting the integers $m \leq x$ in (2.4) satisfying $p \mid \sigma(m)$ is bounded by (see (2.1))

$$
\sum_{\substack{q \equiv-1(p) \\ q \leq x}} \frac{x}{q}<\frac{c_{1} x \log \log x}{p-1}
$$

and the right hand side should be larger than $\frac{c}{2} x$. Thus $p-1<\frac{2 c_{1}}{c} \log \log x$. We proved that $\gamma_{p}=0$ if $p \geq \frac{2 c_{1}}{c} \log \log x+1$.

Let now $Y<p \leq \frac{2 c_{1}}{c} \log \log x+1$. We count those integers n for which $p^{\gamma_{p}} \mid \sigma(n)$, i.e. $p^{\gamma_{p}} \mid \sigma(m)$. This can be overestimated by the sum

$$
\begin{gathered}
x \sum_{r=1}^{\gamma_{p}} \sum_{\substack{\alpha_{1}+\cdots+\alpha_{r}=\gamma_{p}}} \sum_{\substack{q_{1}<\cdots<q_{r}<x \\
p^{\alpha_{j}} \mid q_{j}-1}} \frac{1}{q_{1} \ldots q_{r}} \leq x \sum_{r=1}^{\gamma_{p}} \frac{1}{r!} \sum_{\alpha_{1}+\cdots+\alpha_{r}=\gamma_{p}} \frac{\left(c_{1} \log \log x\right)^{r}}{\varphi\left(p^{\alpha_{1}}\right) \ldots \varphi\left(p^{\alpha_{r}}\right)} \\
\leq \frac{2 x}{\gamma_{p}!}\left(\frac{c_{1} \log \log x}{p-1}\right)^{\gamma_{p}}
\end{gathered}
$$

This number should be larger than $c x$, consequently

$$
\frac{2}{\gamma_{p}!}\left(\frac{c_{1} \log \log x}{p-1}\right)^{\gamma_{p}}>c
$$

i.e.

$$
\begin{equation*}
\gamma_{p} \leq \frac{c_{1} e \log \log x}{p-1} \quad \text { if } x \text { is large enough. } \tag{2.6}
\end{equation*}
$$

Assume that $p<Y$. If $p^{\gamma_{p}} \mid \sigma(n)$, then $p^{\gamma_{p}-\Lambda} \mid \sigma(m)$, where $p^{\Lambda} \mid \sigma(K) \ll$ $K \log \log K \ll Y \log \log Y$, whence we obtain that $\Lambda<c_{4}$. Furthermore as above we obtain that $\gamma_{p}-\Lambda \leq \frac{c_{1} e \log \log x}{p-1}$ and so we have

$$
\gamma_{p} \leq \begin{cases}\frac{c_{1} e \log \log x}{p-1} & \text { if } Y<p \leq \frac{2 c_{1}}{c} \log \log x+1 \tag{2.7}\\ \frac{c_{1} e \log \log x}{p-1}+c_{4} & \text { if } p \leq Y \\ =0 & \text { if } p>\frac{2 c_{1}}{c} \log \log x+1\end{cases}
$$

We proved
Lemma 1. Assume that $c>0$ is a constant, and with some integer S

$$
\frac{1}{x} \#\{n \leq x \mid \sigma(n) \equiv 0 \quad(\bmod S)\}>c
$$

Let $S=\prod p^{\gamma_{p}}$. Assume that x is large enough, $x>y_{0}$. Then for the exponents $\gamma_{p}(2.7)$ hold true. Consequently $S \ll \exp \left(c_{1} e(\log \log x)\left[(\log \log \log x)+c_{5}\right]\right)$ with suitable constants c_{1}, c_{5}.

Remark. For some m let $\alpha_{p}(m)$ be that exponent for which $p^{\alpha_{p}(m)} \| \sigma(m)$. One can prove that

$$
\begin{equation*}
\alpha_{p}(m)>\frac{\log \log x}{(p-1) p}-\left(\frac{\log \log x}{p}\right)^{\frac{3}{4}} \tag{2.8}
\end{equation*}
$$

holds for $2 \leq p \leq \sqrt{\log \log x}$ for all but $o(x)$ integers $m \leq x$. Let $l_{p}:=$ integer part of the right hand side of (2.8).

