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On weakly SS-permutable subgroups of a finite group

By XUANLI HE (Nanning), YANGMING LI (Guangzhou)
and YANMING WANG (Zhongshan)

Abstract. Suppose that G is a finite group and H is a subgroup of G. We say that

H is SS-permutable in G if there is a supplement B of H to G such that H permutes with

every Sylow subgroup of B; H is weakly SS-permutable in G if there exist a subnormal

subgroup T of G and an SS-permutable subgroup Hss of G contained in H such that

G = HT and H ∩ T ≤ Hss. We investigate the influence of weakly SS-permutable

subgroups on the structure of finite groups. Some recent results are generalized and

unified.

1. Introduction

All groups considered in this paper are finite. G always denotes a finite group,
|G| the order of G, π(G) the set of all primes dividing |G|, Gp a Sylow p-subgroup
of G for some p ∈ π(G). M ·G means that M is a maximal subgroup of G.

Let F be a class of groups. We call F a formation provided that (i) if G ∈ F
and H EG, then G/H ∈ F , and (ii) if G/M and G/N are in F , then G/(M ∩N)
is in F for normal subgroups M, N of G. A formation F is said to be saturated
if G/Φ(G) ∈ F implies that G ∈ F . In this paper, U will denote the class of
all supersolvable groups. Clearly, U is a saturated formation (ref. [1, p. 713,
Satz 8.6]).

A subgroup H of G is called S-permutable (or π-quasinormal) in G provided
that H permutes with all Sylow subgroups of G, i.e., HS = SH for any Sylow
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subgroup S of G [2]; H is said c-normal [3] in G if G has a normal subgroup
T such that G = HT and H ∩ T ≤ HG, where HG is the normal core of H

in G. Recently, Skiba in [4] introduces the following concept, which covers both
s-permutability and c-normality:

Definition 1.1. Let H be a subgroup of G. H is called weakly s-permutable
in G if there is a subnormal subgroup T of G such that G = HT and H∩T ≤ HsG,
where HsG is the maximal s-permutable subgroup of G contained in H, that is,
the subgroup of H generated by all those subgroups of H which are s-permutable
in G.

More recently, Li, etc. [5], introduced the concept of SS-quasinormality [5]
which is a generalization of s-permutablity:

Definition 1.2. Let G be a finite group. A subgroup H of G is said to be an
SS-quasinormal subgroup of G if there is a supplement B of H to G such that
H permutes with every Sylow subgroup of B.

Remark. For convenience, it is suitable to call SS-quasinormal subgroups as
SS-permutable subgroups.

In general, an SS-permutable subgroup need not be a subnormal subgroup.
For instance, S3 is an SS-permutable subgroup of the symmetric group S4, but
S3 is not subnormal in S4. Hence, we give a new concept which covers properly
both SS-permutablity and Skiba’s weakly s-permutability.

Definition 1.3. Let H be a subgroup of G. H is called weakly SS-permutable
in G if there is a subnormal subgroup T of G such that G = HT and H∩T ≤ Hss,
where Hss is an SS-permutable subgroup of G contained in H.

Remark. It is easy to see that weakly s-permutability (or SS-permutablity)
implies weakly SS-permutability. The converse does not hold in general.

Example 1.4. 1. Let G = A5, the alternative group of degree 5. Then A4

is SS-permutable in G, certainly, weakly SS-permutable, but not weakly s-
permutable in G.

2. Let G = S4, the symmetric group of degree 4. Take H = 〈(34)〉. Then H

is weakly SS-permutable in G, but not SS-permutable in G.

In the literature, authors usually put the assumptions on either the minimal
subgroups (and cyclic subgroups of order 4 when p = 2) or the maximal subgroups
of some kinds of subgroups of G when investigating the structure of G, such as
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in [5]–[12], ect. In the nice paper [4], Skiba provided a unified viewpoint for a
series of similar problems.

For the sake of convenience of statement, we introduce the following notation.

