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Liouville numbers in the non-archimedean case

By TUANGRAT CHAICHANA (Bangkok), TAKAO KOMATSU (Hirosaki)
and VICHIAN LAOHAKOSOL (Bangkok)

Abstract. Basic results about real Liouville numbers are investigated in three

non-archimedean settings, referred to as the non-archimedean case, comprising the field

of p-adic numbers, the function field completed with respect to the degree valuation

and the function field completed with respect to a prime-adic valuation. The result

of Erdős that every real number is representable as a sum, and as a product of two

real Liouville numbers is shown to hold in the non-archimedean case. The concept of

Liouville continued fractions is also considered.

1. Introduction

Let R be the field of real numbers equipped with the usual absolute value | · |.

The classical Liouville’ s theorem, see e.g. Theorem 1.2 of [1], states that if ξ ∈ R

is an algebraic number of degree n ≥ 2, then there exists a positive constant c(ξ)

depending only on ξ such that
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bn

for all a, b (> 0) ∈ Z. The existence of transcendental numbers is usually shown

using Liouville’s theorem. The transcendental numbers so constructed are referred

to as real Liouville numbers. A number ξ ∈ R is called a real Liouville number if

for any w ∈ R+, the set of positive real numbers, there exist a, b (> 1) ∈ Z such

that
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note that it suffices to take w in N if needed.

Real Liouville numbers possess a number of interesting properties, both al-

gebraic and number theoretic. We are interested here in three of these properties,

which will be referred to under the headings I, II and III.

I. It is well-known, Section 35 of [12], that real Liouville numbers are essen-

tially closed under linear fractional transformation over Z. Indeed, more is true.

Let ξ be a real Liouville number. For each w ∈ R+, from the definition, there is

a sequence of rational numbers (an/bn), with bn+1 > bn > 1, such that

0 <
∣

∣

∣
ξ −

an

bn

∣

∣

∣
<

1

bw
n

,

showing also that ξ is the limit of the sequence (an/bn). In Chapitre II of [10],

the concept of the class H(ξ) of real transcendental numbers associated with ξ is

defined as follows: a real number ζ ∈ H(ξ) if, for the given w and (an/bn), there

is a sequence of rational numbers (cn/dn) such that

0 <
∣

∣

∣
ζ −

cn

dn

∣

∣

∣
<

1

dw
n

and dn = bσn
n ,

where (σn) is a sequence of real numbers bounded both above and below by fixed

positive constants. Maillet, [10], proved that the set H(ξ) enjoys the following

properties.

• Property H1: a
b ξ + c

d ∈ H(ξ) for all a(6= 0), b(6= 0), c, d(6= 0) in Z.

• Property H2: The sum, difference, product and division of two numbers from

H(ξ) is either a number in H(ξ) or a rational number.

II. In 1962, P. Erdős, [3], proved an amazing result that every nonzero real

number can be represented as a sum and also a product of two real Liouville

numbers.

III. It is well-known, [12], that each infinite simple continued fraction

[ā] := [a0; a1, a2, a3 . . . ],

where a0 ∈ Z, ai ∈ N (i ≥ 1), represents an irrational real number. Let hn/kn be

its corresponding nth convergents. We introduce here the notion of real Liouville

continued fraction. We say that [ā] is a real Liouville continued fraction if for

each w ∈ R+ there is an n ∈ N such that

0 <
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1
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n

.

We easily show in the following proposition that real Liouville numbers and real

Liouville continued fractions are the same.
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Proposition 1.1. Each real Liouville continued fraction represents a real

Liouville number and conversely.

Proof. The first assertion is immediate from the definitions, while the con-

verse follows from one of the approximation properties of simple continued frac-

tions, see e.g. Satz 2.11, p. 39 of [12], which states that for an irrational ξ ∈ R, if

there is a rational number a/b with b ≥ 1 such that
∣

∣

∣
ξ −

a

b

∣

∣

∣
<

1

2b2
,

then a/b equals one of the convergents of the simple continued fraction expansion

of ξ. �

There is also a concept of Liouville sequences introduced by J. Hančl in

2003, [4]. In brief, a sequence of positive numbers, (an), is a Liouville sequence

if
∑

n≥1 1/ancn is a real Liouville number for every sequence of positive integers

(cn). We do not consider this notion here.

Our objectives here are first to derive basic properties of Liouville numbers,

second to establish the result of Erdős and third to study Liouville continued

fractions in the three settings of the field of p-adic numbers, the function field

with degree valuation and the function field with τ -adic valuation, τ being a

monic irreducible polynomial. Since the valuations in these settings are non-

archimedean, we shall refer to them collectively as the non-archimedean case.

We start with the case of the function field with degree valuation which is

closest to the case of real numbers.

2. The function field with degree valuation

Let k be a field, x an indeterminate, k((1/x)) =: k∞ the field of all formal

Laurent series equipped with the degree valuation, | · |∞, so normalized that

|x|∞ = e1. Liouvilles’s theorem for k((1/x)), see Theorem 1 of [8] or [14], states

that if ξ ∈ k((1/x)) is an algebraic number, over k(x), of degree n ≥ 2 , then

there exists a positive constant c(ξ) depending only on ξ such that
∣

∣
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for all a, b (6= 0) ∈ k[x]. An element ξ ∈ k((1/x)) is called a k∞-Liouville number

if for each w ∈ R+, there exist a, b ∈ k[x]\{0} with |b|∞ > 1 such that
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Let ξ be a k∞-Liouville number. For fixed w ∈ R+, from the definition, there are

sequences (an) and (bn) in k[x]\{0}, with |bn|∞ > 1 such that

0 <

∣

∣

∣

∣

ξ −
an

bn

∣
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∞

<
1

|bn|
w
∞

.

I. We define the class H∞(ξ) of transcendental elements in k((1/x)) asso-

ciated with ξ as follows: a transcendental element ζ ∈ H∞(ξ) if, for the given

w > 0 and the sequence (an/bn), there are sequences (cn) and (dn) in k[x]\{0},

such that

0 <

∣

∣

∣

∣

ζ −
cn

dn

∣

∣

∣

∣

∞

<
1

|dn|
w
∞

and |dn|∞ = |bn|
σn

∞ , (1)

where (σn) is a sequence of real numbers bounded both above and below by fixed

positive constants. Clearly, each element in H∞(ξ) is also a k∞-Liouville number.

Similar to the real case, we define:

• Property H∞1: a
b ξ + c

d ∈ H∞(ξ) for all a(6= 0), b(6= 0), c, d(6= 0) in k[x].

• Property H∞2: The sum, difference, product and division of two numbers

from H∞(ξ) is either a number in H∞(ξ) or an element in k(x).

Proposition 2.1. Properties H∞1 and H∞2 hold for ξ being a k∞-Liouville

number.

