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Functional equations and functional relations for the Euler
double zeta-function and its generalization of Eisenstein type

By YASUSHI KOMORI (Nagoya), KOHJI MATSUMOTO (Nagoya)
and HIROFUMI TSUMURA (Tokyo)

Abstract. We consider certain double series in two variables such as the Euler

double zeta-function and its generalization of Eisenstein type. In the former part, we

give some functional equations among these series, which are Eisenstein type analogues

of a previous result on double zeta-functions given by the second-named author. We

point out that, on certain hyperplanes, we can show functional equations of traditional

symmetric type for these double series. In the latter part, we give some functional

relations for these series and double series of another type involving hyperbolic functions.

As special cases, we can obtain the known value-relation formulas for these series given

by the third-named author recently.

1. Introduction

Let N be the set of natural numbers, N0 := N ∪ {0}, Z the ring of rational
integers, R the field of real numbers, C the field of complex numbers and i =

√−1.
For ω1, ω2 ∈ C, we define

ζ2(s1, s2; ω1, ω2) =
∞∑

m=1

1
(mω1)s1

∞∑
n=1

1
(mω1 + nω2)s2

(1)

for s1, s2 ∈ C. Note that here, and throughout this paper, we interpret zs as
es log z, where log z = log |z| + i arg z with −π < arg z ≤ π unless otherwise
indicated. To ensure the convergence of (1), we assume the following condition.
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Let ` be any line on the complex plane crossing the origin. Then ` divides the
plane into two half-planes. Let H(`) be one of those half-planes, not including `

itself. Using this notation, we assume that ω1, ω2 ∈ H(`) for some `. Then, under
this assumption, we see that the series (1) is absolutely convergent in the region

{(s1, s2) ∈ C2 | <(s1 + s2) > 2, <s2 > 1} (2)

(see [12, Theorem 3]). The meromorphic continuation of (1) to the whole space
C2 was first established by Atkinson [3] in the case ω1 = ω2 = 1 in his study on
the mean square of the Riemann zeta-function ζ(s); for general case, see [13].

In the former part of this paper, we consider a certain “functional equa-
tion” for ζ2(s1, s2;ω1, ω2). First, in Theorem 2.1, we give a generalization of the
previous result given by the second-named author in [14], that is, a functional
equation for the Euler double zeta-function which is written in terms of confluent
hypergeometric functions.

Next, by restricting this result to certain hyperplanes, we give a symmetric
form of functional equation for ζ2(s1, s2;ω1, ω2) (see Theorem 2.2). More pre-
cisely, if we put

ξ(s1, s2; ω1, ω2) =
(

2πi

ω1ω2

) 1−s1−s2
2

Γ(s2)

×
{
ζ2(s1, s2; ω1, ω2)− Γ(1− s1)

Γ(s2)
Γ(s1 + s2− 1)ζ(s1 + s2− 1)ω−1

1 ω1−s1−s2
2

}
, (3)

we can see that

ξ(s1, s2; ω1, ω2) = ξ(1− s2, 1− s1;ω1, ω2) (4)

on certain hyperplanes. This can be regarded as a double analogue of the func-
tional equation for ζ(s).

As a corollary, we can evaluate ζ2(s1, s2;ω1, ω2) at certain negative integers
in terms of Bernoulli numbers (see Corollary 2.4).

In the latter part of this paper, we consider the double zeta-function of
Eisenstein type

ζ̃2(s1, s2; τ) =
∑

m∈Z
m6=0

∑

n∈Z

1
ms1(m + nτ)s2

(5)

and the hyperbolic-sine double series of Eisenstein type

S2(s1, s2; τ) =
∑

m 6=0

∑

n∈Z

(−1)n

sinh(mπi/τ)ms1(m + nτ)s2

=
∑

m 6=0

∑

n∈Z

1
sinh((m + nτ)πi/τ)ms1(m + nτ)s2

(6)
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for τ ∈ C with =τ > 0, where we slightly modify the definition of arg m for
m < 0 as follows. In the term ms1(m + nτ)s2 of each summand for m < 0 on
the right-hand sides of (5) and (6), we define arg m = π (resp. arg m = −π)
when n ≥ 0 (resp. n < 0). This definition can be seen as a natural one because
limτ→0 arg(m + nτ) = arg m for any m < 0. Furthermore this definition makes
the expression given in Lemma 3.1 simpler.

