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On absolutely conformal mappings

By DAVID KALAJ (Podgorica) and MIODRAG MATELJEVIĆ (Belgrade)

Abstract. Let Ω be a domain in Rn. It is proved that, if u ∈ C1(Ω;Rn) and there

holds the formula ‖∇u(x)‖n = nn/2|det∇u(x)| in Ω, then for n ≥ 3 u is a restriction

of a Möbius transformation, and for n = 2, u is an analytic function. This extends,

partially, the well-known Liouville theorem ([6]), wich states that if u ∈ ACLn(Ω;Rn),

n ≥ 3, and the condition ‖∇u(x)‖n = nn/2 det∇u(x) is satisfied a.e. in Ω, then u is a

restriction of a Möbius transformation.

1. Introduction

Let Ω be an open set of the Euclidean space Rn. For x = (x1, . . . , xn) ∈ Rn,
we denote by |x| = (x2

1 + · · · + x2
n)1/2 the norm of x. Let m = mn denote the

usual Lebesgue measure on Rn. Sometimes we use notation dx = dx1 . . . dxn and
|D| instead of dm and m(D), where x = (x1, . . . , xn) ∈ Rn and D is a Lebesgue
measurable set in Rn, respectively. For a given domain Ω ⊂ Rn, we say that a
continuous mapping u : Ω → Rn is quasiregular (abbreviated qr) if

(1) u is ACLn, and

(2) there exists a real number K, K ≥ 1, such that

|u′(x)|n ≤ KJu(x) a.e. on Ω, (1.1)

where |u′(x)| = max|h|=1 |u′(x)h|.
In this setting we shortly write that u is a K-qr mapping. For properties of

qr-mappings see [1], [2], [3], [7] and [8]. If u is a K-qr and homeomophic mapping
then it is called K-quasiconformal or shortly K-q.c.
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Research of the second author was partially supported by MNTRS, Serbia, Grant No. 144 020.



34 David Kalaj and Miodrag Mateljević

Let

‖u′(x)‖ =

√√√√
n∑

i,j=1

(∂jui(x))2

denote the Hilbert–Schmidt norm of u′(x), where ∂j = ∂xj
denotes j − th partial

derivative.
It is well known that if u is a K-qr mapping on Ω, then

‖u′(x)‖n ≤ nn/2KJu(x) a.e. on Ω. (1.2)

In this paper we will consider generalized 1-quasiregular mappings, i.e. continuous
mappings u satisfying the conditions u ∈ ACLn and

‖u′(x)‖n ≤ nn/2|Ju(x)| a.e. on Ω. (1.3)

2. The main result

Proposition 2.1 ([4, Section V.3]). Let Ω be an open subset of Rn and

let u : Ω → Rn be a ACLn mapping satisfying the Lusin’s condition (N) (The

condition (N) means that a mapping maps sets of measure zero to sets of measure

zero). Then the function y 7→ N(y, u) is measurable on Rn and

∫

Rn

N(y, u) dy =
∫

Ω

|Ju(x)| dx, (2.1)

where Ju(x) is the Jacobian of u at x and N(y, u) denotes the cardinal number

of the set u−1(y) if the last set is finite and it is +∞ in the other case.

Corollary 2.2. Under the condition of the previous proposition there holds

the inequality ∫

Ω

|Ju(x)| dx ≥ |u(Ω)|. (2.2)

The equality holds in (2.2) if and only if u is univalent on Ω.
For 1-qr mapping we also say generalized conformal mapping. The general-

ized Liouville theorem ([6]) states: for n ≥ 3 every 1-qr mapping on a domain
Ω ⊂ Rn, is a restriction of a Möbius transformation or a constant.

We extend (partially) this theorem as follows:
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Theorem 2.3. Let Ω be a domain in Rn and let u : Ω → Rn be a C1

mapping such that

‖u′(x)‖n = nn/2|Ju(x)|, x ∈ Ω. (We say that u is absolutely conformal). (2.3)

Then, for n = 2, u is analytic or anti-analytic function. For n ≥ 3, u is a

restriction of a Möbius transformation or a constant.

Proof. We first consider the case n = 2. Let Ω0 = {z ∈ Ω : Ju(z) = 0},
Ω1 = {z ∈ Ω : Ju(z) > 0}, Ω2 = {z ∈ Ω : Ju(z) < 0}. Let u1 and u2 be the
restrictions of u on Ω1 and Ω2. Put p = uz. Suppose that u is smooth and non
constant function and the equality holds in (2.3). Then uz = uz = 0 on Ω0, u1

is conformal on Ω1, and u2 is anti conformal on Ω2 (and therefore p = 0 on Ω2).
Hence p is continuous on Ω and analytic on Ω1 ∪ Ω2.

We will prove that p is analytic on Ω.
There are two cases:

(a) If z0 ∈ Ω0 is an interior point of Ω0, then p is analytic at z0.

(b) If z0 ∈ Ω0 is not an interior point of Ω0 then z0 ∈ ∂Ω0\∂Ω = ∂(Ω1∪Ω2)\∂Ω.
Hence then there exists a sequence zn ∈ Ω1 ∪ Ω2 such that limn→∞ zn = z0.