Proof. Fix w > 0. For n ∈ N, n ≥ w, since ξ is a k∞-Liouville number,

there exist an, bn ∈ k[x] \ {0} with |bn|∞ > 1 such that

0 <
∣
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bn
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n
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1

|bn|
w
∞

.

Consider the element a
b ξ + c

d with a(6= 0), b(6= 0), c, d(6= 0) in k[x]. Let

cn

dn
=

a

b
·
an

bn
+

c

d
=

a d an + b c bn

bd bn
,

where dn = b d bn, |dn|∞ = |bn|
1+ǫn
∞ . Clearly, (ǫn) is a bounded sequence of

positive numbers. Thus,
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∞

,

by choosing n large enough. Property H∞1 follows with σn = 1 + ǫn.

We remark that with the same proof just shown, we also have that if ζ ∈

H∞(ξ), then a
b ζ + c

d ∈ H∞(ξ) for all a(6= 0), b(6= 0), c, d(6= 0) ∈ k[x].
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To establish Property H∞2, let ζ1, ζ2 ∈ H∞(ξ). Then for n ∈ N, n ≥ w,

there exist cn(i), dn(i) ∈ k[x] \ {0} (i = 1, 2) with |dn(i)|∞ > 1 such that

0 <

∣

∣

∣

∣

ζi −
cn(i)

dn(i)

∣

∣

∣

∣

∞

<
1

|dn(i)|n∞
≤

1

|dn(i)|w∞
, |dn(i)|∞ = |bn|

σn(i)
∞ (i = 1, 2).

For the proof of the sum and difference of two k∞-Liouville numbers, it suffices

by property H∞1 to prove only for the case of the sum. Assuming ζ1 + ζ2 6∈ k(x),

then

0 <

∣
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}

=
1
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∞

=
1
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<
1
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w
∞

,

when n is chosen large enough, i.e., ζ1 + ζ2 ∈ H∞(ξ) with corresponding σn =

σn(1) + σn(2).

Next consider the product ζ1 ζ2 and assuming that it is not in k(x). For n

sufficiently large, using also |ζ1|∞ = |cn(1)/dn(1)|∞, we have

0 <

∣

∣

∣

∣

ζ1 ζ2 −
cn(1)

dn(1)
·
cn(2)

dn(2)

∣

∣

∣

∣

∞

=

∣

∣

∣

∣

(

ζ1 −
cn(1)

dn(1)

)

ζ2 +

(

ζ2 −
cn(2)

dn(2)

)

cn(1)

dn(1)

∣

∣

∣

∣

∞

< max

{∣

∣

∣

∣

ζ2

dn(1)n

∣

∣

∣

∣

∞

,

∣

∣

∣

∣

ζ1

dn(2)n

∣

∣

∣

∣

∞

}

≤
max {|ζ1|∞ , |ζ2|∞}

|bn|
min{σn(1),σn(2)}n
∞

=
max {|ζ1|∞ , |ζ2|∞}

∣
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1
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,

when n is chosen large enough, i.e., ζ1 ζ2 ∈ H∞(ξ) with corresponding σn =

σn(1) + σn(2).

Finally for division, by the result about multiplication, it suffices to show

that if ζ ∈ H∞(ξ), then 1/ζ ∈ H∞(ξ). In addition, by the remark right after

the proof of Property H∞1 and multiplying with a suitable element in k(x), it is

sufficient to treat the case where |ζ|∞ = 1. Using the above notation, we have

for n ≥ w sufficiently large 1 = |ζ|∞ = |cn/dn|∞, and so |cn|∞ = |dn|∞ = |bn|
σn
∞ .

Consequently, for sufficiently large n,
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Immediate from Proposition 2.1 is the next corollary.

Corollary 2.2. If ξ is a k∞-Liouville number, then its linear fractional

transformation aξ+b
cξ+d , where a, b, c, d ∈ k[x] are such that cξ + d 6= 0, is either

a k∞-Liouville number or belongs to the k(x).

II. Next, we prove Erdős’ theorem.

Theorem 2.3. Let ξ ∈ k((1/x))\{0}. Then there are k∞-Liouville numbers

α, β, µ, ν such that

ξ = α + β = µ · ν.

Proof. The theorem is trivial for ξ ∈ k(x). We assume then that ξ 6∈ k(x).

By Proposition 2.1, it suffices to consider those elements ξ for which |ξ|∞ < 1.

Write

ξ =
an1

xn1
+

an2

xn2
+

an3

xn3
+ · · · ∈ k((1/x)),

where ni ∈ N (i ≥ 1), n1 < n2 < n3 < . . . and ani
6= 0 (i ≥ 1). Let

α :=
an1

xn1
+

(an3!

xn3!
+ · · · +

an4!−1

xn4!−1

)

+
(an5!

xn5!
+ · · · +

an6!−1

xn6!−1

)

+ . . . ,

β :=
(an2!

xn2!
+ · · · +

an3!−1

xn3!−1

)

+
(an4!

xn4!
+ · · · +

an5!−1

xn5!−1

)

+ . . . .

Clearly, ξ = α + β. To finish the first half, we need to show that α and β are

k∞-Liouville numbers. Let r ∈ N and

αr :=

r
∑

i=1

(an(2i−1)!

xn(2i−1)!
+ · · · +

an(2i)!−1

xn(2i)!−1

)

=
Ar

xn(2r)!−1
(Ar ∈ k[x])

βr :=
r

∑

i=1

(an(2i)!

xn(2i)!
+ · · · +

an(2i+1)!−1

xn(2i+1)!−1

)

=
Br

xn(2r+1)!−1
(Br ∈ k[x]) .

Thus,

|α − αr|∞ =
∣

∣

∣
α −

Ar

xn(2r)!−1

∣

∣

∣

∞
= e−n(2r+1)! < e−rn(2r)!−1 ,

|β − βr|∞ =
∣

∣

∣
β −

Br

xn(2r+1)!−1

∣

∣

∣

∞
= e−n(2r+2)! < e−rn(2r+1)!−1 ,

as desired.

To prove the other half, we assume, again without loss of generality, that ξ

is of the form ξ = 1 +
∑

n≥1 cn/xn 6= 1. By [5, Theorem 5.1], or [7, Theorem 4.4]
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for the case of finite base field, ξ(6= 1) has a unique product representation of the

form

ξ =
∞
∏

n=1

(

1 +
bn

xen

)

,

where bn ∈ k\{0}, en ∈ N and en+1 > en > n. Let m0 = 1 and m1 > 1. For each

r ∈ N, choose m2r in such a way that

em2r+1 > r((em0+1 + · · · + em1) + · · · + (em2r−2+1 + · · · + em2r−1)),

and choose m2r+1 in such a way that

em2r+1 > r((em1+1 + · · · + em2) + · · · + (em2r−1+1 + · · · + em2r
)).