Let $T=T_{x}=\prod_{p \leq \sqrt{x_{2}}} p^{l_{p}}$. Then

$$
\frac{1}{x} \#\{n \leq x \mid \sigma(n) \equiv 0 \quad(\bmod T)\}=\left(1+o_{x}(1)\right)
$$

As a consequence we have

Lemma 2. Let α be such an irrational number for which there is a sequence $x_{1}<x_{2}<\ldots$ tending to infinity and there is a sequence of integers \mathcal{D}_{ν} dividing T_{ν} such that $\left\|\alpha \mathcal{D}_{\nu}\right\| x_{\nu} \rightarrow 0(\nu \rightarrow \infty)$. Then

$$
\frac{1}{x_{\nu}} \sum_{n \leq x_{\nu}} e(\alpha \sigma(n)) \rightarrow 1 \quad(\nu \rightarrow \infty)
$$

and for all $\varepsilon>0$:

$$
\begin{equation*}
\frac{1}{x_{\nu}} \#\left\{n \leq x_{\nu} \mid\|\alpha \sigma(n)\|>\varepsilon\right\} \rightarrow 0 \quad(\nu \rightarrow \infty) \tag{2.9}
\end{equation*}
$$

Remark. Let $\alpha=\frac{1}{2^{t_{1}}}+\frac{1}{2^{t_{2}}}+\ldots$, where $t_{k+1}=2^{3^{t_{k}}}$. Assume that t_{1}, \ldots, t_{k}, x_{1}, \ldots, x_{k-1} are chosen. Let $x_{k}=\exp \left(\exp \left(t_{k}+1\right)\right), t_{k+1}>3 \exp \left(t_{k}+1\right)$. Then

$$
\alpha \sigma(n)=\left(\frac{1}{2^{t_{1}}}+\cdots+\frac{1}{2^{t_{k}}}\right) \sigma(n)+\left(\frac{1}{2^{t_{k+1}}}+\ldots\right) \sigma(n)=u(n)+v(n)
$$

and for $n \leq x_{k}, u(n)$ is integer for all but $o\left(x_{k}\right)$ integers, and from the known inequality $\sigma(n) \leq n \log \log n$ we obtain that

$$
\begin{gathered}
v(n) \leq \frac{2 x_{k} \log \log x_{k}}{2^{t_{k+1}}}=\frac{2 x_{k}\left(t_{k}+1\right)}{2^{t_{k+1}}}=\eta_{k} \\
\log \eta_{k}=\exp \left(t_{k}+1\right)+\log \left(t_{k}+1\right)-t_{k+1} \log 2+\log 2
\end{gathered}
$$

and since $t_{k+1} \log 2>3(\log 2) \exp \left(t_{k}+1\right)$, we have

$$
\log \eta_{k} \leq\left(\log \frac{e}{8}\right) \exp \left(t_{k}+1\right)+\log \left(t_{k}+1\right) \rightarrow-\infty
$$

and so $\eta_{k} \rightarrow 0$.
We clearly have (2.9).

2.2. Let

$$
M_{x}=\prod_{p} p^{r_{p}}
$$

where r_{p} is defined by the integer parts of the numbers stated on the right hand side of (2.7).

Let \mathcal{K} be the set of those irrational α, for which

$$
\begin{equation*}
\min _{H \mid M_{x}}\|H \alpha\| x>1 \tag{2.10}
\end{equation*}
$$

holds for every large x. Let \mathcal{K}^{*} be the set of those α for which $j \alpha \in \mathcal{K}$ for every $j \in \mathbb{N}$.

Theorem 1. Let $\alpha \in \mathcal{K}^{*}$. For some additive arithmetical function F let $l_{n}=F(n)+\alpha \sigma(n)$. Then the sequence $l_{n}(n \in \mathbb{N})$ is uniformly distributed $\bmod 1$, and the discrepancy can be overestimated by a sequence of real numbers ϱ_{x}, which does not depend on F, and $\varrho_{x} \rightarrow 0$.

