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On weakly SS-permutable subgroups of a finite group

By XUANLI HE (Nanning), YANGMING LI (Guangzhou)
and YANMING WANG (Zhongshan)

Abstract. Suppose that G is a finite group and H is a subgroup of G. We say that
H is SS-permutable in G if there is a supplement B of H to G such that H permutes with
every Sylow subgroup of B; H is weakly SS-permutable in G if there exist a subnormal
subgroup 7' of G and an SS-permutable subgroup H,s of G contained in H such that
G = HT and HNT < Hss. We investigate the influence of weakly SS-permutable
subgroups on the structure of finite groups. Some recent results are generalized and
unified.

1. Introduction

All groups considered in this paper are finite. G always denotes a finite group,
|G| the order of G, m(G) the set of all primes dividing |G|, G a Sylow p-subgroup
of G for some p € 7(G). M - G means that M is a maximal subgroup of G.

Let F be a class of groups. We call F a formation provided that (i) if G € F
and H <G, then G/H € F, and (ii) if G/M and G/N are in F, then G/(M NN)
is in F for normal subgroups M, N of G. A formation F is said to be saturated
if G/®(G) € F implies that G € F. In this paper, U will denote the class of
all supersolvable groups. Clearly, U is a saturated formation (ref. [1, p. 713,
Satz 8.6]).

A subgroup H of G is called S-permutable (or m-quasinormal) in G provided
that H permutes with all Sylow subgroups of G, i.e., HS = SH for any Sylow
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subgroup S of G [2]; H is said c-normal [3] in G if G has a normal subgroup
T such that G = HT and HNT < Hg, where Hg is the normal core of H
in G. Recently, SKIBA in [4] introduces the following concept, which covers both
s-permutability and c-normality:

Definition 1.1. Let H be a subgroup of G. H is called weakly s-permutable
in G if there is a subnormal subgroup T of G such that G = HT and HNT < Hg,
where H,g is the maximal s-permutable subgroup of G contained in H, that is,
the subgroup of H generated by all those subgroups of H which are s-permutable
in G.

More recently, LI, etc. [5], introduced the concept of SS-quasinormality [5]
which is a generalization of s-permutablity:

Definition 1.2. Let G be a finite group. A subgroup H of G is said to be an
S S-quasinormal subgroup of G if there is a supplement B of H to G such that
H permutes with every Sylow subgroup of B.

Remark. For convenience, it is suitable to call SS-quasinormal subgroups as
S S-permutable subgroups.

In general, an S.S-permutable subgroup need not be a subnormal subgroup.
For instance, S is an SS-permutable subgroup of the symmetric group Sy, but
S3 is not subnormal in Sy. Hence, we give a new concept which covers properly
both SS-permutablity and Skiba’s weakly s-permutability.

Definition 1.3. Let H be a subgroup of G. H is called weakly SS-permutable
in G if there is a subnormal subgroup T of G such that G = HT and HNT < Hgg,
where Hgg is an SS-permutable subgroup of G contained in H.

Remark. Tt is easy to see that weakly s-permutability (or SS-permutablity)
implies weakly SS-permutability. The converse does not hold in general.

Example 1.4. 1. Let G = As, the alternative group of degree 5. Then A,
is SS-permutable in G, certainly, weakly SS-permutable, but not weakly s-
permutable in G.

2. Let G = Y4, the symmetric group of degree 4. Take H = ((34)). Then H
is weakly SS-permutable in GG, but not S'S-permutable in G.

In the literature, authors usually put the assumptions on either the minimal
subgroups (and cyclic subgroups of order 4 when p = 2) or the maximal subgroups
of some kinds of subgroups of G when investigating the structure of G, such as
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in [5]-[12], ect. In the nice paper [4], SKIBA provided a unified viewpoint for a
series of similar problems.

For the sake of convenience of statement, we introduce the following notation.

Let P be a p-subgroup of G. We call P satisfies (%) ((x)’, (01), (O2) respec-
tively) in G if

(*): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of P
with order |H| = |D| and with order |H| = 2|D| (if P is a non-abelian 2-group
and |P: D| > 2) are weakly s-permutable in G.