Let

µr :=

r
∏

i=1

(

1 +
bm2i−2+1

xem2i−2+1

)

. . .

(

1 +
bm2i−1

xem2i−1

)

= Cr/x
P

r
i=1(em2i−2+1+···+em2i−1

) (Cr ∈ k[x])

and

νr :=

r
∏

i=1

(

1 +
bm2i−1+1

xem2i−1+1

)

. . .

(

1 +
bm2i

xem2i

)

= Dr/x
P

r
i=1(em2i−1+1+···+em2i

) (Dr ∈ k[x]).

Clearly, µr → µ ∈ k((1/x)) (r → ∞), with |µ|∞ = 1, and

|µr|
−r
∞ = q−r

P
r
i=1(em2i−2+1+···+em2i−1

).

Thus, for each r ∈ N,
∣

∣

∣
µ − Cr/x

P
r
i=1(em2i−2+1+···+em2i−1

)
∣

∣

∣

∞
= |µ − µr|∞ = |µr|∞

∣

∣

∣

∣

µ

µr
− 1

∣

∣

∣

∣

∞

=

∣

∣

∣

∣

∣

∞
∏

i=r+1

(

1 +
bm2i−2+1

xem2i−2+1

)

. . .

(

1 +
bm2i−1

xem2i−1

)

− 1

∣

∣

∣

∣

∣

∞

= e−em2r+1

< exp

(

− r
r

∑

i=1

(em2i−2+1 + · · · + em2i−1)

)

showing that µ is a k∞-Liouville number. Similarly, if ν = lim
r→∞

νr, then

∣

∣

∣
ν − Dr/x

Pr
i=1(em2i−1+1+···+em2i

)
∣

∣

∣

∞
= |ν − νr|∞ = e−em2r+1+1 ,

i.e., ν is also a k∞-Liouville number. Since ξ = µ ·ν, this completes the proof. �
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III. In k((1/x)), there is a continued fraction expansion ([2] or [13]), whose

construction and basic properties are similar to the one in the real case, which we

now review. Since each element ξ ∈ k((1/x)) \ {0} has a unique representation of

the form

ξ = cmxm + cm−1x
m−1 + cm−2x

m−2 + . . . (m ∈ Z),

with coefficients cm(6= 0), cm−1, cm−2, · · · ∈ k. Define

ξ = [ξ] + (ξ),

where

[ξ] := cmxm + cm−1x
m−1 + · · · + c1x + c0, and

(ξ) := c−1x
−1 + c−2x

−2 + . . . ,

with the customary convention that empty sums are interpreted as 0. Clearly, [ξ]

and (ξ) are uniquely determined. Let β0 = [ξ] ∈ k[x], so that |β0|∞ = |ξ|∞ ≥ 1,

provided [ξ] 6= 0. If (ξ) = 0, then the process stops. If (ξ) 6= 0, then write

ξ = β0 +
1

ξ1
,

where ξ−1
1 = (ξ) with |ξ1|∞ > 1. Next write ξ1 = [ξ1] + (ξ1) and let β1 = [ξ1] ∈

k[x]\k, so that |β1|∞ = |ξ1|∞ > 1. If (ξ1) = 0, then the process stops. If (ξ1) 6= 0,

then write

ξ1 = β1 +
1

ξ2
,

where ξ−1
2 = (ξ1) with |ξ2|∞ > 1 and let β2 = [ξ2] ∈ k[x] \ k, so that |β2|∞ =

|ξ2|∞ > 1. Again, if (ξ2) = 0, then the process stops; otherwise, continue in the

same manner. By so doing, we obtain the unique representation

ξ = [β0; β1, . . . , βn−1, ξn] := β0 +
1

β1 + 1

.. . 1

βn−1+ 1
ξn

,

where βi ∈ k[x] \ k (i ≥ 1), ξn ∈ k((1/x)), |ξn|∞ > 1 if the process does not stop

before, and ξn is referred to as the nth complete quotient. The sequence (βn) is

uniquely determined, called the sequence of partial quotients of ξ.

The two sequences of partial numerators, (Cn), and partial denominators,

(Dn), are defined by

C−1 = 1, C0 = β0, Cn+1 = βn+1Cn + Cn−1 (n ≥ 0)

D−1 = 0, D0 = 1, Dn+1 = βn+1Dn + Dn−1 (n ≥ 0).

The following basic properties are easily verified by induction.
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Lemma 2.4. For ξ ∈ k((1/x)) \ {0}, with the above notation we have, for

n ≥ 0

ξn+1Cn + Cn−1

ξn+1Dn + Dn−1
= [β0; β1, β2, . . . , βn, ξn+1] (2)

|Dn|∞ = |β1β2 . . . βn|∞, (3)

∣

∣

∣
ξ −

Cn

Dn

∣

∣

∣

∞
=

1

|DnDn+1|∞
=

1

|Dn|2∞|βn+1|∞
, (4)

CnDn−1 − DnCn−1 = (−1)n−1. (5)

From (2), we have

Cn

Dn
=

βnCn−1 + Cn−2

βnDn−1 + Dn−2
= [β0; β1, β2, . . . , βn] (n ≥ 0),

and so Cn/Dn is called the nth convergent. If (ξn) = 0 for some n, then ξ =

[β0; β1, β2, . . . , βn−1], i.e., the expansion terminates. Otherwise, (ξn) 6= 0 for all

n implying that the expansion is infinite. Equation (3) shows then that

|D2
n βn+1|∞ = |β1 . . . βn|

2
∞|βn+1|∞ ≥ e2n+1.

and so
∣

∣

∣

∣

ξ −
Cn

Dn

∣

∣

∣

∣

∞

≤
1

e2n+1
→ 0 (n → ∞),

which enables us to write ξ = [β0; β1, β2, β3, . . . ]; the right hand side is referred

to as the k∞-continued fraction of ξ.

An infinite k∞-continued fraction [β̄] = [β0; β1, β2, β3, . . . ] ∈ k((1/x)) is

called a k∞-Liouville continued fraction if for w ∈ R+, there is an n ∈ N such

that

0 <

∣

∣

∣

∣

[

β̄
]

−
Cn

Dn

∣

∣

∣

∣

∞

<
1

|Dn|
w
∞

.

In k((1/x)), there is an analogue of the approximation property mentioned in the

proof of Proposition 1.1.