Let P be a p-subgroup of G. We call P satisfies (∗) ((∗)′, (♦1), (♦2) respec-
tively) in G if

(∗): P has a subgroup D such that 1 < |D| < |P | and all subgroups H of P

with order |H| = |D| and with order |H| = 2|D| (if P is a non-abelian 2-group
and |P : D| > 2) are weakly s-permutable in G.

(∗)′: P has a subgroup D such that 1 < |D| < |P | and all subgroups H of
P with order |H| = |D| are weakly s-permutable in G. When P is a non-abelian
2-group and |P : D| > 2, in addition, suppose that H is weakly s-permutable in
G if there exists D1 E H ≤ P with 2|D1| = |D| and H/D1 is cyclic of order 4.

(♦1): P has a subgroup D such that 1 < |D| < |P | and all subgroups H

of P with order |H| = |D| are weakly SS-permutable in G. When p = 2 and
|P : D| > 2, in addition, suppose that H is weakly SS-permutable in G if there
exists D1 E H ≤ P with 2|D1| = |D| and H/D1 is cyclic of order 4.

(♦2): P has a subgroup D such that 1 < |D| < |P | and all subgroups H of
P with order |H| = |D| are SS-quasinormal in G. When p = 2 and |P : D| > 2,
in addition, suppose that H is SS-permutable in G if there exists D1 E H ≤ P

with 2|D1| = |D| and H/D1 is cyclic of order 4.

Theorem 1.5 (4, Theorem 1.3). Let F be a saturated formation containing

U , the class of all supersolvable groups and G a group with E as a normal subgroup

of G such that G/E ∈ F . Suppose that every non-cyclic Sylow subgroup P of

F ∗(E) satisfies (∗) in G. Then G ∈ F .

Scrutinizing the proof of [4, Theorem 1.3], we can find that the following
Theorem 1.6 holds:

Theorem 1.6 (4, Theorem 1.3). Let F be a saturated formation containing

U and G a group with E as a normal subgroup of G such that G/E ∈ F . Suppose

that every non-cyclic Sylow subgroup P of F ∗(E) satisfies (∗)′ in G. Then G ∈ F .

In this paper, the main purpose is to generalize Theorem 1.6 as follows:

Theorem 1.7 (i.e. Theorem 3.5). Let F be a saturated formation containing

U and G a group with E as a normal subgroup of G such that G/E ∈ F . Suppose

that every non-cyclic Sylow subgroup of F ∗(E) satisfies ♦1 in G. Then G ∈ F .
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2. Preliminaries

Lemma 2.1 (5, Lemma 2.1 and Lemma 2.5). Let H be SS-permutable in

a group G, K ≤ G and N a normal subgroup of G. We have:

(1) If H ≤ K, then H is SS-permutable in K.

(2) HN/N is SS-permutable in G/N .

(3) If N < K, then K/N is SS-permutable in G/N if and only if K is SS-

permutable in G.

(4) If K is quasinormal (or permutable) in G, then HK is SS-permutable in G.

(5) If a p-subgroup P of G is SS-permutable in G, where p is a prime, then P

permutes with every Sylow q-subgroup of G with q 6= p.

Lemma 2.2. Let U be a weakly SS-permutable subgroup of G and N a

normal subgroup of G. Then

(1) If U ≤ H ≤ G, then U is weakly SS-permutable in H.

(2) Suppose that U is a p-group for some prime p. If N ≤ U , then U/N is weakly

SS-permutable in G/N .

(3) Suppose that U is a p-group for some prime p and N is a p′-subgroup. Then

UN/N is weakly SS-permutable in G/N .

(4) Suppose that U is a p-group for some prime p and U is not SS-permutable in

G. Then G has a normal subgroup M such that |G : M | = p and G = MU .

(5) If U ≤ Op(G) for some prime p, then U is weakly s-permutable in G.

Proof. By the hypotheses, there are a subnormal subgroup T of G and
an SS-permutable subgroup Uss of G contained in U such that G = UT and
U ∩ T ≤ Uss.

(1) We can get that H = U(H ∩ T ). Obviously, H ∩ T is subnormal in H and
U ∩ (H ∩ T ) = U ∩ T ≤ Uss. By Lemma 2.1(1), Uss is SS-permutable in H.
Hence, U is weakly SS-permutable in H.