We will prove certain functional relations among (5) and (6), for example,

S2(s, 3; τ) = −πi

6τ
ζ̃2(s, 2; τ) +

τ

πi
ζ̃2(s, 4; τ) (s ∈ C)

(see Theorem 3.2). Therefore, combining this result and Theorem 2.1, we can
show a functional equation for S2(s, k; τ) (k ∈ N; k ≥ 2) in terms of F± (see
Theorem 3.5).

Using the well-known formula of Hurwitz ((35) below) for Eisenstein series,
we can confirm that our functional relations include value relations which we
proved previously (see [21, Example 4.1]), for example,

S2(0, 3; i) =
∑

m 6=0

∑

n∈Z

(−1)n

sinh(mπ)(m + ni)3
=

1
15

$4

π
− 7

90
π3 +

1
6
π2, (7)

S2(0, 5; i) =
∑

m 6=0

∑

n∈Z

(−1)n

sinh(mπ)(m + ni)5
= − 1

90
$4π +

31
2520

π5 − 7
360

π4, (8)

where $ is the lemniscate constant defined by

$ = 2
∫ 1

0

dx√
1− x4

= 2.622057 . . . .

Note that these formulas can be regarded as certain double analogues of the
following classical result on the hyperbolic-sine zeta-function, studied by Cauchy,

Mellin, Ramanujan, Berndt and so on (see [4], [5], [6], [7], [16], [17]):

∑

m∈Z\{0}

(−1)m

sinh(mπ)m4k+3
= (2π)4k+3

2k+2∑

j=0

(−1)j+1 B2j(1/2)
(2j)!

B4k+4−2j(1/2)
(4k + 4− 2j)!

(9)

for k ∈ N0, where Bn(x) is the n-th Bernoulli polynomial defined by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (10)
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2. Functional equations

In this section, we give functional equations for ζ2(s1, s2; ω1, ω2).
First we recall the definition of the confluent hypergeometric function

Ψ(a, c; x) =
1

Γ(a)

∫ eiθ∞

0

e−xyya−1(1 + y)c−a−1dy, (11)

where <a > 0, −π < θ < π, |θ + arg x| < π/2 (see Erdélyi et al. [8, formula 6.5
(3)]). Define

F±(s1, s2; τ) =
∞∑

k=1

σs1+s2−1(k)Ψ(s2, s1 + s2;±2πikτ), (12)

where σs1+s2−1(k) =
∑

d|k ds1+s2−1, and

g0(s1, s2;ω1, ω2) =
Γ(1− s1)

Γ(s2)
Γ(s1 + s2 − 1)ζ(s1 + s2 − 1)ω−1

1 ω1−s1−s2
2 .

Then F± can be continued meromorphically to C2 as a function in (s1, s2), and
we obtain the following theorem.

Theorem 2.1. Let ω1, ω2 ∈ C with <ω1 > 0 and <ω2 > 0. Then the

following “functional equation” holds:

ζ2(s1, s2; ω1, ω2) = g0(s1, s2;ω1, ω2) + Γ(1− s1)ω−1
1 ω1−s1−s2

2

×
{

F+

(
1− s2, 1− s1;

ω2

ω1

)
+F−

(
1− s2, 1− s1;

ω2

ω1

)}
. (13)

We discuss here why we call (13) the “functional equation”. It is classically
known that the Hurwitz zeta-function ζ(s, α) =

∑∞
n=0(n + α)−s (α > 0) satisfies

the functional equation

ζ(s, α) =
Γ(1− s)
i(2π)1−s

{
eπis/2φ(1− s, α)− e−πis/2φ(1− s,−α)

}
, (14)

where φ(s, α) =
∑∞

n=1 e2πinαn−s (see Titchmarsh [20, (2.17.3)]). Formula (13)
may be regarded as the double analogue of (14). In fact, the asymptotic expansion

Ψ(a, c;x) =
N−1∑

j=0

(−1)j(a− c + 1)j(a)j

j!
x−a−j + ρN (a, c; x) (15)
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([8, formula 6.13.1(1)]), where (a)j = Γ(a+ j)/Γ(a) and ρN (a, c;x) is the remain-
der term, implies that Ψ(s2, s1+s2;±2πikτ) can be approximated by (±2πikτ)−s2

(the term corresponding to j = 0 in (15)), hence F±(s1, s2; τ) can be approxi-
mated by the Dirichlet series

∞∑

k=1

σs1+s2−1(k)
(±2πikτ)s2

.