Lemma 2.5. Let C, D(6= 0) be relatively prime polynomials in k[x]. Then

∣

∣

∣

∣

ξ −
C

D

∣

∣

∣

∣

∞

<
1

|D|2∞

if and only if the rational function C/D is a convergent of the k∞-continued

fraction of ξ.
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Proof. The ‘ if ’ part follows immediately from (4). To establish the con-

verse, take n ∈ N so that deg Dn−1 ≤ deg D < deg Dn, where Dn is the nth

partial denominator of the k∞-continued fraction of ξ. From Lemma 2.4 (vi), i.e.,

CnDn−1 − DnCn−1 = ±1, there are a, b ∈ k[x], both nonzero provided C/D is

not equal to either Cn−1/Dn−1 or Cn/Dn, satisfying the system of equations

D = aDn−1 + bDn

C = aCn−1 + bCn,

and so Dξ − C = a(Dn−1ξ − Cn−1) + b(Dnξ − Cn). From the first equation of

the system, observe that deg aDn−1 = deg bDn, i.e., deg a − deg Dn = deg b −

deg Dn−1 > deg b − deg Dn+1, i.,e., |a/Dn|∞ > |b/Dn+1|∞. Equation (4) implies

then that

|Dξ − C|∞ =

∣

∣

∣

∣

a

Dn

∣

∣

∣

∣

∞

>

∣

∣

∣

∣

b

Dn−1

∣

∣

∣

∣

∞

≥
1

|Dn−1|∞
≥

1

|D|∞

which is a contradiction. �

We next show that the two concepts of k∞-Liouville numbers and k∞-

Liouville continued fractions coincide.

Proposition 2.6. Let ξ =[β0; β1, β2, . . . ]∈ k((1/x)) with convergent Cn/Dn.

The following assertions are equivalent:

(i) ξ is a k∞-Liouville number.

(ii) ξ is a k∞-Liouville continued fraction.

(iii) To each w ∈ N, there is an ν ∈ N such that |βν+1|∞ > |Dν |
w
∞.

Proof. That (i) ⇔ (ii) is immediate from their corresponding definitions

and Lemma 2.5.

To prove (ii) ⇒ (iii), let w ∈ N. Since ξ is a k∞-Liouville continued fraction, for

m ≥ w + 2, there is a convergent Cm/Dm such that

0 <
1

|Dm|2∞|βm+1|∞
=

∣

∣

∣

∣

ξ −
Cm

Dm

∣

∣

∣

∣

∞

<
1

|Dm|m∞
,

and so

|Dm|w∞ ≤ |Dm|m−2
∞ < |βm+1|∞.

To prove (iii) ⇒ (ii), let w ∈ R+. For n ≥ w, since there is ν ∈ N such that

|βν+1|∞ > |Dν |
n
∞, we have

0 <

∣

∣

∣

∣

ξ −
Cν

Dν

∣

∣

∣

∣

∞

=
1

|Dν |2∞|βν+1|∞
<

1

|Dν |
n+2
∞

<
1

|Dν |w∞
. �
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3. The field of p-adic numbers

Let Qp be the field of p-adic numbers equipped with the p-adic valuation,

| · |p so normalized that |p|p = 1/p. The p-adic Liouville’s theorem, see e.g. p. 46

of [9], states that if ξ ∈ Qp is an algebraic number of degree n, then there exists

a positive constant c(ξ) depending only on ξ such that

|bξ − a|p ≥
c(ξ)

|a, b|
n ,

for all a, b (6= 0) ∈ Z, where |a, b| := max{|a|, |b|}. A number ξ ∈ Qp is called a

p-adic Liouville number if for any w ∈ R+, there exist a, b ∈ Z\{0} with |a, b| > 1

such that

0 < |bξ − a|p <
1

|a, b|
w .

Let ξ be a p-adic Liouville number. For each fixed w ∈ R+, from the definition,

there are sequences (an) and (bn) in Z\{0}, with bn∈N, |an+1, bn+1|> |an, bn|> 1

such that

0 < |bnξ − an|p <
1

|an, bn|
w .

I. We define the class Hp(ξ) of p-adic transcendental numbers associated with

ξ as follows: a p-adic transcendental number ζ ∈ Hp(ξ) if, for the given w > 0

and (an/bn), there are sequences (cn) and (dn) in Z\{0} such that

0 < |dnζ − cn|p <
1

|cn, dn|
w and |cn, dn| = |an, bn|

σn,

where (σn) is a sequence of real numbers bounded both above and below by

fixed positive constants. Clearly, each element in Hp(ξ) is also a p-adic Liouville

number.

In addition, define

• Property Hp1: a
b ξ + c

d ∈ Hp(ξ) for all a(6= 0), b(6= 0), c, d(6= 0) in Z.

• Property Hp2: The sum, difference, product and division of two numbers

from Hp(ξ) is either a number in Hp(ξ) or an element in Q.

Proposition 3.1. Properties Hp1 and Hp2 hold for ξ being a p-adic Liouville

number.

Proof. Fix w > 0. For n ∈ N, n ≥ w, since ξ is a p-adic Liouville number,

there exist an, bn ∈ Z\{0} with |an, bn| > 1 such that

0 < |bnξ − an|p <
1

|an, bn|n
≤

1

|an, bn|w
.
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Consider the element a
b ξ + c

d with a(6= 0), b(6= 0), c, d(6= 0) in Z. Let

cn

dn
:=

a

b

an

bn
+

c

d
=

adan + bcbn

bdbn
,

where cn = adan+bcbn and dn = bdbn. Let (ǫn) be a sequence of positive numbers

such that

|cn| ≤ max (|adan|, |bcbn|) ≤ |an, bn|
1+ǫn

and

|dn| = |bdbn| ≤ |an, bn|
1+ǫn .

Clearly, (ǫn) is a bounded sequence of positive numbers. Thus

0 <
∣

∣

∣
dn

(a

b
ξ +

c

d

)

− cn

∣

∣

∣

p
= |ad|p|bnξ − an|p <

|ad|p
|an, bn|n

≤
|ad|p

|cn, dn|n/(1+ǫn)
≤

1

|cn, dn|w
,

by choosing n large enough. Property Hp1 follows with σn = 1+ǫ′n where ǫ′n ≤ ǫn.

We remark that with the same proof just shown, we also have that if ζ ∈

Hp(ξ), then a
b ζ + c

d ∈ Hp(ξ) for all a(6= 0), b(6= 0), c, d(6= 0) ∈ Z.