It follows that pz̄(zn) = 0 and therefore limn→∞ pz̄(zn) = 0 and hence, since
p is continuous, we find pz̄(z0) = 0. Hence p is analytic in Ω. If Ω2 is not empty
set, according to the uniqueness theorem, this gives that uz(z) ≡ 0 on Ω and
hence u is anti analytic on Ω. Since u is analytic on Ω1, we first conclude that u

is constant on Ω1 and therefore that Ω1 is empty set. In a similar way, if Ω1 is
not empty set, we conclude that u is analytic on Ω.

Hence u is analytic in Ω or it is anti-analytic in Ω. Note that the set Ω \
(Ω1 ∪ Ω2) is discrete or it is equal to the set Ω.

We now consider the case n > 2.
Let Ω0 = {x ∈ Ω : Ju(x) = 0}, Ω1 = {x ∈ Ω : Ju(x) > 0}, Ω2 = {x ∈ Ω :

Ju(x) < 0} and Ω∗ = Ω\Ω0. If u is a C1 mapping, then the Hadamard inequality
gives

|Ju| ≤
n∏

k=1

|∂ku| (2.4)

and hence:

|Ju| ≤
(∑n

k=1 |∂ku|2
n

)n
2

, that is nn/2|Ju(x)| ≤ ‖u′(x)‖n, x ∈ Ω. (2.5)

Using the geometric interpretation of Ju(x) one can show that the equality
holds in (2.4) at a point x ∈ Ω∗ if and only if the vectors ∂iu(x), i = 1, 2, . . . , n,
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are orthogonal. Observe that if the equality holds in (2.5), then the equality holds
in (2.4). Hence, for x ∈ Ω∗, the equality holds in (2.5) if and only if

〈∂iu, ∂ju〉 =

{
0 if i 6= j,

s2 if i = j,

where s = s(x) is a real function on Ω∗. Hence ‖u′(x)‖n = nn/2|Ju(x)| for x ∈ Ω∗

and since u ∈ C1, ‖u′(x)‖n = nn/2|Ju(x)| for x ∈ Ω.
If u is not a constant function, then Ω∗ is not empty set. Suppose, for

example, that Ω1 is not an empty set and let Ω̂ be a component of Ω1.
Thus u is a generalized conformal mapping in Ω̂. Hence, by the generalized

Liouville theorem i.e. Gehring-Reshetnyak’s theorem see ([6]), every general-
ized conformal mapping in the space is a Möbius transformation. Hence u is the
restriction to Ω̂ of a Möbius transformation A. Let ω ∈ Ω̂. Then there exists
a sequence zn ∈ Ω̂, n ∈ N, such that zn tends ω. Since u is a C1 function,
Ju(ω) = lim Ju(zn) = lim JA(zn). It is clear that JA(ω) = lim JA(zn) and there-
fore Ju(ω) > 0 ω ∈ Ω̂. Hence Ω̂ is closed-open in Ω and therefore Ω = Ω̂. ¤

Example 1. Let n ≥ 3 and x = (x1, . . . , xn),

u(x) =

{
(x1, . . . , xn−1, xn) if xn ≥ 0

(x1, . . . , xn−1,−xn) if xn ≤ 0.

Then there hold (2.3) almost everywhere but u is not a Möbius transformation.
This means that the condition u is C1 in Theorem 2.3 is important.

Corollary 2.4. Let Ω be a domain in the Euclidean space Rn, n ≥ 2, and

u ∈ ACLn(Ω) satisfying the condition (N).
Then ∫

Ω

‖u′(x)‖ndx ≥ nn/2|u(Ω)| . (2.6)

If u is a C1 mapping , then the equation in (2.6) holds if and only if u is an

injective conformal mapping or a constant mapping.

Proof. Using (2.2) and (2.5) and Corollary 2.2 we obtain:

Dn(u) :=
∫

Ω

(
n∑

i=1

|∂iu|2
)n/2

dm(x) ≥ nn/2

∫

Ω

|Ju(x)|dm(x) ≥ nn/2 |u(Ω)|,

and consequently
Dn(u) ≥ nn/2 |u(Ω)|.
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Suppose now that the equality holds in (2.6) and u ∈ C1. Since u is C1, u
satisfies the condition (N) and the equality holds in (2.5) for every x ∈ Ω (that
is u satisfies condition (2.3) and therefore u is absolutely conformal). Thus, by
Theorem 2.3, it is an analytic (or anti-analytic) function in the plane or a Möbius
transformation in the space. Thus if n ≥ 3, then u is a Möbius transformation.

It remains to finish the proof in the case n = 2; that is to prove that if u is
non-constant analytic (or anti-analytic) and

D2(u) = 2|u(Ω)|

then it is a univalent conformal (or anti-conformal) mapping.
Using the fact that u is an open mapping the assumption u0 = u(z1) = u(z2)

for z1 6= z2 has the consequence that there exist two disjoint open sets U1, U2 ⊂ Ω
and a disk D(u0, r

′) ⊂ u(Ω) such that D(u0, r
′) = u(U1) = u(U2). Hence

D2(u) >

∫

Ω\U1

‖u′(z)‖2 dxdy ≥ 2|(u(Ω \ U1))| = 2|Ω′|

which is a contradiction. ¤

An open question. From the proofs of the main theorems of the paper a
question emerges: Does there exist a number Ko = Ko(n) > 1 such that if u ∈ C1

satisfies |u′(x)|n ≤ K|J(x, u)| and K < Ko, then u is a K-quasiregular mapping?
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