(*)": P has a subgroup D such that 1 < |D| < |P| and all subgroups H of
P with order |H| = |D| are weakly s-permutable in G. When P is a non-abelian
2-group and |P : D| > 2, in addition, suppose that H is weakly s-permutable in
G if there exists Dy < H < P with 2|Dy| = |D| and H/D; is cyclic of order 4.

(01): P has a subgroup D such that 1 < |D| < |P| and all subgroups H
of P with order |H| = |D| are weakly SS-permutable in G. When p = 2 and
|P : D| > 2, in addition, suppose that H is weakly SS-permutable in G if there
exists D1 I H < P with 2|D;| = |D| and H/D; is cyclic of order 4.

(O2): P has a subgroup D such that 1 < |D| < |P| and all subgroups H of
P with order |H| = |D| are SS-quasinormal in G. When p = 2 and |P : D| > 2,
in addition, suppose that H is SS-permutable in G if there exists D1 < H < P
with 2|Dq| = |D| and H/D; is cyclic of order 4.

Theorem 1.5 (4, Theorem 1.3). Let F be a saturated formation containing
U, the class of all supersolvable groups and G a group with E as a normal subgroup
of G such that G/E € F. Suppose that every non-cyclic Sylow subgroup P of
F*(E) satisfies (%) in G. Then G € F.

Scrutinizing the proof of [4, Theorem 1.3], we can find that the following
Theorem 1.6 holds:

Theorem 1.6 (4, Theorem 1.3). Let F be a saturated formation containing
U and G a group with E as a normal subgroup of G such that G/E € F. Suppose
that every non-cyclic Sylow subgroup P of F*(FE) satisfies ()’ in G. Then G € F.

In this paper, the main purpose is to generalize Theorem 1.6 as follows:

Theorem 1.7 (i.e. Theorem 3.5). Let F be a saturated formation containing
U and G a group with E as a normal subgroup of G such that G/E € F. Suppose
that every non-cyclic Sylow subgroup of F*(F) satisfies {1 in G. Then G € F.
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2. Preliminaries

Lemma 2.1 (5, Lemma 2.1 and Lemma 2.5). Let H be SS-permutable in

a group G, K < G and N a normal subgroup of G. We have:

(1)
(2)
3)

(4)
()

If H < K, then H is SS-permutable in K.
HN/N is SS-permutable in G/N.

If N < K, then K/N is SS-permutable in G/N if and only if K is SS-
permutable in G.

If K is quasinormal (or permutable) in G, then HK is SS-permutable in G.
If a p-subgroup P of G is SS-permutable in G, where p is a prime, then P
permutes with every Sylow q-subgroup of G with q # p.

Lemma 2.2. Let U be a weakly SS-permutable subgroup of G and N a

normal subgroup of G. Then

(1)
(2)

If U < H <@, then U is weakly SS-permutable in H.

Suppose that U is a p-group for some prime p. If N < U, then U/N is weakly
SS-permutable in G/N.

Suppose that U is a p-group for some prime p and N is a p’-subgroup. Then
UN/N is weakly SS-permutable in G/N.

Suppose that U is a p-group for some prime p and U is not SS-permutable in
G. Then G has a normal subgroup M such that |G : M| =p and G = MU.

If U < O,(G) for some prime p, then U is weakly s-permutable in G.

PrOOF. By the hypotheses, there are a subnormal subgroup T of G and

an SS-permutable subgroup Uss of G contained in U such that G = UT and
UNT < Ugs.

(1)

(2)

We can get that H = U(H NT). Obviously, H NT is subnormal in H and
UN(HNT)=UNT < Uss. By Lemma 2.1(1), Uy, is SS-permutable in H.
Hence, U is weakly S.S-permutable in H.

We have that G/N = (U/N)(TN/N). Obviously, TN/N is subnormal in
G/N and (U/N)N(TN/N) = (UNTN)/N = (UNT)N/N < (U,,N)/N. By
Lemma 2.1(2), (UssN)/N is SS-permutable in G/N. Hence, U/N is weakly
SS-permutable in G/N.