To establish Property Hp2, let ζ1, ζ2 ∈ Hp(ξ). Then for n ∈ N, n ≥ w, there

exist cn(i), dn(i) ∈ Z \ {0} (i = 1, 2) with |dn(i)| > 1 such that

0 < |dn(i)ζi − cn(i)|p <
1

|cn(i), dn(i)|
n ≤

1

|cn(i), dn(i)|
w ,

|cn(i), dn(i)| = |an, bn|
σn(i) (i = 1, 2). (6)

For the proof of the sum and difference of two p-adic Liouville numbers, it suffices

by property Hp1 to prove only for the case of the sum. Assuming ζ1 + ζ2 6∈ Q,

then

0 < |dn(1)dn(2) {ζ1 + ζ2} − {cn(1)dn(2) + cn(2)dn(1)}|p

= |dn(1)dn(2)|p

∣

∣

∣

∣

(

ζ1 −
cn(1)

dn(1)

)

+

(

ζ2 −
cn(2)

dn(2)

)∣

∣

∣

∣

p

< max

{

1

|cn(1), dn(1)|
n ,

1

|cn(2), dn(2)|
n

}

=
1

|an, bn|
n min{σn(1),σn(2)}

=
1

{|cn(1), dn(1)| · |cn(2), dn(2)|}
n min{σn(1),σn(2)}/(σn(1)+σn(2))
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≤
1

|cn(1)cn(2), cn(1)dn(2), dn(1)cn(2), dn(1)dn(2)|
w

≤
1

|dn(1)dn(2), {cn(1)dn(2) + cn(2)dn(1)}|
w

when n is chosen large enough, i.e., ζ1 + ζ2 ∈ Hp(ξ) with corresponding σn =

σ′
n(1) + σ′

n(2) where σ′
n(1) + σ′

n(2) ≤ σn(1) + σn(2).

Next consider the product ζ1 ζ2 and assuming that ζ1ζ2 6∈ k(x). For n suffi-

ciently large, since both |dn(1)ζ1|p and |cn(1)|p are > 1/|cn(i), dn(i)|n, the strong

triangle inequality and (3) yield |ζ1|p = |cn(1)/dn(1)|p. Thus,

0 < |dn(1)dn(2)ζ1 ζ2 − cn(1)cn(2)|p

= |{dn(1)ζ1 − cn(1)} dn(2)ζ2 + {dn(2)ζ2 − cn(2)} cn(1)|p

< max
{ |ζ2|p
|cn(1), dn(1)|n

,
1

|cn(2), dn(2)|n

}

≤
max{1, |ζ2|p}

|an, bn|n min{σn(1),σn(2)}

<
1

|cn(1)cn(2), dn(1)dn(2)|
w ,

when n is chosen large enough, i.e., ζ1ζ2 ∈ Hp(ξ) with corresponding σn = σ′
n(1)+

σ′
n(2) where σ′

n(1) + σ′
n(2) ≤ σn(1) + σn(2).

Finally for division, by the result about multiplication, it suffices to show that

if ζ ∈ Hp(ξ), then 1/ζ ∈ Hp(ξ). In addition, by the remark right after the proof

of Property Hp1 and multiplying with a suitable element in k(x), it is sufficient

to treat the case where |ζ|p = 1. Using the above notation, we have for n ≥ w

sufficiently large 1 = |ζ|p = |cn/dn|p, and so |cn|p = |dn|p = |bn|
σn . Consequently,

for sufficiently large n,

∣

∣

∣
cn ·

1

ζ
− dn

∣

∣

∣

p
= |cn − dnζ|p <

1

|cn, dn|
n <

1

|cn, dn|w
,

i.e., 1/ζ ∈ Hp(ξ) with the same σn. �

Corollary 3.2. If ξ is a p-adic Liouville number, then its linear fractional

transformation aξ+b
cξ+d , where a, b, c, d ∈ Z are such that cξ + d 6= 0, is either a

p-adic Liouville number or a rational number.

II. Next, we prove the p-adic analogue of Erdős’ theorem.

Theorem 3.3. Let ξ ∈ Qp \ {0}. Then there are p-adic Liouville numbers

α, β, µ, ν such that

ξ = α + β = µ · ν.
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Proof. The part corresponding to the sum of two p-adic Liouville numbers

was proved by Menken in [11]. To prove the other half, we assume, again without

loss of generality, that ξ(6= 0) is of the form ξ = 1 +
∑

n≥1 cnpn 6= 1, cn ∈

{0, 1, . . . , p − 1}. By [5, Theorem 1.4], ξ has a unique product representation of

the form

ξ =

∞
∏

n=1

(1 + bnpen),

where 1 ≤ bn ≤ p − 1, en ∈ N and en+1 > en. Let m0 = 1 and m1 > 1. For each

r ∈ N, choose m2r such that

em2r+1 ≥ r

r
∑

i=1

(

(em2i−2+1 + 1) + · · · + (em2i−1 + 1)
)

,

and choose m2r+1 such that

em2r+1 ≥ r

r
∑

i=1

(

(em2i−1+1 + 1) + · · · + (em2i
+ 1)

)

.

Let

µr :=

r
∏

i=1

(1 + bm2i−2+1p
em2i−2+1) . . . (1 + bm2i−1p

em2i−1 )

and

νr :=

r
∏

i=1

(1 + bm2i−1+1p
em2i−1+1) . . . (1 + bm2i

pem2i ).

Clearly µr → µ ∈ Qp (r → ∞), with |µ|p = 1. We have

|µr| < p
P

r
i=1

(

(em2i−2+1+1)+···+(em2i−1
+1)

)

.

Thus, for each r ∈ N,

|µ − µr|p = |µr|p

∣

∣

∣

∣

µ

µr
− 1

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∞
∏

i=r+1

(1 + bm2i−2+1p
em2i−2+1) . . . (1 + bm2i−1p

em2i−1 ) − 1

∣

∣

∣

∣

p

= |pem2r+1 |p = p−em2r+1 ≤ p−r
Pr

i=1((em2i−2+1+1)+···+(em2i−1
+1)) < |µr|

−r

showing that µ is a p-adic Liouville number. Similarly, if ν = limr→∞ νr, then

|ν − νr|p = e−em2r+1+1 < |νr|
−r,

i.e., ν is also a p-adic Liouville number. Since ξ = µ · ν, this completes the

proof. �
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III. The so-called Ruban continued fraction expansion in Qp, see e.g. [6], is

now considered. Without loss of generality, it suffices to consider numbers in pZp.

Let ξ ∈ pZp\{0}. Since ξ 6= 0, we have |ξ−1|p > 1 and we uniquely write

ξ−1 = b−np−n + b−n+1p
−n+1 + · · · + b0 + b1p + b2p

2 + . . .

where n ∈ N and bi ∈ {0, 1, . . . , p − 1} for all i ≥ −n with b−n 6= 0. Define

[

ξ−1
]

:=

0
∑

i=−n

bip
i,

(

ξ−1
)