Therefore F±(s1, s2; τ) may be considered as a “generalized Dirichlet series”.
From this viewpoint, formula (13) can be regarded as a duality formula among
(generalized) Dirichlet series.

In other words, since n−s = F (s, 1, 1; 1 − n) (where the right-hand side is
the usual notation of the Gauss hypergeometric function), we see that a Dirichlet
series is a special case of infinite series of hypergeometric functions. Therefore
“functional equations” in general setting are perhaps to be understood as dual-
ity relations among infinite series of (confluent or non-confluent) hypergeometric
functions.

The special case ω1 = 1 and ω2 ∈ R with ω2 > 0 of formula (13) is essentially
included in the previous paper [14] of the second-named author. More generally,
let

ζ2(s1, s2;α, β, ω2) =
∞∑

m=0

(α + m)−s1

∞∑
n=1

e2πinβ(α + m + nω2)−s2 , (16)

where 0 < α ≤ 1, 0 ≤ β ≤ 1 and ω2 > 0. The function F±(s1, s2;α, β, τ) is
defined by replacing σs1+s2−1(k) on the right-hand side of (12) by

σs1+s2−1(k; α, β) =
∑

d|k
e2πidαe2πi(k/d)βds1+s2−1.

Then the formula

ζ2(s1, s2; α, β, ω2) =
Γ(1− s1)

Γ(s2)
Γ(s1 + s2 − 1)φ(s1 + s2 − 1, β)ω1−s1−s2

2

+ Γ(1− s1)ω1−s1−s2
2

× {
F+ (1− s2, 1− s1;β, α, ω2) + F− (1− s2, 1− s1; β,−α, ω2)

}
(17)

can be immediately deduced from Propositions 1 and 2 of [14]. Formula (17) itself
was not stated in [14]; it was first explicitly stated in [15].

The proof of Theorem 2.1 is just a simple modification of the proof of (17),
hence we omit it.

Next we show that, restricting (13) to certain hyperplanes, we obtain a func-
tional equation of traditional type. A key to the proof of this theorem is the fact
that ζ(−2k) = 0 for k ∈ N.
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Theorem 2.2. For ω1, ω2 ∈ C with <ω1 > 0, <ω2 > 0, the hyperplane

Ω2k+1 := {(s1, s2) ∈ C2 | s1 + s2 = 2k + 1} (k ∈ Z \ {0}) (18)

is not a singular locus of ζ2(s1, s2;ω1, ω2). On this hyperplane the following func-

tional equation holds:

(
2πi

ω1ω2

) 1−s1−s2
2

Γ(s2)
{
ζ2(s1, s2; ω1, ω2)− g0(s1, s2; ω1, ω2)

}

=
(

2πi

ω1ω2

) s1+s2−1
2

Γ(1− s1)

× {ζ2(1− s2, 1− s1;ω1, ω2)− g0(1− s2, 1− s1; ω1, ω2)} (19)

for (s1, s2) ∈ Ω2k+1 (k ∈ Z \ {0}).
Using the notation (3), we can rewrite (19) as

ξ(s1, s2; ω1, ω2) = ξ(1− s2, 1− s1;ω1, ω2) (20)

for (s1, s2) ∈ Ω2k+1 (k ∈ Z \ {0}). This is a reflection formula involving two
variables, and an interesting feature is that the roles of s1 and s2 are interchanged
on the other side of the formula. It is important that we can obtain this type of
functional equation by considering the function (1) of two variables. In particular
when ω1 = ω2 = 1, we see that (19) gives the functional equation for the ordinary
double zeta-function of Euler type. Essentially this case has been obtained by the
second-named author in [14, (4.2)].