Another formulation of Theorem 1 is
Theorem A'. Let $\alpha \in \mathcal{K}^{*}, \tilde{\mathcal{M}}=$ set of complex valued multiplicative functions satisfying $|f(n)| \leq 1$. Then

$$
\sup _{f \in \tilde{\mathcal{M}}} \frac{1}{x}\left|\sum_{n \leq x} f(n) e(\sigma(n) \alpha)\right| \rightarrow 0 \quad(\text { as } \quad x \rightarrow \infty)
$$

Remark. The above theorems remain valid if we change $\sigma(n)$ by $\varphi(n)$, where $\varphi(n)$ is Euler's totient function.
2.3. Let $Q \geq 3$ be an integer $(1 \leq) l_{1}<\cdots<l_{h}(<Q)$ be coprime to Q, $h<\varphi(Q)$. Let \mathcal{B} be the semigroup generated by the prime numbers p belonging to the arithmetical progressions $\equiv l_{j}(\bmod Q)(j=1, \ldots, h)$. Let $N_{\mathcal{B}}(x)$ be the number of elements of \mathcal{B} less than or equal to x.

Theorem 2. Let α be an irrational number. Then

$$
\lim _{x \rightarrow \infty} \frac{1}{N_{\mathcal{B}}(x)} \sup _{f \in \tilde{\mathcal{M}}}\left|\sum_{\substack{n \leq x \\ n \in \mathcal{B}}} f(n) e(n \alpha)\right|=0
$$

§ 3. Proof of Theorem 1.

It is enough to prove that if $\alpha \in \mathcal{K}^{*}$, then

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} e(\alpha \sigma(n)) \rightarrow 0 \quad(x \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

The further part of the proof is the same as in [4].
Let $P(n)$ be the largest prime factor of n. Let $\varepsilon>0$ be fixed. Writing each integer $n \leq x$ as $n=p m$, where $P(n)=p$, we have that if $\mathcal{N}_{1}=\mathcal{N}_{1}(x):=\{n \leq$ $\left.x: P(n) \leq x^{\varepsilon}\right\}$, then

$$
\lim _{\varepsilon \rightarrow 0} \lim _{x \rightarrow \infty} \frac{1}{x} \# \mathcal{N}_{1}=0
$$

On the other hand the contribution of those integers n for which $P(n)^{2} \mid n$ is negligible.

Let

$$
\mathcal{N}_{2}=\mathcal{N}_{2}(x):=\left\{n \leq x: P(n)>x^{\varepsilon}, P(n)^{2} \nmid n\right\} .
$$

Let

$$
\sum_{n \in \mathcal{N}_{2}} e(\alpha \sigma(n))=\sum_{m \leq x^{1-\varepsilon}} \Sigma_{m},
$$

where

$$
\begin{aligned}
\Sigma_{m} & =e(\alpha \sigma(m))\left(\sum_{p<\frac{x}{m}} e(\alpha \sigma(m) p)-\sum_{p<P(m)} e(\alpha \sigma(m) p)\right) \\
& =e(\alpha \sigma(m))\left(\Sigma_{m}^{(1)}-\Sigma_{m}^{(2)}\right) .
\end{aligned}
$$

In [4] we proved that $\sum \Sigma_{m}^{(2)} \ll \frac{1}{\varepsilon^{2}} \frac{x}{(\log x)^{2}}+\frac{1}{\varepsilon} \frac{x}{\log x}=o(x)$. Let $\tau=\frac{x}{(\log x)^{30}}$. In order to estimate $\Sigma_{m}^{(1)}$, we shall approximate $\alpha \sigma(m)$ by rational number $\frac{a_{m}}{q_{m}}$ satisfying

$$
\left|\alpha \sigma(m)-\frac{a_{m}}{q_{m}}\right|<\frac{1}{q_{m} \tau}, \quad 1 \leq q_{m}<\tau .
$$

In [4] we deduced from a theorem of I. M. Vinogradov that

$$
\begin{equation*}
\Sigma_{m}^{(1)} \ll \frac{\frac{x}{m}}{\log ^{2} \frac{x}{m}}, \quad \text { if } q_{m}>(\log x)^{4} \tag{3.2}
\end{equation*}
$$

(see Lemma 1 in [4]).
Assume now that $q_{m} \leq(\log x)^{4}$. Let $\gamma=\alpha \sigma(m)$. Then $\left|\gamma-\frac{a_{m}}{q_{m}}\right|<\frac{1}{q_{m} \tau}$, $\Sigma_{m}=\sum_{p \leq \frac{x}{m}} e(\gamma p)$.