(2) We have that G/N = (U/N)(TN/N). Obviously, TN/N is subnormal in
G/N and (U/N)∩ (TN/N) = (U ∩TN)/N = (U ∩T )N/N ≤ (UssN)/N . By
Lemma 2.1(2), (UssN)/N is SS-permutable in G/N . Hence, U/N is weakly
SS-permutable in G/N .

(3) It is easy to see that N ≤ T and G/N = (UN/N)(T/N). Since T/N is sub-
normal in G/N and (UN/N)∩T/N = (U ∩T )N/N ≤ (UssN)/N , (UssN)/N
is SS-permutable in G/N by Lemma 2.1(2). Hence, (UN)/N is weakly SS-
permutable in G/N .
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(4) If T = G, then U = U ∩ T ≤ Uss ≤ U , therefore, U = Uss is SS-permutable
in G, contrary to the hypotheses. Consequently, T is a proper subgroup of
G. Hence, G has a proper normal subgroup K such that T ≤ K. Since G/K

is a p-group, G has a normal maximal subgroup M such that |G : M | = p

and G = MU .

(5) We can get that by Lemma 2.1(3). ¤

By Lemma 2.2(5) and [4, Lemma 2.11], we have that:

Lemma 2.3. Let N be an elementary abelian normal subgroup of a group

G. Assume that N has a subgroup D such that 1 < |D| < |N | and every subgroup

H of N satisfying |H| = |D| is weakly SS-permutable in G. Then some maximal

subgroup of N is normal in G.

Lemma 2.4 (13, A, 1.2). Let U, V and W be subgroups of a group G. Then

the following statements are equivalent.

(1) U ∩ V W = (U ∩ V )(U ∩W ).

(2) UV ∩ UW = U(V ∩W ).

Applying Lemma 2.4, we have that:

Lemma 2.5. Suppose that N is a normal subgroup of a group G and Gq

is a Sylow q-subgroup of G and P is a p-subgroup of G, where q 6= p for some

primes p and q. If PGq is a subgroup of G, then

(1) N ∩ PGq = (N ∩ P )(N ∩Gq).

(2) P ∩NGq = P ∩N .

Lemma 2.6 (1, VI, 4.10). Assume that A and B are two subgroups of a

group G and G 6= AB. If ABg = BgA holds for any g ∈ G, then either A or B is

contained in a nontrivial normal subgroup of G.

Lemma 2.7 (1, III, 5.2 and IV, 5.4). Suppose that p is a prime and G is

a minimal non p-nilpotent, i.e., G is not a p-nilpotent group but whose proper

subgroups are all p-nilpotent. Then

(1) G has a normal Sylow p-subgroup P for some prime p and G = PQ, where

Q is a non-normal cyclic q-subgroup for some prime q 6= p.

(2) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

(3) The exponent of P is p or 4.

Lemma 2.8 (14, X, 13). Let M be a subgroup of G.

(1) If M is normal in G, then F ∗(M) ≤ F ∗(G).
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(2) F ∗(G) 6= 1 if G 6= 1; in fact, F ∗(G)/F (G) = Soc(F (G)CG(F (G))/F (G)).

(3) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

Lemma 2.9 (1, IV, Satz 4.7). If P is a Sylow p-subgroup of a group G and

N E G such that P ∩N ≤ Φ(P ), then N is p-nilpotent.

3. Main results

Theorem 3.1. Let p be the smallest prime of π(G) and P a Sylow p-

subgroup of G. If all maximal subgroups of P are weakly SS-permutable in G,

then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of
minimal order, then we have:

(1) G has the unique minimal normal subgroup N such that G/N is p-
nilpotent and Φ(G) = 1.