Tt is easy to see that N < T and G/N = (UN/N)(T/N). Since T/N is sub-
normal in G/N and (UN/N)NT/N = (UNT)N/N < (UssN)/N, (UssN)/N
is SS-permutable in G/N by Lemma 2.1(2). Hence, (UN)/N is weakly SS-
permutable in G/N.
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4) UT=G,then U=UNT < U < U, therefore, U = Uy, is SS-permutable
in G, contrary to the hypotheses. Consequently, T" is a proper subgroup of
G. Hence, G has a proper normal subgroup K such that T < K. Since G/K
is a p-group, G has a normal maximal subgroup M such that |G : M| =p
and G = MU.

(5) We can get that by Lemma 2.1(3). O
By Lemma 2.2(5) and [4, Lemma 2.11], we have that:

Lemma 2.3. Let N be an elementary abelian normal subgroup of a group
G. Assume that N has a subgroup D such that 1 < |D| < |N| and every subgroup
H of N satisfying |H| = |D| is weakly SS-permutable in G. Then some maximal
subgroup of N is normal in G.

Lemma 2.4 (13, A, 1.2). Let U,V and W be subgroups of a group G. Then
the following statements are equivalent.

(1) UNVW = (UNV)(UNW).
(2) UVAUW =UV NW).

Applying Lemma 2.4, we have that:

Lemma 2.5. Suppose that N is a normal subgroup of a group G and G
is a Sylow g-subgroup of G and P is a p-subgroup of G, where q # p for some
primes p and q. If PG, is a subgroup of G, then

(1) NN PG, =(NNP)NNG,).
(2) PANNG,=PnNN.
Lemma 2.6 (1, VI, 4.10). Assume that A and B are two subgroups of a

group G and G # AB. If ABY = BY9A holds for any g € G, then either A or B is
contained in a nontrivial normal subgroup of G.

Lemma 2.7 (1, III, 5.2 and IV, 5.4). Suppose that p is a prime and G is
a minimal non p-nilpotent, i.e., G is not a p-nilpotent group but whose proper
subgroups are all p-nilpotent. Then

(1) G has a normal Sylow p-subgroup P for some prime p and G = P(Q), where
Q is a non-normal cyclic q-subgroup for some prime q # p.

(2) P/®(P) is a minimal normal subgroup of G/®(P).
(3) The exponent of P is p or 4.

Lemma 2.8 (14, X, 13). Let M be a subgroup of G.
(1) If M is normal in G, then F*(M) < F*(G).



70 Xuanli He, Yangming Li and Yanming Wang

(2) F*(G) #1if G # 1; in fact, F*(G)/F(G) = Soc(F(G)Ca(F(Q))/F(G)).
(3) F*(F*(G)) = F*(G) > F(G); if F*(G) is solvable, then F*(G) = F(G).

Lemma 2.9 (1, IV, Satz 4.7). If P is a Sylow p-subgroup of a group G and
N <G such that PN N < ®(P), then N is p-nilpotent.

3. Main results

Theorem 3.1. Let p be the smallest prime of w(G) and P a Sylow p-
subgroup of G. If all maximal subgroups of P are weakly SS-permutable in G,
then G is p-nilpotent.

PROOF. Suppose that the theorem is false and let G be a counterexample of
minimal order, then we have:

(1) G has the unique minimal normal subgroup N such that G/N is p-
nilpotent and ®(G) = 1.

Let N be a minimal normal subgroup of G. We consider the factor group
G/N. Let M/N is a maximal subgroup of PN/N. It is easy to see that M = P|N
for some maximal subgroup P; of P. It follows that PN N = Py N N is a Sylow
subgroup of N. By the hypotheses, there are a subnormal subgroup K; of G and
an S S-permutable subgroup (P;)ss of G contained in P; such that G = P K; and
PiNK; < (Py)ss. Then G/N = (PLN/N)(K,N/N) = (M/N)(K,N/N). It is easy
to see that K1 N/N is subnormal in G/N. Since (|[N : NN P|,|N: K1NN|) =1,
(PANN)(K1NN)=N=NNG = NN(P,K;). By Lemma 2.4, (PLN)N(K1N) =
(P, N K)N. Hence, (PLN)/N N (KiN)/N = (P, 0 K{)N/N < (P,)sN/N. Tt
follows from Lemma 2.1(2) that (Py)ssN/N < M/N is SS-permutable in G/N.
Hence, M/N is weakly SS-permutable in G/N. Therefore, G/N satisfies the
hypotheses of the theorem. The choice of G yields that G/N is p-nilpotent. The
uniqueness of N and ®(G) = 1 are obvious.