By using Lemma 3.1 in Vaughan [8], after partial summation we obtain that

$$
\begin{equation*}
\Sigma_{m}^{(1)} \ll \frac{x}{q_{m} m\left(\log \frac{x}{m}\right)} . \tag{3.3}
\end{equation*}
$$

The sum of $\left|\Sigma_{m}^{(1)}\right|$ with $q_{m}>\left(\frac{1}{\varepsilon}\right)^{2}$ is smaller than $\ll \varepsilon \frac{x}{\log x} \sum \frac{1}{m} \leq \varepsilon c x$ with an absolute constant c. To prove (3.1) it is enough to prove that for every fixed $l \leq\left(\frac{1}{\varepsilon}\right)^{2}$, the number of those $m \leq x^{1-\varepsilon}$ for which $q_{m}=l$ is $o\left(x^{1-\varepsilon}\right)$, as $x \rightarrow \infty$.

It is enough to prove that for every $U \in\left[x^{\varepsilon}, x^{1-\varepsilon}\right]$ and for every $l \leq\left(\frac{1}{\varepsilon}\right)^{2}$ the number of $m \in[U, 2 U]$ satisfying $q_{m}=l$ is $o_{x}(1) U$.

Let $(U \leq) m_{1}, \ldots, m_{R}(<2 U)$ be those numbers for which $\left\|l \alpha \sigma\left(m_{j}\right)\right\|<\frac{1}{\tau}$. Let $\beta=l \alpha$. Since $\alpha \in \mathcal{K}^{*}$, therefore $\beta \in \mathcal{K}^{*}$, and so $\beta \in \mathcal{K}$. Let $R_{m_{j}}$ be the integer closest to $\beta \sigma\left(m_{j}\right)$. Then $\left|\beta-\frac{R_{m_{j}}}{\sigma\left(m_{j}\right)}\right|<\frac{1}{\sigma\left(m_{j}\right) \tau}$. If $\frac{R_{m_{i}}}{\sigma\left(m_{i}\right)} \neq \frac{R_{m_{j}}}{\sigma\left(m_{j}\right)},(i \neq j)$ then

$$
\frac{1}{\sigma\left(m_{1}\right) \sigma\left(m_{2}\right)} \leq\left|\frac{R_{m_{1}}}{\sigma\left(m_{1}\right)}-\frac{R_{m_{2}}}{\sigma\left(m_{2}\right)}\right|<\frac{1}{\tau}\left(\frac{1}{\sigma\left(m_{1}\right)}+\frac{1}{\sigma\left(m_{2}\right)}\right)
$$

which is impossible. Thus $\frac{R_{m_{j}}}{\sigma\left(m_{j}\right)}=\frac{R}{S}(j=1, \ldots, T),(R, S)=1$. Thus $R \sigma\left(m_{j}\right) \equiv 0 \bmod S$, and so $\sigma\left(m_{j}\right) \equiv 0 \bmod S(j=1, \ldots, T)$. Let us assume that $T>c U$ with a positive constant. Then S should be very special: $S \mid M_{U}$. But this is impossible since $\beta \in \mathcal{K}$. The proof is completed.

§ 4. Proof of Theorem 2

The proof depends on the following
Lemma 3. Let α be an irrational number.
Then

$$
\begin{equation*}
\frac{1}{N_{\mathcal{B}}(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{B}}} e(\alpha n) \rightarrow 0 \quad(x \rightarrow \infty) \tag{4.1}
\end{equation*}
$$

consequently the sequence $n \alpha(n \in \mathcal{B})$ is uniformly distributed $\bmod 1$.
First we deduce Theorem 2 from Lemma 3.
Let

$$
\begin{equation*}
S(x)=\sum_{\substack{n \leq x \\ n \in \mathcal{B}}} f(n) e(n \alpha) \tag{4.2}
\end{equation*}
$$

Let K be a positive number, $p_{1}<\cdots<p_{T}$ be such primes $p_{j} \in \mathcal{B}$ for which

$$
A_{K}:=\sum_{j=1}^{T} \frac{1}{p_{j}}>K
$$

and $p_{1}>K^{2}$.
Let $\mathcal{P}_{K}=\left\{p_{1}, \ldots, p_{T}\right\}$,

$$
\begin{equation*}
\omega_{\mathcal{P}_{K}}(n)=\sum_{\substack{p \mid n \\ p \in \mathcal{P}_{K}}} 1 \tag{4.3}
\end{equation*}
$$