Let N be a minimal normal subgroup of G. We consider the factor group
G/N . Let M/N is a maximal subgroup of PN/N . It is easy to see that M = P1N

for some maximal subgroup P1 of P . It follows that P ∩N = P1 ∩N is a Sylow
subgroup of N . By the hypotheses, there are a subnormal subgroup K1 of G and
an SS-permutable subgroup (P1)ss of G contained in P1 such that G = P1K1 and
P1∩K1 ≤ (P1)ss. Then G/N = (P1N/N)(K1N/N) = (M/N)(K1N/N). It is easy
to see that K1N/N is subnormal in G/N . Since (|N : N ∩P1|, |N : K1 ∩N |) = 1,
(P1∩N)(K1∩N) = N = N ∩G = N ∩(P1K1). By Lemma 2.4, (P1N)∩(K1N) =
(P1 ∩ K1)N . Hence, (P1N)/N ∩ (K1N)/N = (P1 ∩ K1)N/N ≤ (P1)ssN/N . It
follows from Lemma 2.1(2) that (P1)ssN/N ≤ M/N is SS-permutable in G/N .
Hence, M/N is weakly SS-permutable in G/N . Therefore, G/N satisfies the
hypotheses of the theorem. The choice of G yields that G/N is p-nilpotent. The
uniqueness of N and Φ(G) = 1 are obvious.

(2) Op′(G) = 1.
If Op′(G) 6= 1, then N ≤ Op′(G) and G/Op′(G) is p-nilpotent by (1), G is

p-nilpotent, a contradiction. Hence Op′(G) = 1.

(3) Op(G) = 1. Therefore, G is not solvable and N is a direct product of
some isomorphic non-abelian simple groups.

If Op(G) 6= 1, we have that N ≤ Op(G) and Φ(Op(G)) ≤ Φ(G) = 1 by (1).
Thus, G has a maximal subgroup M such that G = MN and M ∩N = 1. Since
Op(G) ∩M is normalized by N and M , hence, by G, the uniqueness of N yields
N = Op(G). Clearly, P = N(P ∩M). Since P ∩M < P , let P1 be a maximal
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subgroup of P such that P ∩M ≤ P1. Then P = NP1. By the hypotheses, there
are a subnormal subgroup T of G and an SS-permutable subgroup (P1)ss of G

contained in P1 such that G = P1T and P1 ∩ T ≤ (P1)ss. Since N ≤ Op(G) ≤ T

by (1), we have that P1 ∩ N = (P1)ss ∩ N . For any Sylow q-subgroup Gq of G,
there holds

[P1 ∩N,Gq] = [(P1)ss ∩N, Gq] = [(P1)ssGq ∩N, Gq] ≤ N ∩ (P1)ssGq

= N ∩ (P1)ss = N ∩ P1

by Lemma 2.1(5) and Lemma 2.5(1), where q 6= p. Obviously, P1∩N is normalized
by P . Therefore, P1 ∩ N is normal in G. The minimality of N implies that
P1 ∩ N = 1. Hence, N is of order p. Thus, G is p-nilpotent, a contradiction.
Hence, Op(G) = 1. Combining (2), we can see that G is not solvable and N is a
direct product of some isomorphic non-abelian simple groups.

(4) The final contradiction.
If N ∩ P ≤ Φ(P ), then N is p-nilpotent by Lemma 2.9, contrary to (3).

Consequently, there is a maximal subgroup P1 of P such that P = (N ∩ P )P1.
Since P1 is weakly SS-permutable in G, by the hypotheses, there are a subnormal
subgroup T of G and an SS-permutable subgroup (P1)ss of G contained in P1

such that G = P1T and P1 ∩ T ≤ (P1)ss.
For any Sylow q-subgroup Nq of N with q 6= p, we now claim that

((P1)ss ∩ N)Nq = Nq((P1)ss ∩ N). In fact, pick any Sylow q-subgroup Gq of G

containing Nq. Then (P1)ssGq ∩NGq = ((P1)ss ∩NGq)Gq = ((P1)ss ∩N)Gq by
Lemma 2.1(5) and Lemma 2.5(2). Hence,