(2) Op(G) =1.

If Oy (G) # 1, then N < Oy (G) and G/Op (G) is p-nilpotent by (1), G is
p-nilpotent, a contradiction. Hence O, (G) = 1.

(3) Op(G) = 1. Therefore, G is not solvable and N is a direct product of
some isomorphic non-abelian simple groups.

If O,(G) # 1, we have that N < O,(G) and ®(0,(G)) < ®(G) =1 by (1).
Thus, G has a maximal subgroup M such that G = M N and M NN = 1. Since
0,(G) N M is normalized by N and M, hence, by G, the uniqueness of N yields
N = O0,(G). Clearly, P = N(P N M). Since PN M < P, let P, be a maximal
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subgroup of P such that PN M < P;. Then P = NP,. By the hypotheses, there
are a subnormal subgroup T of G and an SS-permutable subgroup (P;)ss of G
contained in P; such that G = P,T and Py NT < (Py)ss. Since N < OP(G) < T
by (1), we have that P, " N = (P1)ss N N. For any Sylow g-subgroup G, of G,
there holds

[PLON,Go] = [(P1)ss NN, Gl = [(P1)ssGg NN, Go] < N NO(P1)ssGy
=NN(P)ss=NNP

by Lemma 2.1(5) and Lemma 2.5(1), where g # p. Obviously, P,NN is normalized
by P. Therefore, P, N N is normal in G. The minimality of N implies that
PN N = 1. Hence, N is of order p. Thus, G is p-nilpotent, a contradiction.
Hence, O,(G) = 1. Combining (2), we can see that G is not solvable and N is a
direct product of some isomorphic non-abelian simple groups.

(4) The final contradiction.

If NnP < ®(P), then N is p-nilpotent by Lemma 2.9, contrary to (3).
Consequently, there is a maximal subgroup P; of P such that P = (N N P)P;.
Since P; is weakly SS-permutable in G, by the hypotheses, there are a subnormal
subgroup T of G and an SS-permutable subgroup (P)ss of G contained in P
such that G = P\T and P, NT < (P1)ss.

For any Sylow ¢-subgroup N, of N with ¢ # p, we now claim that
((P1)ss "NN)Ng = Ng((P1)ss N N). In fact, pick any Sylow g-subgroup G4 of G
containing Ny. Then (P1)ssGy N NGy = ((P1)ss "NGy)Gy = ((P1)ss N N)Gy by
Lemma 2.1(5) and Lemma 2.5(2). Hence,

((Pl)ss ﬂN)Gq NN = ((Pl)ss mN)(Gq ON) = ((Pl)ss mN)Nq

Therefore, ((P1)ss N N)Ng = Ny((P1)ss N N).

Applying Lemma 2.6, we know that N has a proper normal subgroup M
such that either (P;)ss NN < M or N, < M. If N, < M, this is contrary to [1, I,
Satz 9.12(b)]. If (P1)ss NN < M, notice that PLNN = (P1)ss "N <P NM <
PN M, we have that

_ INlp

IN/M]|, = ] =[PAN:PNM]<[PNN:P,NN]=[P:P]=p
p

|N/M)|, = p with p minimum prime divisor implies that N/M is p-nilpotent.
By (3), N is a direct product of some isomorphic non-abelian simple groups,
say, N 2 Ny X -+ X Ny. N/M is isomorphic to a direct product of some N;.
Hence N; is p-nilpotent. Contrary to that N7 is a non-abelian simple group.
This completes the proof of Theorem 3.1. (|
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Theorem 3.2. Let G be a group and P a Sylow p-subgroup of G, where p
is the smallest prime of w(G). If P satisfies (¢1) in G, then G is p-nilpotent.

