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On absolutely conformal mappings

By DAVID KALAJ (Podgorica) and MIODRAG MATELJEVIC (Belgrade)

Abstract. Let Q be a domain in R™. Tt is proved that, if u € C*(€2;R™) and there
holds the formula ||Vu(z)||™ = n™/?|det Vu(z)| in ©Q, then for n > 3 u is a restriction
of a Mobius transformation, and for n = 2, u is an analytic function. This extends,
partially, the well-known Liouville theorem ([6]), wich states that if u € ACL™(Q;R"),
n > 3, and the condition ||[Vu(z)||™ = n"/? det Vu(z) is satisfied a.e. in , then u is a

restriction of a Mdbius transformation.

1. Introduction

Let Q be an open set of the Euclidean space R™. For x = (z1,...,2,) € R",
we denote by || = (2 + - + 22)'/2 the norm of x. Let m = m,, denote the
usual Lebesgue measure on R™. Sometimes we use notation dz = dx; ... dz, and
|D| instead of dm and m(D), where x = (z1,...,z,) € R” and D is a Lebesgue
measurable set in R"™, respectively. For a given domain 2 C R", we say that a
continuous mapping u : Q — R™ is quasiregular (abbreviated qr) if
(1) wis ACL™, and
(2) there exists a real number K, K > 1, such that

[/ (z)|" < KJ,(z) ae. on £, (1.1)
where [u'(z)] = max - [u'(z)h].

In this setting we shortly write that u is a K-qr mapping. For properties of
qr-mappings see [1], [2], [3], [7] and [8]. If w is a K-qr and homeomophic mapping
then it is called K-quasiconformal or shortly K-q.c.
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Let

n

[ @)l = | > (@jui(x))?

i,j=1

denote the Hilbert—Schmidt norm of v/(x), where 0; = 0., denotes j — th partial
derivative.
It is well known that if u is a K-qr mapping on (2, then

[ (z)|* < n"?KJ,(z) ae on Q. (1.2)

In this paper we will consider generalized 1-quasiregular mappings, i.e. continuous
mappings u satisfying the conditions u € ACL™ and

o/ (z)|* < n™/?|J, ()] ae on Q. (1.3)

2. The main result

Proposition 2.1 ([4, Section V.3]). Let Q! be an open subset of R" and
let u: Q — R™ be a ACL™ mapping satisfying the Lusin’s condition (N) (The
condition (N ) means that a mapping maps sets of measure zero to sets of measure
zero). Then the function y — N (y,u) is measurable on R"™ and

Ny, w) dy = /Q ()| dz, (2.1)

R”

where J,(x) is the Jacobian of u at x and N(y,u) denotes the cardinal number
of the set u~!(y) if the last set is finite and it is +o0o in the other case.

Corollary 2.2. Under the condition of the previous proposition there holds

the inequality
|Ju(@)| dz = [u()]. (2.2)
Q

The equality holds in (2.2) if and only if u is univalent on €.

For 1-qr mapping we also say generalized conformal mapping. The general-
ized Liouville theorem ([6]) states: for n > 3 every 1-qr mapping on a domain
Q C R™, is a restriction of a M&bius transformation or a constant.

We extend (partially) this theorem as follows:
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Theorem 2.3. Let Q be a domain in R® and let v : Q@ — R™ be a C!
mapping such that

o/ (z)|* = n"/2|J,(z)], © € Q. (We say that u is absolutely conformal). (2.3)

Then, for n = 2, u is analytic or anti-analytic function. For n > 3, u is a
restriction of a Mébius transformation or a constant.

PROOF. We first consider the case n = 2. Let Qg = {z € Q : J,(2) = 0},
M ={z€Q: Ju(2) >0}, Q2 ={z € Q: Ju(2) <0}. Let u* and u? be the
restrictions of u on 7 and Q. Put p = u,. Suppose that u is smooth and non
constant function and the equality holds in (2.3). Then u, = uz = 0 on Qq, u'
is conformal on Qy, and u? is anti conformal on €, (and therefore p = 0 on €s).
Hence p is continuous on 2 and analytic on 27 U Q5.

We will prove that p is analytic on 2.
There are two cases:
(a) If z9 € Qo is an interior point of g, then p is analytic at zo.
(b) If 29 € Qp is not an interior point of g then zy € 90\ I = I(2; UN2) \ IN.

Hence then there exists a sequence z,, € 1 U Qs such that lim,, .. 2, = 20.