((P1)ss ∩N)Gq ∩N = ((P1)ss ∩N)(Gq ∩N) = ((P1)ss ∩N)Nq

Therefore, ((P1)ss ∩N)Nq = Nq((P1)ss ∩N).
Applying Lemma 2.6, we know that N has a proper normal subgroup M

such that either (P1)ss ∩N ≤ M or Nq ≤ M . If Nq ≤ M , this is contrary to [1, I,
Satz 9.12(b)]. If (P1)ss ∩N ≤ M , notice that P1 ∩N = (P1)ss ∩N ≤ P1 ∩M ≤
P ∩M , we have that

|N/M |p =
|N |p
|M |p = [P ∩N : P ∩M ] ≤ [P ∩N : P1 ∩N ] = [P : P1] = p

|N/M |p = p with p minimum prime divisor implies that N/M is p-nilpotent.
By (3), N is a direct product of some isomorphic non-abelian simple groups,

say, N ∼= N1 × · · · × Nk. N/M is isomorphic to a direct product of some Ni.
Hence N1 is p-nilpotent. Contrary to that N1 is a non-abelian simple group.

This completes the proof of Theorem 3.1. ¤
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Theorem 3.2. Let G be a group and P a Sylow p-subgroup of G, where p

is the smallest prime of π(G). If P satisfies (♦1) in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of
minimal order, then:

(1) Op′(G) = 1.
Denote N = Op′(G). If N 6= 1, then Sylow p-subgroup PN/N of G/N

satisfies (♦1) in G/N by Lemma 2.2(3). By the minimality of G, we have G/N is
p-nilpotent. Then G is p-nilpotent, a contradiction. Hence, N = Op′(G) = 1.

(2) |D| > p.
Suppose that |D| = p. Since G is not p-nilpotent, G has a minimal non

p-nilpotent subgroup G1. By Lemma 2.7(1), G1 = [P1]Q, where P1 ∈ Sylp(G1)
and Q ∈ Sylq(G1), p 6= q. Denote Φ = Φ(P1). Let X/Φ be a subgroup of P1/Φ of
order p, x ∈ X \ Φ and L = 〈x〉. Then L is of order p or 4 by Lemma 2.7(3). By
the hypotheses, L is weakly SS-permutable in G, thus, in G1 by Lemma 2.2(1). If
L is not SS-permutable in G1, then by Lemma 2.2(4), G1 has a normal subgroup
T such that G1 = LT and |G1 : T | = p. Since G1 is a minimal non p-nilpotent
group, T is p-nilpotent. Then Tq char T E G1 and Tq E G1. Therefore, G1 is
p-nilpotent, a contradiction. Hence, L is SS-permutable in G1. So X/Φ = LΦ/Φ
is SS-permutable in G1/Φ by Lemma 2.1(2). Now Lemma 2.3 and Lemma 2.7(2)
imply that |P1/Φ| = p. It follows immediately that P1 is cyclic. Thus, G1 is
p-nilpotent by [1, IV, Satz 2.8], contrary to the choice of G1.

(3) |P : D| > p.
By Theorem 3.1.

(4) P satisfies ♦2 in G.
Assume that H ≤ P such that |H| = |D| and H is not SS-permutable in G.

By Lemma 2.2(4), there is a normal subgroup M of G such that |G : M | = p.
Since |P : D| > p and Lemma 2.2(1), M satisfies the hypotheses of the theorem.
The choice of G yields that M is p-nilpotent. It is easy to see that G is p-nilpotent,
contrary to the choice of G.

(5) If N ≤ P and N is a minimal normal subgroup of G, then |N | ≤ |D|.
Suppose that |N | > |D|. Since N ≤ Op(G), N is elementary abelian. By

Lemma 2.3, N has a maximal subgroup which is normal in G, contrary to the
minimality of N .

(6) Suppose that N ≤ P and N is a minimal normal subgroup of G, then
G/N is p-nilpotent.