Proof of Theorem 2.2. Denote by g(s1, s2; ω1, ω2) the second term on
the right-hand side of (13). As for the first assertion, our task is to check that
Ω2k+1 is not a singular locus of both g(s1, s2; ω1, ω2) and g0(s1, s2;ω1, ω2). From
(12) and (15) we obtain that for any non-negative integer N ,

F±(s1, s2; τ) =
N−1∑

j=0

(−1)j

j!
(1− s1)j(s2)j(±2πiτ)−s2−jζ(1− s1 + j)ζ(s2 + j)

+ (±2πiτ)1−s1−s2

∞∑

k=1

σ1−s1−s2(k)ρN (1− s1, 2− s1 − s2;±2πikτ). (21)

The explicit form of ρN (1−s1, 2−s1−s2;±2πikτ) is given as formula (3.3) of [14].
From that formula and (21) we can immediately see that Ω2k+1 is not a singular
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locus of g(s1, s2; ω1, ω2). Concerning g0(s1, s2; ω1, ω2), we see that its possible
singularities are determined by s1 = l (l ∈ Z; l ≥ 1), s1 + s2 = l (l ∈ Z; l ≤ 1)
and s1 + s2 = 2, caused by the gamma factors and ζ(s1 + s2− 1). Hence we have
only to consider the case s1 + s2 = −2k +1 (k ∈ N). In this case, we can see that
ζ(s1 + s2 − 1) = ζ(−2k) = 0 which corresponds to a trivial zero of ζ(s) for each
k ∈ N. The zero cancels the singularity, and hence Ω2k+1 is not a singular locus
of g0(s1, s2;ω1, ω2).

Next we will prove (19). By (13), we have

1
Γ(1− s1)ω−1

1 ω1−s1−s2
2

{ζ2(s1, s2; ω1, ω2)− g0(s1, s2; ω1, ω2)}

= F+

(
1− s2, 1− s1;

ω2

ω1

)
+ F−

(
1− s2, 1− s1;

ω2

ω1

)
. (22)

The functional equation

F±(1− s2, 1− s1; τ) = (±2πiτ)s1+s2−1F±(s1, s2; τ) (23)

can be shown in much the same way as Proposition 2 of [14], based on the trans-
formation formula for Ψ(a, c;x). Now assume (s1, s2) ∈ Ω2k+1 for k ∈ Z \ {0},
that is, s1 + s2 = 2k + 1. Then we have (±1)s1+s2−1 = (±1)2k = 1, hence
(±2πiτ)s1+s2−1 on the right-hand side of (23) is (2πiτ)s1+s2−1. Therefore the
right-hand side of (22) is equal to

(2πiω2/ω1)s1+s2−1{F+(s1, s2; ω2/ω1) + F−(s1, s2; ω2/ω1)}. (24)

On the other hand, replacing (s1, s2) in (22) by (1− s2, 1− s1), we find that the
resulting right-hand side is equal to the quantity in the curly bracket appearing
in (24). This implies (19), and completes the proof of Theorem 2.2. ¤

Remark 2.1. From the above observation, we have obtained that the singular
loci of g0(s1, s2; ω1, ω2) are s1 + s2 = 2, 1, 0,−2, ,−4, . . . , and s1 = j (j ∈ N). On
the other hand, since ρN appearing in (21) is holomorphic in the convergent area
(see [14, (3.3)]), we see that the singular loci of g(s1, s2; ω1, ω2) are s1 = 0 and
s2 = 1 which come from the first term corresponding to j = 0 on the right-
hand side of (21). However s1 = j (j ∈ N0) cannot be a singular locus of
ζ2(s1, s2; ω1, ω2), because it intersects with the domain of absolute convergence
of ζ2(s1, s2;ω1, ω2). Therefore we obtain that the singular loci of ζ2(s1, s2;ω1, ω2)
are

s1 + s2 = 2− 2k (k ∈ N0), s1 + s2 = 1, s2 = 1. (25)
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In particular when (ω1, ω2) = (1, 1), the result of (25) coincides with the known
result given by Akiyama–Egami–Tanigawa [1] using the Euler–Maclaurin for-
mula. We can also determine (25) by using the Mellin–Barnes formula (see the
previous result [13] of the second-named author).