One can prove the analogue of the Turán-Kubilius inequality, namely that

$$
\begin{equation*}
\frac{1}{N_{\mathcal{B}}(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{B}}}\left(\omega_{\mathcal{P}_{K}}(n)-A_{K}\right)^{2} \leq C A_{K} \tag{4.4}
\end{equation*}
$$

whence we obtain that

$$
\begin{equation*}
\frac{1}{N_{\mathcal{B}}(x)} \sum_{\substack{n \leq x \\ n \in \mathcal{B}}}\left|\omega_{\mathcal{P}_{K}}(n)-A_{K}\right| \leq \sqrt{C A_{K}} \tag{4.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
S_{1}(x)=\sum_{\substack{n \leq x \\ n \in \mathcal{B}}} f(n) e(n \alpha) \omega_{\mathcal{P}_{K}}(n) \tag{4.6}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|A_{K} S(x)\right| \leq\left|S_{1}(x)\right|+\sqrt{C A_{K}} N_{\mathcal{B}}(x) \tag{4.7}
\end{equation*}
$$

We have

$$
\begin{equation*}
S_{1}(x)=\sum_{\substack{p m \leq x \\ p m \in \mathcal{B} \\ p \in \mathcal{P}_{K}}} f(p m) e(p m \alpha) \tag{4.8}
\end{equation*}
$$

Let

$$
\begin{equation*}
S_{2}(x)=\sum_{\substack{p m \leq x \\ p m \in \mathcal{B} \\ p \in \mathcal{P}_{K}}} f(p) f(m) e(p m \alpha) \tag{4.9}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|S_{1}(x)-S_{2}(x)\right| \leq 2 \sum_{\substack{p^{2} \nu \leq x \\ p^{2} \nu \in \mathcal{B}}} 1 \leq c N_{\mathcal{B}}(x) \sum_{j=1}^{T} \frac{1}{p_{j}^{2}} \leq \frac{c}{K} N_{\mathcal{B}}(x) \tag{4.10}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
S_{2}(x)=\sum_{m \leq \frac{x}{p_{1}}} f(m) \Sigma_{m}, \quad \Sigma_{m}=\sum_{p_{j} \leq \frac{x}{m}} f\left(p_{j}\right) e\left(\alpha p_{j} m\right) \tag{4.11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|S_{2}(x)\right|^{2} \leq \sum_{\substack{m \leq \frac{x}{p_{1}} \\ m \in \mathcal{B}}}|f(m)|^{2} \sum_{\substack{m \leq \frac{x}{p_{1}} \\ m \in \mathcal{B}}}\left|\Sigma_{m}\right|^{2}=S \cdot H \tag{4.12}
\end{equation*}
$$

It is clear that $S \ll N_{\mathcal{B}}\left(\frac{x}{p_{1}}\right) \ll \frac{1}{p_{1}} N_{\mathcal{B}}(x)$.

$$
H=\sum_{m \in \mathcal{B}} \sum_{\substack{p_{i}, p_{j} \leq \frac{x}{m} \\ p_{i}, p_{j} \in \mathcal{B}}} f\left(p_{i}\right) \overline{f\left(p_{j}\right)} e\left(\left(p_{i}-p_{j}\right) \alpha m\right)=H_{1}+H_{2}
$$

In H_{1} we sum over those m, p_{i}, p_{j} for which $i=j$, consequently

$$
H_{1} \ll \sum_{j=1}^{T} N_{\mathcal{B}}\left(\frac{x}{p_{j}}\right) \leq c N_{\mathcal{B}}(x) \sum_{j=1}^{T} \frac{1}{p_{j}},
$$

i.e.

$$
H_{1} \leq c_{3} A_{K} N_{\mathcal{B}}(x)
$$

where c_{3} is an absolute constant.
In H_{2} we sum over those $\left(m, p_{i}, p_{j}\right)$ for which $i \neq j$. Changing the order of summation, for fixed i, j

$$
\sum_{\substack{m \leq \min \left(\frac{x}{p_{i}, p_{j}} \\ m \in N_{\mathcal{B}}(x)\right.}} e\left(\alpha\left(p_{i}-p_{j}\right) m\right)
$$

is $o\left(N_{\mathcal{B}}(x)\right)$ due to Lemma 3, since $\alpha\left(p_{i}-p_{j}\right)$ is an irrational number also.
Hence we obtain that, for every large x, with a constant C,

$$
\begin{equation*}
\left|\frac{A_{K} S(x)}{N_{\mathcal{B}}(x)}\right| \leq \sqrt{C A_{K}}+2 \frac{A_{K}}{K^{2}}+\frac{2}{K} \sqrt{A_{K}} \tag{4.13}
\end{equation*}
$$

consequently

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{|S(x)|}{N_{\mathcal{B}}(x)} \leq \frac{\sqrt{C}}{\sqrt{A_{K}}}+\frac{2}{K^{2}}+\frac{2}{K \sqrt{A_{K}}} \tag{4.14}
\end{equation*}
$$

Since K is arbitrarily large, $A_{K}>K$, we obtain that the left hand side of (4.14) is 0 .