PROOF. Suppose that the theorem is false and let G be a counterexample of
minimal order, then:

(1) Op(G) = 1.

Denote N = Oy (G). If N # 1, then Sylow p-subgroup PN/N of G/N
satisfies (¢1) in G/N by Lemma 2.2(3). By the minimality of G, we have G/N is
p-nilpotent. Then G is p-nilpotent, a contradiction. Hence, N = O,/ (G) = 1.

(2) D] > p.

Suppose that |D| = p. Since G is not p-nilpotent, G has a minimal non
p-nilpotent subgroup G1. By Lemma 2.7(1), G; = [P1]Q, where P, € Syl,(G1)
and @ € Syl (G1), p # q. Denote ® = ®(P;). Let X/® be a subgroup of P /® of
order p, x € X \ ® and L = (x). Then L is of order p or 4 by Lemma 2.7(3). By
the hypotheses, L is weakly SS-permutable in G, thus, in G; by Lemma 2.2(1). If
L is not SS-permutable in G, then by Lemma 2.2(4), G; has a normal subgroup
T such that G; = LT and |Gy : T| = p. Since G is a minimal non p-nilpotent
group, 7' is p-nilpotent. Then Tj, char T' 4 Gy and T, d G;. Therefore, G; is
p-nilpotent, a contradiction. Hence, L is SS-permutable in G;. So X/® = L®/P
is SS-permutable in G /® by Lemma 2.1(2). Now Lemma 2.3 and Lemma 2.7(2)
imply that |P1/®| = p. It follows immediately that P; is cyclic. Thus, G is
p-nilpotent by [1, IV, Satz 2.8], contrary to the choice of Gj.

(3) |P: D|>p.

By Theorem 3.1.

(4) P satisfies ¢ in G.

Assume that H < P such that |H| = |D| and H is not SS-permutable in G.
By Lemma 2.2(4), there is a normal subgroup M of G such that |G : M| = p.
Since |P : D| > p and Lemma 2.2(1), M satisfies the hypotheses of the theorem.
The choice of G yields that M is p-nilpotent. It is easy to see that G is p-nilpotent,
contrary to the choice of G.

(5) If N < P and N is a minimal normal subgroup of G, then |N| < |D|.

Suppose that |N| > |D|. Since N < O,(G), N is elementary abelian. By
Lemma 2.3, N has a maximal subgroup which is normal in G, contrary to the
minimality of N.

(6) Suppose that N < P and N is a minimal normal subgroup of G, then
G/N is p-nilpotent.

If |IN| < |D|, G/N satisfies the hypotheses of the theorem by Lemma 2.1(2).
Thus, G/N is p-nilpotent by the minimal choice of G. So we may suppose that
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|N| = |D| by (5). We will show every cyclic subgroup of P/N of order p or order
4 (when P/N is a non-abelian 2-group) is SS-permutable in G/N. Let K < P
and |K/N| = p. By (2), N is non-cyclic, so are all subgroups containing N.
Hence, there is a maximal subgroup L # N of K such that K = NL. Of course,
|N| = |D| = |L|. Since L is SS-permutable in G by the hypotheses, K/N = LN/N
is SS-permutable in G/N by Lemma 2.1(2). If p = 2 and P/N is non-abelian,
take a cyclic subgroup X/N of P/N of order 4. Let K/N be maximal in X/N.
Then K is maximal in X and |K/N| = 2. Since X is non-cyclic and X/N is
cyclic, there is a maximal subgroup L of X such that N is not contained in L.
Thus, X = LN and |L| = |K| = 2|D|. Since X/N = LN/N = L/(LN N) is
cyclic of order 4, by the hypotheses, L is SS-permutable in G. By Lemma 2.1,
X/N = LN/N is SS-permutable in G/N. Hence, P/N satisfies {2 in G/N. By
the minimal choice of G, G/N is p-nilpotent.

(7) O,(G) = 1.