If |N | < |D|, G/N satisfies the hypotheses of the theorem by Lemma 2.1(2).
Thus, G/N is p-nilpotent by the minimal choice of G. So we may suppose that
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|N | = |D| by (5). We will show every cyclic subgroup of P/N of order p or order
4 (when P/N is a non-abelian 2-group) is SS-permutable in G/N . Let K ≤ P

and |K/N | = p. By (2), N is non-cyclic, so are all subgroups containing N .
Hence, there is a maximal subgroup L 6= N of K such that K = NL. Of course,
|N | = |D| = |L|. Since L is SS-permutable in G by the hypotheses, K/N = LN/N

is SS-permutable in G/N by Lemma 2.1(2). If p = 2 and P/N is non-abelian,
take a cyclic subgroup X/N of P/N of order 4. Let K/N be maximal in X/N .
Then K is maximal in X and |K/N | = 2. Since X is non-cyclic and X/N is
cyclic, there is a maximal subgroup L of X such that N is not contained in L.
Thus, X = LN and |L| = |K| = 2|D|. Since X/N = LN/N ∼= L/(L ∩ N) is
cyclic of order 4, by the hypotheses, L is SS-permutable in G. By Lemma 2.1,
X/N = LN/N is SS-permutable in G/N . Hence, P/N satisfies ♦2 in G/N . By
the minimal choice of G, G/N is p-nilpotent.

(7) Op(G) = 1.
If Op(G) 6= 1. Take a minimal normal subgroup N of G contained in Op(G).

By (6), G/N is p-nilpotent. It is easy to see that N is the unique minimal normal
subgroup of G contained in Op(G). Furthermore, Op(G) ∩ Φ(G) = 1. Hence,
Op(G) = F (G) is an elementary abelian p-group. On the other hand, G has
a maximal subgroup M such that G = MN and M ∩ N = 1. It is easy to
deduce that Op(G) ∩ M = 1, N = Op(G) and M ∼= G/N is p-nilpotent and
NG(Mp′) = M . Then G can be written as G = N(M ∩P )Mp′ , where Mp′ is the
normal p-complement of M . Pick a maximal subgroup S of Mp. Then SMp′ ≤ M

and |M : SMp′ | = p. Hence, NSMp′ ≤ G is a subgroup of G with index p. By
the minimality of p, we know that NSMp′ E G. Now by (3) and Lemma 2.1(1),
we have that NSMp′ is p-nilpotent. Therefore, G is p-nilpotent, a contradiction.

(8) The minimal normal subgroup L of G is not p-nilpotent.
If L is p-nilpotent, by the fact that Lp′ char L E G, we have that Lp′ ≤

Op′(G) = 1. Thus, L is a p-group. Then L ≤ Op(G) = 1 by Step (7), a
contradiction.

(9) G is a non-abelian simple group.
Suppose that G is not a simple group. Take a minimal normal subgroup L

of G. Then L < G. If |L|p > |D|, then L is p-nilpotent by the minimal choice
of G, contrary to (7). If |L|p ≤ |D|. Take P1 ≥ L ∩ P such that |P1| = p|D|.
Hence, P1 is a Sylow p-subgroup of P1L. Since every maximal subgroup of P1 is
of order |D|, every maximal subgroup of P1 is SS-permutable in G by hypotheses,
thus, in P1L by Lemma 2.1(1). Now applying Theorem 3.1, we can get P1L is
p-nilpotent. Therefore, L is p-nilpotent, contrary to (8).
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(10) The final contradiction.
Suppose that H is a subgroup of P with |H| = |D| and Q is a Sylow q-

subgroup of G with q 6= p. Then HQg = QgH for any g ∈ G by (4) and
Lemma 2.1(5). Since G is simple by (9), G = HQ from Lemma 2.6, the final
contradiction. ¤

Corollary 3.3. Suppose that G is a group. If every non cyclic Sylow sub-

group of G satisfies ♦1 in G, then G has the Sylow Tower of supersolvable type.

Theorem 3.4. Let F be a saturated formation containing U and G a group

with E as a normal subgroup of G such that G/E ∈ F . Suppose that every

non-cyclic Sylow subgroup of E satisfies ♦1 in G. Then G ∈ F .