:=

∞
∑

i=1

bip
i,

Uniquely, we have ξ−1 = [ξ−1] + (ξ−1). Next write

ξ−1 = a1 + ξ2,

where a1 = [ξ−1], ξ2 = (ξ−1). If ξ2 = 0, the algorithm stops. If ξ2 6= 0, since

|ξ−1
2 |p > 1, repeating the step just described, we can uniquely write

ξ−1
2 = a2 + ξ3,

where a2 = [ξ−1
2 ], ξ3 = (ξ−1

2 ). Again, if ξ3 = 0, the algorithm stops, otherwise

it proceeds in the same manner with ξ3 replacing ξ2 and so on. Since the ai’s

(i ≥ 0) obtained are unique, each ξ ∈ pZp\{0} has a unique Ruban continued

fraction expansion of the form

ξ =
1

a1 +
1

a2 + 1

. .. 1
ak+ξk+1

,

where the ai’s are of the form
∑0

i=−n bip
i ∈ Z[1/p] (n ∈ N), bi ∈ {0, 1, . . . , p− 1}

for all i, with b−n 6= 0. Define the two sequences of partial numerators and partial

numerators by

C−1 = 1, C0 = 0, Ck+1 = ak+1Ck + Ck−1 ∈ Z[1/p] (k = 0, 1, 2, . . . )

D−1 = 0, D0 = 1, Dk+1 = ak+1Dk + Dk−1 ∈ Z[1/p] (k = 0, 1, 2, . . . ),

and the so kth convergent to ξ is

Ck

Dk
=

1

a1 +
1

a2 + 1

.. . 1

ak−1+ 1
ak

.
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If (ξk) = 0 for some k, then ξ = [0; a1, a2, . . . , ak−1], i.e., the Ruban continued

fraction of ξ terminates. Otherwise, (ξk) 6= 0 for all k and its Ruban continued

fraction is infinite and in this case, and we write

ξ =
1

a1 +
1

a2 + . . .

:= [0; a1, a2, . . . ], (7)

where the right hand side is referred to as the Ruban continued fraction of ξ.

Since the partial quotients, ai, partial numerators Ck, and partial denominators

Dk are all rational, not necessarily integral, it is convenient to make use of its

associated Ruban continued fraction

ξ =
γ1

β1 + γ2

β2+
γ3

β3 + . . .

:= [0; γ1/β1, γ2/β2, γ3/β3, . . . ], (8)

where

γ1 = |a1|p, γn = |anan−1|p (n ≥ 2), βn = an|an|p (n ≥ 1).

Clearly, the partial numerators γn and the partial denominators βn of the associ-

ated Ruban continued fraction are positive integers. We similarly define the kth

convergent of (8) as

C−1 = 1, C0 = 0, Ck+1 = βk+1Ck + γk+1Ck−1 ∈ Z (k = 0, 1, 2, . . . )

D−1 = 0, D0 = 1, Dk+1 = βk+1Dk + γk+1Dk−1 ∈ Z (k = 0, 1, 2, . . . ).

The Ruban continued fraction (7) and its associated Ruban continued fraction

(8) are equivalent in the sense that Ck/Dk = Ck/Dk for every k ≥ 0, which can

easily proved by induction. The following lemma summarizes basic properties of

the Ruban continued fraction of ξ and its associated Ruban continued fraction.

Lemma 3.4. For n ≥ 1, we have

|Cn|p = |a2 · · · an|p < |Dn|p = |a1 · · · an|p (9)
∣

∣

∣

∣

ξ −
Cn

Dn

∣

∣

∣

∣

p

=

∣

∣

∣

∣

ξ −
Cn

Dn

∣

∣

∣

∣

p

=
1

|DnDn+1|p
=

1

|an+1D2
n|p

<
1

|D2
n|p

, (10)

|Cn,Dn| := max(|Cn| , |Dn|) < 2n
∣

∣a2
1a

2
2 · · · a

2
n−1an

∣

∣

p
, (11)

|Dn|p < |Dn+1|p , |Dn|p = 1. (12)

DnCn−1 − CnDn−1 = (−1)n−1. (13)
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An infinite Ruban continued fraction [β̄] = [β0; β1, β2, β3, . . . ] is a p-adic

Liouville continued fraction if for any w ∈ R+, there is an n ∈ N such that

0 <
∣

∣Dn

[

β̄
]

− Cn

∣

∣

p
<

1

|Cn,Dn|
w .

In Qp, we do not have an analogue of the approximation property mentioned

in Proposition 1.1. This is due to the fact that we only have a weaker analogoue

of Lemma 2.5.

Lemma 3.5. Let ξ ∈ pZp and let C, D ∈ Z[1/p] with |C|p, |D|p ≥ 1.

(i) If C/D is a convergent of the continued fraction of ξ, then

∣

∣

∣

∣

ξ −
C

D

∣

∣

∣

∣

p

<
1

|D|2p
.

(ii) If |Cn−1D − CDn−1|p ≥ 1 and n ∈ N is so chosen that |Dn−1|p ≤ |D|p <

|Dn|p, where Dn is the nth partial denominator of the continued fraction of

ξ, then either C/D is the nth convergent of the continued fraction of ξ, or

∣

∣

∣

∣

ξ −
Cn−1

Dn−1

∣

∣

∣

∣

p

≤

∣

∣

∣

∣

ξ −
C

D

∣

∣

∣

∣

p

.

Proof. The first part follows immediately from (10). To establish the sec-

ond part, note that
C

D
6=

Cn−1

Dn−1
,

C

D
6=

Cn

Dn
. (14)

Using (13), we deduce that there are a, b ∈ Z[1/p] \ {0} satisfying the system of

equations

D = aDn−1 + bDn

C = aCn−1 + bCn, (15)

namely, a = (−1)n(CnD − CDn) 6= 0 and b = (−1)n−1(Cn−1D − CDn−1) 6= 0,

and so

Dξ − C = a(Dn−1ξ − Cn−1) + b(Dnξ − Cn). (16)

From (15), using the strong triangle inequality and |Dn−1|p ≤ |D|p < |Dn|p , we

get |aDn−1|p = |bDn|p and so

|D|p ≤ |aDn−1|p = |bDn|p. (17)
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From (16), using (17), |ξ − Cn/Dn|p < |ξ − Cn−1/Dn−1|p and (10), we have

∣

∣

∣

∣

ξ −
C

D

∣

∣

∣

∣

p

=

∣

∣

∣

∣

aDn−1

D

(

ξ −
Cn−1

Dn−1

)∣

∣

∣

∣

p

=

∣

∣

∣

∣

a

DDn

∣

∣

∣

∣

=

∣

∣

∣

∣

b

DDn−1

∣

∣

∣

∣

p

≥
1

|DnDn−1|p
=

∣

∣

∣

∣

ξ −
Cn−1

Dn−1

∣

∣

∣

∣

p

. �

Regarding connections between p-adic Liouville numbers and p-adic Liouville

continued fractions, we have:

Proposition 3.6. Let ξ = [β0; β1, β2, . . .] ∈ pZp. Consider the following

assertions.

(i) ξ is a p-adic Liouville number.

(ii) ξ is a p-adic Liouville continued fraction.

(iii) To each w ∈ N, there is an ν ∈ N such that |aν+1|p > |Dν |
w
p .

Then we have (ii) ⇒ (i) and (ii) ⇐⇒ (iii).