Assume <ω1 > 0, <ω2 > 0. We can see that

ζ2(s1, s2; ω1, ω2) = ω−s1−s2
1 ζ2(s1, s2; 1, ω2/ω1) (26)

in the domain of absolute convergence (2). Conversely, for τ ∈ C with =τ > 0
or τ ∈ (0,∞), we can choose ω1, ω2 ∈ C satisfying that <ω1 > 0, <ω2 > 0 and
τ = ω2/ω1. In fact, if we write τ = reiθ with r > 0 and 0 ≤ θ < π, then we can
choose ω1 = e−iθ/2 and ω2 = reiθ/2. Therefore, by (26), we see that ζ2(s1, s2; 1, τ)
can be also continued meromorphically to the whole space C2. We can rewrite
(19) as follows.

Proposition 2.3. For any τ ∈ C with =τ > 0 or τ ∈ (0,∞), the functional

equation

(
2πi

τ

) 1−s1−s2
2

Γ(s2) {ζ2(s1, s2; 1, τ)− g0(s1, s2; 1, τ)} =
(

2πi

τ

) s1+s2−1
2

Γ(1− s1)

× {ζ2(1− s2, 1− s1; 1, τ)− g0(1− s2, 1− s1; 1, τ)} (27)

holds for (s1, s2) ∈ Ω2k+1 (k ∈ Z \ {0}).
Divide both sides of (19) (resp. (27)) by Γ(1 − s1)Γ(s2), and put (s1, s2) =

(−2p,−2q−1) and (−2p−1,−2q) in (19) (resp. (27)) for p, q ∈ N0. Then, noting
the fact ζ(−2p− 2q − 2) = 0, we have the following.

Corollary 2.4. With the above notation, and for p, q ∈ N0,

ζ2(−2p,−2q − 1;ω1, ω2) =
B2p+2q+2

4(p + q + 1)
ω2p+2q+1

1 , (28)

ζ2(−2p− 1,−2q;ω1, ω2) =
B2p+2q+2

4(p + q + 1)
ω2p+2q+1

1 , (29)

where Bk = Bk(0) (k ∈ N0) is the kth Bernoulli number. In particular,

ζ2(−2p,−2q − 1; 1, τ) =
B2p+2q+2

4(p + q + 1)
, (30)

ζ2(−2p− 1,−2q; 1, τ) =
B2p+2q+2

4(p + q + 1)
. (31)
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Remark 2.2. We can regard (28)–(31) as generalizations of the known results

ζ2(−2p,−2q − 1; 1, 1) = ζ2(−2p− 1,−2q; 1, 1) =
B2p+2q+2

4(p + q + 1)
(p, q ∈ N0)

proved by Akiyama–Egami–Tanigawa [1, Equation (8)] by a quite different
method. It is to be noted that the left-hand sides of (30) and (31) are independent
of τ .

3. Functional relations

Now we consider the series (5) and (6) for τ ∈ C with =τ > 0. Write
τ = ηeiθ1 (η > 0; 0 < θ1 < π) and let ρ =

√
ηeiθ1/2. Note that <ρ > 0, <ρ−1 > 0,

<(iρ−1) > 0, <(−iρ) > 0 and ρ2 = τ . We have the following.

Lemma 3.1.

ζ̃2(s1, s2; τ) =
(
1 + e−πi(s1+s2)

){
ρ−s1−s2ζ2

(
s1, s2; ρ−1, ρ

)

+ (iρ−1)s1+s2ζ2

(
s1, s2; iρ−1,−iρ

)
+ ζ(s1 + s2)

}
(32)

holds in the region where all functions on the both sides are convergent. Therefore

Theorem 2.1 and (32) give the meromorphic continuation of ζ̃2(s1, s2; τ) to C2.