Proof. Suppose that P is a Sylow p-subgroup of E, for any prime p ∈ π(E).
Since P satisfies ♦1 in G by hypotheses, P satisfies ♦1 in E by Lemma 2.2(1).
Applying Corollary 3.3, we have that E has a Sylow tower of supersolvable type.
Let q be the maximal prime divisor of |E| and Q ∈ Sylq(E). Then Q E G. Since
(G/Q,E/Q) satisfies the hypotheses of the theorem, by induction, G/Q ∈ F .
For any subgroup H of Q with |H| = |D|, since Q ≤ Oq(G), H is weakly s-
permutable in G by Lemma 2.2(5). Hence, Q satisfies (∗)′ in G. Since F ∗(Q) = Q

by Lemma 2.8, we get G ∈ F by applying Theorem 1.6. ¤

Theorem 3.5. Let F be a saturated formation containing U and G a group

with E as a normal subgroup of G such that G/E ∈ F . Suppose that every

non-cyclic Sylow subgroup of F ∗(E) satisfies ♦1 in G. Then G ∈ F .

Proof. We distinguish two cases:
Case 1. F = U
Let G be a minimal counter-example.

(1) Every proper normal subgroup N (if it exists) of G containing F ∗(E) is
supersolvable.

If N is a proper normal subgroup of G containing F ∗(E), we have that
N/N ∩ E ∼= NE/E is supersolvable. By Lemma 2.8(3), F ∗(E) = F ∗(F ∗(E)) ≤
F ∗(E ∩ N) ≤ F ∗(E), so F ∗(E ∩ N) = F ∗(E). For any Sylow subgroup P of
F ∗(E ∩ N), P satisfies ♦1 in G by hypotheses. Hence, P satisfies ♦1 in N by
Lemma 2.2(1). So (N, N ∩E) satisfy the hypotheses of the theorem, the minimal
choice of G implies that N is supersolvable

(2) E = G.
If E < G, then E ∈ U by (1). Hence F ∗(E) = F (E) by Lemma 2.8(3). It

follows that every Sylow subgroup of F ∗(E) is normal in G. By Lemma 2.2(5),
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every Sylow subgroup of F ∗(E) satisfies (∗)′ in G. Applying Theorem 1.6 for the
special case F = U , G ∈ U , a contradiction.

(3) F ∗(G) = F (G) < G.
If F ∗(G) = G, then G ∈ F by Theorem 3.4, contrary to the choice of G. So

F ∗(G) < G. By (1), F ∗(G) ∈ U and F ∗(G) = F (G) by Lemma 2.8(3).

(4) The final contradiction.
Since F ∗(G) = F (G), each Sylow subgroup of F ∗(G) satisfies (∗)′ in G by

Lemma 2.2(5). Applying Theorem 1.4, G ∈ U , a final contradiction.

Case 2. F 6= U .
By hypotheses, every non-cyclic Sylow subgroup of F ∗(E) satisfies ♦1 in G,

thus, in E by Lemma 2.2(1). Applying CASE 1, E ∈ U . Then F ∗(E) = F (E)
by Lemma 2.8(3). It follows that each Sylow subgroup of F ∗(E) is normal in G.
By Lemma 2.2(5), each Sylow subgroup of F ∗(E) satisfies (∗)′ in G. Applying
Theorem 1.6, G ∈ F . ¤

4. Some applications

From the definition of weakly SS-permutably subgroup, we can see that [4,
Corollary 5.1–5.24] are corollaries of Theorem 3.5. Furthermore, we have

Corollary 4.1. Let F be a saturated formation containing U and G a group

with E as a normal subgroup of G such that G/E ∈ F . Suppose that all maximal

subgroups of any Sylow subgroup of F ∗(E) are either SS-permutable or c-normal

in G. Then G ∈ F .

Corollary 4.2. Let F be a saturated formation containing U and G a group

with E as a normal subgroup of G such that G/E ∈ F . Suppose that the cyclic

subgroups of prime order or order 4 of F ∗(E) are either SS-permutable or c-

normal in G. Then G ∈ F .

Corollary 4.3 (14,Theorem 3.3). Let F be a saturated formation containing

U and G a group with E as a normal subgroup of G such that G/E ∈ F . Suppose

that all maximal subgroups of any Sylow subgroup of F ∗(E) are SS-permutable

in G. Then G ∈ F .