Tt follows that pz(z,) = 0 and therefore lim,, . pz(2,) = 0 and hence, since
p is continuous, we find pz(z9) = 0. Hence p is analytic in Q. If Qs is not empty
set, according to the uniqueness theorem, this gives that u.(z) = 0 on Q and
hence v is anti analytic on €). Since u is analytic on 2, we first conclude that u
is constant on 2; and therefore that ; is empty set. In a similar way, if € is
not empty set, we conclude that u is analytic on €.

Hence w is analytic in € or it is anti-analytic in 2. Note that the set Q\
(€1 U Q) is discrete or it is equal to the set Q.

We now consider the case n > 2.

Let Qo ={z € Q: Ju(x) =0}, Wy ={z€Q: Ju(z) >0}, Qs ={x€Q:
Ju(z) <0} and Q* = Q\ Qp. If u is a C! mapping, then the Hadamard inequality

gives
7l < T 1wud (2.4)
k=1
and hence:

n b) 2\ 2
[Ju| < (W) . that is n™/2|J,(z)| < ||/ (2)|", =z e Q. (2.5)

Using the geometric interpretation of J,(z) one can show that the equality
holds in (2.4) at a point € Q* if and only if the vectors d;u(x), i = 1,2,...,n,
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are orthogonal. Observe that if the equality holds in (2.5), then the equality holds

n (2.4). Hence, for x € Q*, the equality holds in (2.5) if and only if
S Ve

s® ifi =y,

where s = s(x) is a real function on Q*. Hence ||u/(2)||* = n™/2|J,(x)| for z € Q*

and since u € C*, ||[u/(z)||" = n™/?|J,(2)| for = € Q.

If w is not a constant function, then 2* is not empty set. Suppose, for
example, that O is not an empty set and let O be a component of Q.

Thus u is a generalized conformal mapping in Q. Hence, by the generalized
Liouville theorem i.e. GEHRING-RESHETNYAK’s theorem see ([6]), every general-
ized conformal mapping in the space is a Mobius transformation. Hence u is the
restriction to € of a Mobius transformation A. Let w € Q. Then there exists
a sequence z, € fl, n € N, such that z, tends w. Since u is a C! function,
Ju(w) = lim J,,(2,) = lim Ja(2zy,). It is clear that J4(w) = lim J4(z,) and there-
fore J,(w) > 0 w € Q. Hence 2 is closed-open in  and therefore Q = ). O

Ezample 1. Let n >3 and © = (z1,...,2,),

{(xl,...,xn_l,xn) lf.Z'nZO
u(z) =

(5517 sy Tp—1, _xn) if z,, <0.

Then there hold (2.3) almost everywhere but u is not a Mdbius transformation.
This means that the condition u is C' in Theorem 2.3 is important.

Corollary 2.4. Let 2 be a domain in the Euclidean space R™, n > 2, and
u € ACL™(Q) satisfying the condition (N).
Then

/ e (&) "z > 02 ()] (2.6)
Q

If u is a C' mapping , then the equation in (2.6) holds if and only if u is an
injective conformal mapping or a constant mapping.

ProoF. Using (2.2) and (2.5) and Corollary 2.2 we obtain:

n n/2
Dy (u) ::/Q (Zaiw) dm(a:)zn"/z/guu(xﬂdm(x)zn"/Q ()],

and consequently
Dy (u) > n™? u(Q)).
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Suppose now that the equality holds in (2.6) and v € C*. Since u is C', u
satisfies the condition (N) and the equality holds in (2.5) for every z € Q (that
is u satisfies condition (2.3) and therefore u is absolutely conformal). Thus, by
Theorem 2.3, it is an analytic (or anti-analytic) function in the plane or a Mobius
transformation in the space. Thus if n > 3, then u is a Mobius transformation.

It remains to finish the proof in the case n = 2; that is to prove that if u is
non-constant analytic (or anti-analytic) and

Dy(u) = 2[u()]

then it is a univalent conformal (or anti-conformal) mapping.

Using the fact that u is an open mapping the assumption ug = u(z1) = u(z2)
for z; # 25 has the consequence that there exist two disjoint open sets Uy, Uy C 2
and a disk D(ug,r’) C u(€2) such that D(ug,r") = u(Uy) = u(Uz). Hence

Da(u) > /Q\U [’ (2)I[? dwdy > 2|(u(\ U1))| = 2|

which is a contradiction. O

AN OPEN QUESTION. From the proofs of the main theorems of the paper a
question emerges: Does there exist a number K, = K,(n) > 1 such that if u € C*
satisfies |u/(z)|" < K|J(x,u)| and K < K,, then u is a K-quasiregular mapping?
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