If O,(G) # 1. Take a minimal normal subgroup N of G contained in O,(G).
By (6), G/N is p-nilpotent. It is easy to see that N is the unique minimal normal
subgroup of G contained in O,(G). Furthermore, O,(G) N ®(G) = 1. Hence,
0,(G) = F(G) is an elementary abelian p-group. On the other hand, G has
a maximal subgroup M such that G = MN and M NN = 1. It is easy to
deduce that O,(G)N M =1, N = O,(G) and M = G/N is p-nilpotent and
Ng(Mpy) =M. Then G can be written as G = N(M N P)M, , where M, is the
normal p-complement of M. Pick a maximal subgroup S of M,,. Then SM, < M
and |M : SM,/| = p. Hence, NSM, < G is a subgroup of G with index p. By
the minimality of p, we know that NSM, < G. Now by (3) and Lemma 2.1(1),
we have that NSM,, is p-nilpotent. Therefore, G is p-nilpotent, a contradiction.

(8) The minimal normal subgroup L of G is not p-nilpotent.

If L is p-nilpotent, by the fact that L, char L < G, we have that L, <
Oy (G) = 1. Thus, L is a p-group. Then L < O,(G) = 1 by Step (7), a
contradiction.

(9) G is a non-abelian simple group.

Suppose that G is not a simple group. Take a minimal normal subgroup L
of G. Then L < G. If |L|, > |D|, then L is p-nilpotent by the minimal choice
of G, contrary to (7). If |L|, < |D|. Take P > LN P such that |P1| = p|D].
Hence, P; is a Sylow p-subgroup of P; L. Since every maximal subgroup of P, is
of order |D|, every maximal subgroup of P is SS-permutable in G by hypotheses,
thus, in PiL by Lemma 2.1(1). Now applying Theorem 3.1, we can get P, L is
p-nilpotent. Therefore, L is p-nilpotent, contrary to (8).
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(10) The final contradiction.

Suppose that H is a subgroup of P with |H| = |D| and @ is a Sylow ¢-
subgroup of G with ¢ # p. Then HQY = QYH for any g € G by (4) and
Lemma 2.1(5). Since G is simple by (9), G = HQ from Lemma 2.6, the final
contradiction. (]

Corollary 3.3. Suppose that G is a group. If every non cyclic Sylow sub-
group of G satisfies {1 in G, then G has the Sylow Tower of supersolvable type.

Theorem 3.4. Let F be a saturated formation containing U and G a group
with E as a normal subgroup of G such that G/E € F. Suppose that every
non-cyclic Sylow subgroup of E satisfies {1 in G. Then G € F.

PROOF. Suppose that P is a Sylow p-subgroup of E, for any prime p € 7(E).
Since P satisfies 01 in G by hypotheses, P satisfies ¢; in E' by Lemma 2.2(1).
Applying Corollary 3.3, we have that F has a Sylow tower of supersolvable type.
Let ¢ be the maximal prime divisor of |E| and @ € Syl (F). Then Q < G. Since
(G/Q, E/Q) satisfies the hypotheses of the theorem, by induction, G/Q € F.
For any subgroup H of Q with |H| = |D|, since Q < O4(G), H is weakly s-
permutable in G by Lemma 2.2(5). Hence, @ satisfies (%)’ in G. Since F*(Q) = Q
by Lemma 2.8, we get G € F by applying Theorem 1.6. O

Theorem 3.5. Let F be a saturated formation containing Y and G a group
with E as a normal subgroup of G such that G/E € F. Suppose that every
non-cyclic Sylow subgroup of F*(E) satisfies {1 in G. Then G € F.

Proor. We distinguish two cases:

Case 1. F=U

Let G be a minimal counter-example.

(1) Every proper normal subgroup N (if it exists) of G containing F*(E) is
supersolvable.

If N is a proper normal subgroup of G containing F*(FE), we have that
N/N N E = NE/FE is supersolvable. By Lemma 2.8(3), F*(E) = F*(F*(E)) <
F*(ENN) < F*(E), so F*(ENN) = F*(FE). For any Sylow subgroup P of
F*(ENN), P satisfies ¢1 in G by hypotheses. Hence, P satisfies {1 in N by
Lemma 2.2(1). So (N, N N E) satisfy the hypotheses of the theorem, the minimal
choice of G implies that N is supersolvable

(2) E=G.