Proof. That (ii) ⇒ (i) is immediate from the definitions.

To prove (ii) ⇒ (iii), let w ∈ N. Since ξ is a p-adic Liouville continued

fraction, for m ≥ w + 2, there is a convergent Cm/Dm such that

0 <
1

|am+1Dm|p
= |Dmξ − Cm|p <

1

|Cm,Dm|m
<

(2|am|p)
1/2

|Dm|mp
,

and so for m large enough

|Cm, Dm|wp = |Dm|wp ≤
|Dm|m−1

p

(2|am|p)1/2
< |am+1|p.

To prove (iii) ⇒ (ii), let w ∈ R+. For n ≥ w, since there is ν ∈ N such that

|aν+1|p > |Dν |
n
p , we have for n sufficiently large, using also (11),

0 < |Dνξ − Cν |p =
1

|aν+1Dν |p
<

1

|Dν |
n+1
p

=
1

|a1 · · · an|
n+1
p

<
1

2nw|a2
1 · · · a

2
n−1an|wp

<
1

|Cn,Dn|
w . �
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4. The function field with τ -adic valuation

Let k be a field, x an indeterminate, τ a monic irreducible element of k[x]

and let k((τ)) =: kτ be the field of all formal Laurent series in τ equipped with

the τ -adic valuation, | · |τ , so normalized that |τ |τ = e−deg τ . The Liouville’s

theorem for kτ , see e.g. [14], states that if ξ ∈ k((τ)) is an algebraic number, over

k(x), of degree n ≥ 2 , then there exists a positive constant c(ξ) depending only

on ξ such that

|bξ − a|τ ≥
c(ξ)

|a, b|
n
∞

for all a, b (6= 0) ∈ k[x], where |a, b|∞ := max{|a|∞, |b|∞}. An element ξ ∈ k((τ))

is called a kτ -Liouville number if for any w ∈ R+, there exist a, b ∈ k[x]\{0} with

|a, b|∞ > 1 such that

0 < |bξ − a|τ <
1

|a, b|
w
∞

.

Let ξ be a kτ -Liouville number. For fixed w ∈ R+, from the definition, there are

sequences (an) and (bn) in k[x]\{0}, with |an, bn|∞ > 1 such that

0 < |bnξ − an|τ <
1

|an, bn|
w
∞

.

I. We define the class Hτ (ξ) of transcendental elements associated with ξ as

follows: a kτ -transcendental element ζ ∈ Hτ (ξ) if, for the given w > 0 and the

corresponding sequence (an/bn), there are sequences (cn) and (dn) in k[x]\{0}

such that

0 < |dnζ − cn|τ <
1

|cn, dn|
w
∞

and |cn, dn|∞ = |an, bn|
σn

∞ ,

where (σn) is a sequence of real numbers bounded both above and below by

fixed positive constants. Clearly, each element in any of the class Hτ (ξ) is also a

kτ -Liouville number. Moreover, we define:

• Property Hτ1: a
b ξ + c

d ∈ Hτ (ξ) for all a(6= 0), b(6= 0), c, d(6= 0) in k[x].

• Property Hτ2: The sum, difference, product and division of two numbers

from Hτ (ξ) is either a number in Hτ (ξ) or an element in k(x).

Slightly modified proofs of Theorem 3.1 and Corollary 3.2 yield:

Proposition 4.1. Properties Hτ1 and Hτ2 hold for ξ being a kτ -Liouville

number.
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Corollary 4.2. If ξ is a kτ -Liouville number, then its linear fractional trans-

formation aξ+b
cξ+d , where a, b, c, d belong to k[x] are such that cξ + d 6= 0, is either

a kτ -Liouville number or belong to the k(x).

II. We now prove the result of Erdős.

Theorem 4.3. To each number ξ in k((τ)) \ {0}, there are kτ -Liouville

numbers α, β, µ, ν such that

ξ = α + β = µ · ν.

Proof. The theorem is trivial for ξ ∈ k(x). Thus we assume that ξ 6∈ k(x).

By Proposition 2.1, we also assume that |ξ|τ < 1. Write

ξ = an1τ
n1 + an2τ

n2 + an3τ
n3 + . . . ∈ k((τ)),

where ni ∈ N, n1 < n2 < n3 < . . . and ani
6= 0 for all i ≥ 1. Let

α := an1τ
n1+ (an3!

τn3!+ · · · + an4!−1
τn4!−1 )+ (an5!

τn5!+ . . . + an6!−1
τn6!−1)+ . . . ,

β := (an2!
τn2! + · · · + an3!−1

τn3!−1 ) + (an4!
τn4! + · · · + an5!−1

τn5!−1) + . . . .

Then ξ = α + β. To finish the first half, we need to show that α and β are

kτ -Liouville numbers. Let r ∈ N and

αr :=

r
∑

i=1

(

an(2i−1)!
τn(2i−1)! + · · · + an(2i)!−1

τn(2i)!−1
)

,

βr :=

r
∑

i=1

(

an(2i)!
τn(2i)! + · · · + an(2i+1)!−1

τn(2i+1)!−1
)

.

Thus,

|αr|
−r
∞ = e−rn(2r)!−1 deg τ , |βr|

−r
∞ = e−rn(2r+1)!−1 deg τ ,

yielding

|α − αr|τ = e−n(2r+1)! deg τ < e−rn(2r)!−1 deg τ = |αr|
−r
∞ ,

and

|β − βr|τ = e−n(2r+2)! deg τ < e−rn(2r+1)!−1 deg τ = |βr|
−r
∞ ,

as desired.

To prove the other half, we assume, again without loss of generality, that ξ

is of the form ξ = 1 +
∑

n≥1 cnτn 6= 1, deg cn < deg τ . By [5, Theorem 5.1] or



Liouville numbers in the non-archimedean case 59

[7, Theorem 4.4] for the case of finite base field, ξ has a unique product represen-

tation of the form

ξ =

∞
∏

n=1

(1 + bnτen),

where bn ∈ k[x]\{0}, deg bn < deg τ , en ∈ N and en+1 > en > n. Let m0 = 1 and

m1 > 1. For each r ∈ N, choose m2r such that

em2r+1 > r
(

(em0+1 + · · · + em1) + · · · + (em2r−2+1 + · · · + em2r−1)
)

,

and choose m2r+1 such that

em2r+1 > r
(

(em1+1 + · · · + em2) + · · · + (em2r−1+1 + · · · + em2r
)
)

.

Let

µr :=

r
∏

i=1

(1 + bm2i−2+1τ
em2i−2+1) . . . (1 + bm2i−1τ

em2i−1 )

and

νr :=
r

∏

i=1

(1 + bm2i−1+1τ
em2i−1+1) . . . (1 + bm2i

τem2i ).