Corollary 4.4 (14,Theorem 3.7). Let F be a saturated formation containing

U and G a group with E as a normal subgroup of G such that G/E ∈ F . Suppose

that the cyclic subgroups of prime order or order 4 of F ∗(E) are SS-permutable

in G. Then G ∈ F .
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Theorem 3.2 is also interesting. Using routine way, we can generalize it as
follows.

Corollary 4.5. Let G be a group, H a normal subgroup of G such that

G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor

of |G| with (|G|, p− 1) = 1. If P satisfies ♦1 in G, then G is p-nilpotent.

Corollary 4.6. Let G be a group, H a normal subgroup of G such that G/H

is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor of |G|
with (|G|, p− 1) = 1. If every maximal subgroup of P is either SS-permutable or

c-normal in G, then G is p-nilpotent.

Corollary 4.7. Let G be a group, H a normal subgroup of G such that

G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor

of |G| with (|G|, p − 1) = 1. If the cyclic subgroups of prime order or order 4 of

P are either SS-permutable or c-normal in G, then G is p-nilpotent.

Corollary 4.8. Let G be a group, H a normal subgroup of G such that

G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor

of |G| with (|G|, p− 1) = 1. If every maximal subgroup of P is SS-permutable in

G, then G is p-nilpotent.

Corollary 4.9. Let G be a group, H a normal subgroup of G such that

G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor

of |G| with (|G|, p − 1) = 1. If the cyclic subgroups of prime order or order 4 of

P are either SS-permutable in G, then G is p-nilpotent.

Corollary 4.10. Let G be a group, H a normal subgroup of G such that

G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor

of |G| with (|G|, p− 1) = 1. If P satisfies (∗)′ in G, then G is p-nilpotent.

Corollary 4.11. Let G be a group, H a normal subgroup of G such that

G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor

of |G| with (|G|, p− 1) = 1. If P satisfies ♦2 in G, then G is p-nilpotent.
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[7] M. Asaad and P. Csörgő, Influence of minimal subgroups on the structure of finite group,
Arch. Math. (Basel) 72 (1999), 401–404.

[8] M. Assad, M. Ramadan and A. Shaalan, The infuence of S-quasinormality of maximal
subgroups of Sylow subgroups of Fitting subgroups of a finite group, Arch. Math. 56 (1991),
521–527.

[9] A. Ballester-Bolinches and M. C. Pedraza-Aguilera, On minimal subgroups of a
finite group, Acta Math. Hungar. 73 (1996), 335–342.

[10] Y. Li and Y. Wang, The influence of minimal subgroups on the structure of a finite group,
Proc. Amer Math. Soc. 131 (2003), 337–341.

[11] Y. Li, Y. Wang and H. Wei, The influence of π-quasinormality of some subgroups of a
finite group, Arch. Math. (Basel) 81 (2003), 245–252.

[12] A. Shaalan, The influence of π-quasinormality of some subgroups on the structure of a
finite group, Acta Math. Hungar. 56 (1990), 287–293.

[13] K. Dorek and T. Hawkes, Finite Soluble Groups, De Gruyter, 1992.

[14] S. Li, Zh. Shen and X. Kong, On SS-quasinormal subgroups of finite groups, Comm.
Algebra 36, no. 12 (2008), 4436–4447.

XUANLI HE

DEPARTMENT OF MATHEMATICS

GUANGXI UNIVERSITY

NANNING, 530004

CHINA

E-mail: xuanlihe@163.com

YANGMING LI

DEPARTMENT OF MATHEMATICS

GUANGDONG INSTITUTE OF EDUCATION

GUANGZHOU, 510310

CHINA

E-mail: liyangming@gdei.edu.cn

YANMING WANG

LINGNAN COLL. AND DEPT. OF MATH.

SUN YAT-SEN UNIVERSITY

ZHONGSHAN, 510275

CHINA

E-mail: stswym@mail.sysu.edu.cn

(Received March 11, 2009; revised November 2, 2009)