Proof. We separate the double sum on the right-hand side of (5) as
∑

m≥1

∑

n≥1

+
∑

m≥1

∑

n≤−1

+
∑

m≤−1

∑

n≥1

+
∑

m≤−1

∑

n≤−1

+
∑

m≥1
n=0

+
∑

m≤−1
n=0

.

Since ρ2 = τ , we have m+nτ = ρ(mρ−1 +nρ) for m,n ≥ 1, and so on. By noting
the slight modification of the definition of arg m for m < 0 (see Section 1), we
obtain the proof of this lemma by direct calculations. ¤

We can obtain the following theorem, and will give its proof in the next
section.

Theorem 3.2. For k ∈ N with k ≥ 2 and for τ ∈ C with =τ > 0,

S2(s, k; τ) =
τ

πi

k∑

j=0

(2πi/τ)k−j

(k − j)!
Bk−j

(
1
2

)
ζ̃2(s, j + 1; τ) (33)

holds for s ∈ C.
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Now we aim to confirm that (33) in the case (s, k, τ) = (0, 2p + 1, i) (p ∈ N)
gives the known formulas (7), (8), and so on, as follows.

We recall Eisenstein series G2k(τ) defined by

G2k(τ) =
∑

m,n∈Z
(m,n) 6=(0,0)

1
(m + nτ)2k

(k ∈ N; k ≥ 2) (34)

for τ ∈ C with =τ > 0 (see Serre [18]). For example, when τ = i, it is known
that

G4(i) =
1
15

$4, G8(i) =
1

525
$8, G12(i) =

2
53625

$12, . . . (35)

which were given by Hurwitz [10] (see also [11]), where $ is the lemniscate
constant. For k ∈ N with k ≥ 2, it follows from (5) that

ζ̃2(0, 2k; i) =
∑

m 6=0

∑

n∈Z

1
(m + ni)2k

= G2k(i)− 2(−1)kζ(2k). (36)

Furthermore we can prove the following.

Proposition 3.3.

ζ̃2(0, 2; i) = −π +
π2

3
. (37)

In order to prove this proposition, we prepare the following lemma.

Lemma 3.4. For m ∈ Z, put

b(m) =
∞∑

n=1

m2 − n2

(m2 + n2)2
.

Then b(m) = O
(
m−2

)
as |m| → ∞.

Proof. We see that

b(m) =
∞∑

n=1

2m2 − (m2 + n2)
(m2 + n2)2

= 2m2
∞∑

n=1

1
(m2 + n2)2

−
∞∑

n=1

1
m2 + n2

. (38)

It is well-known (see, for example, [22, Chapter 7]) that

∞∑
n=1

1
m2 + n2

=
π

2m
coth(πm)− 1

2m2
, (39)
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and

∞∑
n=1

1
(m2 + n2)2

=
1

m4

∞∑
n=1

1
((m−1n)2 + 1)2

=
1

m4

{
π2m2

4
cosech2(πm) +

πm

4
coth (πm)− 1

2

}
, (40)

where cosech (x) = 2/(ex − e−x). Substituting (39) and (40) to (38), we have

b(m) =
2

m2

{
π2m2

4
cosech2(πm) +

πm

4
coth (πm)− 1

2

}

−
{

π

2m
coth (πm)− 1

2m2

}
=

π2

2
cosech2(πm)− 1

2m2
.

Thus we have the assertion of this lemma. ¤

Proof of Proposition 3.3. For m ∈ Z \ {0}, let

a(m) =
∑

n∈Z

1
(m + ni)2

=
∑

n∈Z

{
m2 − n2

(m2 + n2)2
− i

2mn

(m2 + n2)2

}
.

Then the imaginary part is an odd function in n, so it vanishes. Hence, by Lemma
3.4, we have

a(m) =
∞∑

n=1

2(m2 − n2)
(m2 + n2)2

+
1

m2
= 2b(m) +

1
m2

= O
(
m−2

)
(|m| → ∞).