Finally we prove Lemma 3.
Let $\varepsilon>0$ be fixed. Let us write each $n \in \mathcal{B}$ as $n=p m$, where $P(n)=p$ is the largest prime factor of n. Let $\mathcal{N}_{1}=\mathcal{N}_{1}(x):=\left\{n \leq x, n \in \mathcal{B}, P(n) \leq x^{\varepsilon}\right\}$. On can prove easily that

$$
\# \mathcal{N}_{1}(x) \ll \varepsilon N_{\mathcal{B}}(x)
$$

According to a well kown theorem due to Wirsing [10]

$$
\begin{gathered}
N_{\mathcal{B}}(x)=c \frac{x}{(\log x)^{E}}\left(1+o_{x}(1)\right) \\
E=1-\frac{h}{\varphi(Q)}
\end{gathered}
$$

we obtain that $N_{\mathcal{B}}\left(\frac{x}{u}\right) \leq \frac{c}{u} N_{\mathcal{B}}(x)$ if $1 \leq u \leq x^{\lambda}$, where $(0 \leq) \lambda<1, c=c(\lambda)$. Let $\mathcal{N}_{2}=\mathcal{B} \backslash \mathcal{N}_{1}$. Then

$$
\sum_{\substack{n \in \mathcal{N}_{2} \\ n \leq x}} e(\alpha n)=\sum_{\substack{m \leq x^{1-\varepsilon} \\ m \in \mathcal{B}}} \sum_{\substack{P(m)<p<\frac{x}{m} \\ p \in \mathcal{B}}} e(\alpha p m)=\sum_{m} \Sigma_{m}
$$

Further write

$$
\Sigma_{m}=\sum_{\substack{p<\frac{x}{m} \\ p \in \mathcal{B}}} e(\alpha m p)-\sum_{\substack{p<P(m) \\ p \in \mathcal{B}}} e(\alpha m p)=\Sigma_{m}^{(1)}-\Sigma_{m}^{(2)}
$$

Assume that $1 \leq m \leq x^{1-\varepsilon}$. Let $\tau_{m}=\frac{x}{m}(\log x)^{-40}$,

$$
\begin{equation*}
\left|\alpha m-\frac{a_{m}}{q_{m}}\right| \leq \frac{1}{q_{m} \tau_{m}}, \quad 1 \leq q_{m} \leq \tau_{m}, \quad\left(a_{m}, q_{m}\right)=1 \tag{4.15}
\end{equation*}
$$

According to a result of A. Balog and A Perelli [9], if $\left|\alpha-\frac{a}{q}\right| \leq \frac{2}{N},(a, q)=1$, $h=(q, d)$, then

$$
\begin{equation*}
\sum_{\substack{n \leq N \\ n \equiv f}} \Lambda(n) e(n \alpha) \ll\left(\frac{h N}{d \sqrt{q}}+\frac{\sqrt{q N}}{\sqrt{h}}+\left(\frac{N}{d}\right)^{\frac{4}{5}}\right)(\log N)^{3} \tag{4.16}
\end{equation*}
$$

By using partial integration, the inequality remains true, if the left hand side is changed to

$$
\begin{equation*}
\sum_{\substack{p \leq N \\ p \equiv f \\(\bmod d)}} e(p \alpha) . \tag{4.17}
\end{equation*}
$$

Let us apply the inequality (4.16), (4.17) for αm instead of α, and for $d=Q$, $f=l_{j}$, in the case if $\tau_{m} \geq(\log x)^{40}$.