Clearly µr → µ ∈ k((τ)) (r → ∞), with |µ|τ = 1. We have

|µr|
−r
∞ = q−r

P
r
i=1(em2i−2+1+···+em2i−1

).

Thus, for each r ∈ N,

|µ − µr|τ = |µr|τ

∣

∣

∣

∣

µ

µr
− 1

∣

∣

∣

∣

τ

=

∣

∣

∣

∣

∣

∞
∏

i=r+1

(1 + bm2i−2+1τ
em2i−2+1) . . . (1 + bm2i−1τ

em2i−1 ) − 1

∣

∣

∣

∣

∣

τ

= |τem2r+1 |τ = e−em2r+1 < e−r
P

r
i=1(em2i−2+1+···+em2i−1

) = |µr|
−r
∞

showing that µ is a kτ -Liouville element. Similarly, if ν = limr→∞ νr, then

|ν − νr|τ = e−em2r+1+1 < |νr|
−r
∞ ,

i.e., ν is also a kτ -Liouville element. Since ξ = µ · ν, this completes the proof. �
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III. There is a continued fraction algorithm in k((τ)) very much like the

Ruban continued fraction expansion in Qp which is now briefly described. With-

out loss of generality, it suffices to consider numbers ξ ∈ k((τ)) \ {0} for which

|ξ|τ < 1, i.e.,

ξ =
c−m

τm
+

c−m+1

τm−1
+

c−m+2

τm−2
+ · · · + c0 + c1τ + c2τ

2 + · · · ∈ k((τ)) (m ∈ N),

with coefficients c−m(6= 0), c−m+1, c−m+2, · · · ∈ k[x], deg ci < deg τ . Define

ξ = [ξ] + (ξ),

where

[ξ] :=
c−m

τm
+

c−m+1

τm−1
+

c−m+2

τm−2
+ · · · + c0, and (ξ) := c1τ + c2τ

2 + . . . .

Let β0 = [ξ] ∈ k[1/τ ], so that |β0|τ = |ξ|τ ≥ 1, provided [ξ] 6= 0. If (ξ) = 0, then

the process stops. If (ξ) 6= 0, then write

ξ = β0 +
1

ξ1
,

where ξ−1
1 = (ξ) with |ξ1|τ > 1. Next write ξ1 = [ξ1] + (ξ1) and let β1 = [ξ1] ∈

k[1/τ ] \ k, so that |β1|τ = |ξ1|τ > 1. If (ξ1) = 0, then the process stops. If

(ξ1) 6= 0, continue in the same manner. We thus obtain the unique representation

ξ = [β0; β1, . . . , βn−1, ξn] := β0 +
1

β1 + 1

.. . 1

βn−1+ 1
ξn

,

where βi ∈ k[1/τ ] \ k (i ≥ 1), ξn ∈ k((τ)), |ξn|τ > 1 if the process does not

stop before, and ξn is referred to as the nth complete quotient. The sequence

(βn) is uniquely determined, called the sequence of partial quotients of ξ. The

two sequences of partial numerators, (Cn), and partial denominators, (Dn), are

defined by

C−1 = 1, C0 = β0, Cn+1 = βn+1Cn + Cn−1 ∈ k[1/τ ] (n ≥ 0)

D−1 = 0, D0 = 1, Dn+1 = βn+1Dn + Dn−1 ∈ k[1/τ ] (n ≥ 0).

As in the p-adic case, we have have

Cn

Dn
=

βnCn−1 + Cn−2

βnDn−1 + Dn−2
= [β0; β1, β2, . . . , βn] (n ≥ 0),
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and so Cn/Dn is called the nth convergent. If (ξn) = 0 for some n, then ξ =

[β0; β1, β2, . . . , βn−1], i.e., the expansion terminates. Otherwise, (ξn) 6= 0 for all

n implying that the expansion is infinite, i.e.,

ξ = [β0; β1, β2, β3, . . . ]; (18)

the right hand side is called the kτ -continued fraction of ξ. As in the case of p-adic

numbers, here the partial quotients, partial numerators and partial denominators

are genarally rational functions, not necessary polynomials in k[x]. We resort to its

equivalent continued fractions in order to define kτ -Liouville continued fractons.

To this end, without loss of generality, it suffices to consider only those ξ with

|ξ|τ < 1. Since (ξn) 6= 0 for all n, we have

βn+1 = [ξn+1] =
c−δn+1

τδn+1
+

c−δn+1+1

τδn+1−1
+

c−δn+1+2

τδn+1−2
+ . . .+c0, c−δn+1 6= 0, (n ≥ 0).

Its (equivalent) associated kτ -continued fraction is

ξ =
γ1

α1 +
γ2

α2 +
γ3

α3 + . . .

:= [0; γ1/α1, γ2/α2, γ3/α3, . . . ], (19)

where

γ1 = τδ1 , γn = τδnδn−1 (n ≥ 2), αn = βnτδn (n ≥ 1).

Clearly, the partial numerators γn and the partial denominators αn of the asso-

ciated kτ -continued fraction (19) are in k[τ ] = k[x]. Define the kth convergent of

(19) by

C−1 = 1, C0 = 0, Cn+1 = βn+1Cn + γn+1Cn−1 ∈ k[x] (n = 0, 1, 2, . . . )

D−1 = 0, D0 = 1, Dn+1 = βn+1Dn + γn+1Dn−1 ∈ k[x] (n = 0, 1, 2, . . . ).

The kτ -continued fraction (18) and its associated kτ -continued fraction (19) are

equivalent in the sense that Cn/Dn = Cn/Dn for every n ≥ 0. An infinite kτ -

continued fraction [β̄] = [β0; β1, β2, β3, . . . ] is called a kτ -Liouville continued frac-

tion if for w ∈ R+, there is an n ∈ N such that

0 <
∣

∣Dn

[

β̄
]

− Cn

∣

∣

τ
<

1

|Cn,Dn|
w
∞

.

In k((τ)), an analogue of the approximation property mentioned in Proposition 1.1

also holds.
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Lemma 4.4. Let ξ ∈ k((τ)) and C, D(6= 0) ∈ k[1/τ ]. Then

∣

∣

∣

∣

ξ −
C

D

∣

∣

∣

∣

τ

<
1

|D|2τ

if and only if C/D is a convergent of the kτ -continued fraction of ξ.

Proof. Both the proof of Lemma 2.5 and that of Lemma 3.5 work with

slight modifications. �

Similar proofs as in Propositions 2.6 and 3.6 yield:

Proposition 4.5. Let ξ = [β0; β1, β2, . . . ] ∈ k((τ)). The following assertions

are equivalent:

(i) ξ is a kτ -Liouville number.

(ii) ξ is a kτ -Liouville continued fraction.

(iii) To each w ∈ N, there is an ν ∈ N such that |βν+1|τ > |Dν |
w
τ .
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