Therefore we see that
ζ̃2(s, 2; i) =

∑

m 6=0

1
ms

a(m)

converges absolutely for <s > −1. In particular when s = 0,

ζ̃2(0, 2; i) =
∑

m 6=0

∑

n∈Z

1
(m + ni)2

=
∑

m∈Z

∑

n∈N
(m,n)6=(0,0)

1
(m + ni)2

+ 2ζ(2) = −π +
π2

3
,

where the last equality is well-known (see [18, Chapter 7]). This completes the
proof. ¤
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Combining (32) with (s, τ) = (0, i), (35) and (37), we obtain, for example,
the explicit formulas (7), (8) and so on, which were given by the third-named
author in [21]. In other words, the functional relation formula (32) includes the
known value-relation formulas (7), (8) as special cases.

Substitute (13) into (32), we can show a “functional equation” for ζ̃2(s1, s2; τ),
whose right-hand side includes four F± terms. In particular, when τ = i, since

F±(1− s2, 1− s1;−i) = F∓(1− s2, 1− s1; i),
we obtain

ζ̃2(s1, s2; i) =
(
1 + e−πi(s1+s2)

)[(
e(2−s1−s2)πi/4 + e(s1+s2−2)πi/4

)

×
{

Γ(1− s1)
Γ(s2)

Γ(s1 + s2 − 1)ζ(s1 + s2 − 1)

+ Γ(1− s1)
(
F+(1− s2, 1− s1; i) + F−(1− s2, 1− s1; i)

)}
+ ζ(s1 + s2)

]
. (41)

Furthermore, by combining (32), (33) and (41), we have the following functional
equation between the hyperbolic-sine double series of Eisenstein type and infinite
series of hypergeometric functions.

Theorem 3.5. For k ∈ N with k ≥ 2,

S2(s, k; i) =
1
π

k∑

j=0

(2π)k−j

(k − j)!
Bk−j

(
1
2

) (
1 + e−πi(s+j+1)

)

×
[(

e(1−s−j)πi/4 + e−(1−s−j)πi/4
){Γ(1− s)

j!
Γ(s + j)ζ(s + j)

+ Γ(1− s)
(
F+(−j, 1− s; i) + F−(−j, 1− s; i)

)}
+ ζ(s + j + 1)

]
(42)

holds for s ∈ C except for singularities of the functions on the both sides.

Remark 3.1. Gangl, Kaneko and Zagier [9] considered another kind of
double Eisenstein series defined by

Gr,s(τ) =
∑

a,b∈N
a>b

1
arbs

+
∑

a∈Z
m,b∈N

1
(mτ + a)rbs

+
∑

m∈N
a,b∈Z
a>b

1
(mτ + a)r(mτ + b)s

+
∑

m,n∈N
m>n
a,b∈Z

1
(mτ + a)r(nτ + b)s

(43)
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for r, s ∈ N with r ≥ 3 and s ≥ 2, and τ ∈ C with =τ > 0. By virtue of Gr,s(τ),
they discovered a correspondence between a certain subspace of the formal double
zeta space and the space of modular forms, and further gave a Fourier expansion
of Gr,s(τ).

It seems important to consider Gr,s(τ) with complex variables r, s and further
to search for a certain functional equation and some relevant results corresponding
to the facts stated in Sections 2 and 3. However we have no idea in this direction.

4. Proof of Theorem 3.2

We let

G(t) =
1

sin(πt/τ)
=

2i

eπit/τ − e−πit/τ
=

∞∑

k=0

Gktk−1. (44)

We can see that τZ is the set of all poles of G(t) and each pole is simple. Let
CN be the parallelogram the vertices of which consist ±(N + 1/2)± (N + 1/2)τ .
Then for k ∈ N with k ≥ 2,

lim
N→∞

∫

CN

t−kG(t)dt = 0 (45)

since G(t) is bounded on
⋃

N∈N CN (see, for example, [19, Section 5]). Therefore

0 = lim
N→∞

∑

0<|n|≤N

Res
t=nτ

t−kG(t) + Res
t=0

t−kG(t)

=
∑

n∈Z\{0}
Res
t=nτ

t−kG(t) + Res
t=0

t−kG(t) =
τ

π

∑

n∈Z\{0}

(−1)n

(nτ)k
+ Gk

due to the absolute convergence of the series.
By the definition (see, for example, [2])

G(t) =
2ieπit/τ

e2πit/τ − 1
=

1
πt/τ

(2πit/τ)e(2πit/τ) 1
2

e2πit/τ − 1
=

τ

πt

∞∑

k=0

Bk

(
1
2

)
(2πit/τ)k

k!
, (46)

we have the following.