Since l_{j}, Q, d are bounded as $x \rightarrow \infty$, we obtain that

$$
\Sigma_{m}^{(1)} \ll\left\{\frac{x}{m \sqrt{q_{m}}}+\left(\frac{x}{m} q_{m}\right)^{\frac{1}{2}}+\left(\frac{x}{m}\right)^{\frac{4}{5}}\right\}(\log x)^{3} \ll \frac{x}{m(\log x)^{17}}+\frac{x^{\frac{4}{5}}}{m^{\frac{4}{5}}}
$$

and so

$$
\sum_{q_{m}>(\log x)^{40}}\left|\Sigma_{m}^{(1)}\right| \ll \frac{x}{(\log x)^{16}}
$$

It is clear that

$$
\frac{1}{\varphi(Q)} \sum_{a=0}^{Q-1} e\left(\frac{(p-l) a}{Q}\right)= \begin{cases}1, & \text { if } p \equiv l \quad(\bmod Q) \\ 0, & \text { otherwise }\end{cases}
$$

We have

$$
\Sigma_{m}^{(1)}=\sum_{j=1}^{h} \frac{1}{\varphi(Q)} \sum_{a=0}^{Q-1} e\left(\frac{-a l_{j}}{Q}\right) \sum_{p<\frac{x}{m}} e\left(\left(\alpha m+\frac{a}{Q}\right) p\right)
$$

whence

$$
\left|\Sigma_{m}^{(1)}\right| \leq \sum_{a=0}^{Q-1}\left|\sum_{p<\frac{x}{m}} e\left(\left(\alpha m+\frac{a}{Q}\right) p\right)\right|=\sum_{a=0}^{Q-1}\left|\Sigma_{m, a}^{(1)}\right| .
$$

If (4.15) holds, then

$$
\left|\alpha m+\frac{a}{Q}-\frac{E_{m}}{L_{m}}\right|<\frac{1}{q_{m} \tau_{m}}
$$

where $\frac{E_{m}}{L_{m}}=\frac{a_{m}}{q_{m}}+\frac{a}{q},\left(E_{m}, L_{m}\right)=1$. It is clear that $\frac{q_{m}}{Q} \leq L_{m} \leq q_{m} Q$ if $q_{m}>Q$.
Let us assume that $q_{m} \leq(\log x)^{40}$. By using Lemma 3.1 in Vaughan [8], after partial summation, we obtain that

$$
\Sigma_{m, a}^{(1)} \ll \frac{x}{L_{m} m \log \frac{x}{m}} .
$$

Hence we obtain that

$$
\sum_{L_{m}>R} \Sigma_{m, a}^{(1)} \ll \frac{x}{R} \sum_{m \leq x^{1-\varepsilon}} \frac{1}{m \log \frac{x}{m}} \ll \frac{N_{\mathcal{B}}(x)}{R}
$$

Let a be any of $a=0,1, \ldots, Q-1$.
Let l be a fixed integer, and consider those m for which $q_{m}=l$. Let $x^{\varepsilon} \leq U \leq$ $x^{1-\varepsilon}$, and consider the set of integers $m \in \mathcal{B}$ in $[U, 2 U]$ for which

$$
\left|m \alpha-\frac{a_{m}}{l}\right|<\frac{1}{l \tau_{m}}
$$

Assume that these numbers are m_{1}, \ldots, m_{T}. Then $\left|l \alpha-\frac{a_{m}}{m}\right|<\frac{1}{m_{\tau}}$. If $\left|l \alpha-\frac{a_{m_{u}}}{m_{u}}\right|<$ $\frac{1}{m_{u} \tau_{m}}$ holds for $u=i, j$, then

$$
\left|\frac{a_{m_{j}}}{m_{j}}-\frac{a_{m_{i}}}{m_{i}}\right|<\frac{2}{\tau_{m_{i}}}\left(\frac{1}{m_{i}}+\frac{1}{m_{j}}\right)
$$

which implies that $\frac{a_{m_{u}}}{m_{u}}=\frac{R}{S}(u=1, \ldots, T),(R, S)=1$. Thus $R_{m_{u}} \equiv 0(\bmod S)$ $(u=1, \ldots, T) . S$ cannot be bounded as $x \rightarrow \infty$. Hence we obtain that

$$
T \leq \#\{m \in[U, 2 U], m \in \mathcal{B}, m \equiv 0 \quad(\bmod S)\} \leq \frac{N_{\mathcal{B}}(2 U)}{S}
$$

Since α is irrational, therefore $S \rightarrow \infty$ as $x \rightarrow \infty$ uniformly as U varies in $\left[x^{\varepsilon}, x^{1-\varepsilon}\right]$. Thus we proved that

$$
\sum_{\substack{m \\ m \leq x^{1-\varepsilon} \\ m \in \mathcal{B}}}\left|\Sigma_{m}^{(1)}\right|=o_{x}(1) N_{\mathcal{B}}(x)
$$