If E < G, then E € U by (1). Hence F*(E) = F(F) by Lemma 2.8(3). It
follows that every Sylow subgroup of F*(FE) is normal in G. By Lemma 2.2(5),
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every Sylow subgroup of F*(E) satisfies ()’ in G. Applying Theorem 1.6 for the
special case F =U, G € U, a contradiction.

(3) F*(G) = F(G) < G.

If F*(G) = G, then G € F by Theorem 3.4, contrary to the choice of G. So
F*(G) < G. By (1), F*(G) € 4 and F*(G) = F(G) by Lemma 2.8(3).

(4) The final contradiction.

Since F*(G) = F(G), each Sylow subgroup of F*(G) satisfies (%)’ in G by
Lemma 2.2(5). Applying Theorem 1.4, G € U, a final contradiction.

Case 2. F £U.

By hypotheses, every non-cyclic Sylow subgroup of F*(E) satisfies ¢ in G,
thus, in F by Lemma 2.2(1). Applying CASE 1, E € Y. Then F*(E) = F(E)
by Lemma 2.8(3). It follows that each Sylow subgroup of F*(E) is normal in G.
By Lemma 2.2(5), each Sylow subgroup of F*(FE) satisfies ()’ in G. Applying
Theorem 1.6, G € F. a

4. Some applications

From the definition of weakly SS-permutably subgroup, we can see that [4,
Corollary 5.1-5.24] are corollaries of Theorem 3.5. Furthermore, we have

Corollary 4.1. Let F be a saturated formation containing U and G a group
with E as a normal subgroup of G such that G/E € F. Suppose that all maximal
subgroups of any Sylow subgroup of F*(FE) are either SS-permutable or c-normal
in G. Then G € F.

Corollary 4.2. Let F be a saturated formation containing U and G a group
with E as a normal subgroup of G such that G/E € F. Suppose that the cyclic
subgroups of prime order or order 4 of F*(E) are either SS-permutable or c-
normal in G. Then G € F.

Corollary 4.3 (14, Theorem 3.3). Let F be a saturated formation containing
U and G a group with E as a normal subgroup of G such that G/E € F. Suppose
that all maximal subgroups of any Sylow subgroup of F*(E) are SS-permutable
in G. Then G € F.

Corollary 4.4 (14,Theorem 3.7). Let F be a saturated formation containing
U and G a group with E as a normal subgroup of G such that G/E € F. Suppose
that the cyclic subgroups of prime order or order 4 of F*(E) are SS-permutable
in G. Then G € F.
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Theorem 3.2 is also interesting. Using routine way, we can generalize it as
follows.

Corollary 4.5. Let G be a group, H a normal subgroup of G such that
G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor
of |G| with (|G|,p — 1) = 1. If P satisfies {1 in G, then G is p-nilpotent.

Corollary 4.6. Let G be a group, H a normal subgroup of G such that G/H
is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor of |G|
with (|G|,p—1) = 1. If every maximal subgroup of P is either SS-permutable or
c-normal in G, then G is p-nilpotent.

Corollary 4.7. Let G be a group, H a normal subgroup of G such that
G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor
of |G| with (|G|,p — 1) = 1. If the cyclic subgroups of prime order or order 4 of
P are either SS-permutable or c-normal in GG, then G is p-nilpotent.

Corollary 4.8. Let G be a group, H a normal subgroup of G such that
G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor
of |G| with (|G|,p—1) = 1. If every maximal subgroup of P is SS-permutable in
G, then G is p-nilpotent.

Corollary 4.9. Let G be a group, H a normal subgroup of G such that
G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor
of |G| with (|G|,p — 1) = 1. If the cyclic subgroups of prime order or order 4 of
P are either SS-permutable in G, then G is p-nilpotent.

Corollary 4.10. Let G be a group, H a normal subgroup of G such that
G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor
of |G| with (|G|,p — 1) = 1. If P satisfies (%)’ in G, then G is p-nilpotent.

Corollary 4.11. Let G be a group, H a normal subgroup of G such that
G/H is p-nilpotent and P a Sylow p-subgroup of H, where p is a prime divisor
of |G| with (|G|,p — 1) = 1. If P satisfies {2 in G, then G is p-nilpotent.
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