Lemma 4.1. For k ∈ N with k ≥ 2,

Gk = − τ

π

∑

n∈Z\{0}

(−1)n

(nτ)k
=

τ

π

(2πi/τ)k

k!
Bk

(
1
2

)
. (47)
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Next assume x 6∈ τZ, and let

F(t; x) =
1

e2πi(t−x)/τ − 1
=

∞∑

k=0

Fk(x)tk. (48)

We can see that x+ τZ is the set of all poles of F(t; x) as a function in t and each
pole is simple. Then we can similarly see that

0 = lim
N→∞

∑

−N≤n≤N

Res
t=x+nτ

t−k−1F(t; x) + Res
t=0

t−k−1F(t; x)

=
τ

2πi

∑

n∈Z

1
(x + nτ)k+1

+ Fk(x)

for k ∈ N.

Lemma 4.2. For k ∈ N,

F0(x) =
1

e−2πix/τ − 1
,

Fk(x) = − τ

2πi

∑

n∈Z

1
(x + nτ)k+1

. (49)

From the above consideration, we can give a proof of Theorem 3.2 as follows.

Proof of Theorem 3.2. Let k ∈ N with k ≥ 2. Let

H(t; x) =
1

(e2πi(t−x)/τ − 1) sin(πt/τ)
= F(t; x)G(t). (50)

The set of poles of H(t; x) are (x + τZ) ∪ τZ. Hence, similarly to the above, we
have

lim
N→∞

(
τ

2πi

∑

−N≤n≤N

(−1)n

(x + nτ)k sin(πx/τ)
+

τ

π

∑

−N≤n≤N
n6=0

(−1)n

(e−2πix/τ − 1)(nτ)k

)

+ Res
t=0

t−kH(t; x) = 0.

Therefore, by Lemma 4.1 we have

τ

2πi

∑

n∈Z

(−1)n

(x + nτ)k sin(πx/τ)

− τ

π

(2πi/τ)k

k!
Bk

(
1
2

)
1

e−2πix/τ − 1
+ Res

t=0
t−kH(t; x) = 0. (51)
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By (44), (46) and Lemma 4.2, the last term is calculated as

Res
t=0

t−kH(t;x) = Res
t=0

t−k

( ∞∑

j=0

Fj(x)tj
)( ∞∑

j=0

Gjt
j−1

)
=

k∑

j=0

Fj(x)Gk−j

= − τ2

2π2i

k∑

j=1

(2πi/τ)k−j

(k − j)!
Bk−j

(
1
2

) ∑

n∈Z

1
(x + nτ)j+1

+
τ

π

(2πi/τ)k

k!
Bk

(
1
2

)
1

e−2πix/τ − 1
.

Therefore we have

τ

2πi

∑

n∈Z

(−1)n

(x + nτ)k sin(πx/τ)

− τ2

2π2i

k∑

j=1

(2πi/τ)k−j

(k − j)!
Bk−j

(
1
2

) ∑

n∈Z

1
(x + nτ)j+1

= 0. (52)

Putting x = m in (52), multiplying by m−s the both sides, and summing them
up in m ∈ Z \ {0} for sufficiently large <s > 0, we obtain

τ

2πi

∑

m∈Z\{0}

∑

n∈Z

(−1)n

ms(m + nτ)k sin(mπ/τ)

− τ2

2π2i

k∑

j=1

(2πi/τ)k−j

(k − j)!
Bk−j

(
1
2

) ∑

m∈Z\{0}

∑

n∈Z

1
ms(m + nτ)j+1

= 0,

where all the sums are absolutely convergent. Hence, by i sin x = sinh(ix), we
obtain the assertion of Theorem 3.2. ¤

Remark 4.1. Theorem 3.2 can also be proved by the same method as in [21].
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phic Forms and Zeta Functions, (S. Böcherer et al., eds.), World Scientific, Hackensack,
NJ, 2006, 71–106.
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