In order to estimate $\Sigma_{m}^{(2)}$, observe that $\left|\Sigma_{m}^{(2)}\right| \leq c \frac{P(m)}{\log 2 P(m)}$, and so

$$
\sum_{m}\left|\Sigma_{m}^{(2)}\right| \leq c \sum_{\substack{p \leq x^{1-\varepsilon} \\ p \in \mathcal{B}}} \frac{p}{\log p} \sum_{\substack{\left.p r \leq x^{1-\varepsilon} \\ P \leq r\right) \leq p \\ p^{2} r \leq x \\ r \in \mathcal{B}}} 1=\Sigma_{A}+\Sigma_{B}
$$

In Σ_{A} we sum over $p \leq x^{\varepsilon}$, and in Σ_{B} over $p>x^{\varepsilon}$. Then

$$
\begin{aligned}
\Sigma_{A} & \ll \sum_{\substack{p \leq x^{\varepsilon} \\
p \in \mathcal{B}}} \frac{p}{\log p} \cdot N_{\mathcal{B}}\left(\frac{x^{1-\varepsilon}}{p}\right) \ll N_{\mathcal{B}}\left(x^{1-\varepsilon}\right) \sum_{p \leq x^{\varepsilon}} \frac{1}{\log p} \\
& \ll \frac{x^{\varepsilon}}{\varepsilon \log x} N_{\mathcal{B}}\left(x^{1-\varepsilon}\right) \ll \frac{N_{\mathcal{B}}(x)}{\varepsilon \log x}=o_{x}(1) N_{\mathcal{B}}(x),
\end{aligned}
$$

Furthermore,

$$
\Sigma_{B} \ll \sum_{x^{\varepsilon}<p \leq x} \frac{p}{\log p} \sum_{\substack{r \leq \frac{x}{p^{2}} \\ P(r) \leq p \\ r \in \mathcal{B}}} 1 \ll \sum_{x^{\varepsilon}<p \leq x} \frac{p}{\log p} \cdot \frac{x}{p^{2}} \ll \frac{1}{\varepsilon} \frac{x}{\log x}=o_{x}(1) N_{\mathcal{B}}(x) .
$$

The proof is completed.

References

[1] H. Daboussi and H. Delange, Quelques proprietés des fonctions multiplicatives de module au plus égal á 1, C. R. Acad. Sci. Paris, Serie A 178 (1974), 657-660.
[2] H. Daboussi and H. Delange, On multiplicative arithmetical funtions whose module does not exceed one, J. London Math. Soc. (2) 26 (1982), 245-264.
[3] I. KÁtai, remark on a theorem of H. Daboussi, Acta Math. Hung. 47 (1986), 223-225.
[4] J. M. De Koninck and I. Kátai, On the distribution modulo 1 of the values of $F(n)+\alpha \sigma(n)$, Publ. Math. Debrecen 66 (2005), 121-128.
[5] I. KÁtai, A remark on a trigonometric sum, Acta Math. Hungar. 112 (2006), 221-225.
[6] Huixue Lao, A remark on a trigonometric sum, Acta Arith. 134 (2008), 127-131.
[7] Glyn Harman, On exponential sums studied by Indlekofer and Kátai, Acta Math. Hungar. 124 (2009), 289-298.
[8] R. C. Vaughan, The Hardy - Littlewood method, Cambridge Tracts in Mathematics 80 (1981).
[9] A. Balog and A. Perelli, Exponential sums over primes in an arithmetical progression, Proc. Amer. Math. Soc. 93 (1985), 578-582.
[10] E. Wirsing, Das asymptotischen Verhalten von Summen über multiplikative Funktionen, Math. Ann. 143 (1961), 75-102.
[11] I. KÁtai, On the number of prime factors of $\varphi(\varphi(n))$, Acta Math. Hungar. 58 (1991), 211-225.

IMRE KÁTAI
DEPARTMENT OF COMPUTER ALGEBRA
EÖTVÖS LORÁND UNIVERSITY
PÁZMÁNY PÉTER SÉTÁNY 1/C
H-1117 BUDAPEST
HUNGARY
E-mail: katai@compalg.inf.elte.hu
(Received November 27, 2008; revised April 19, 2010)

[^0]: Mathematics Subject Classification: 11K06.
 Key words and phrases: arithmetical functions, distribution modulo 1, trigonometric sums, Daboussi's theorem.

