
Publ. Math. Debrecen

77/1-2 (2010), 87–99

On approximation of maximal operators

By HUGO AIMAR (Santa Fe), MARILINA CARENA (Santa Fe)
and BIBIANA IAFFEI (Santa Fe)

Abstract. We prove that the weak type (1, 1) boundedness of the maximal of a se-

quence of integral operators on a metric measure space X follows from the uniform weak

type on Dirac deltas of the restriction of the operators to a sequence of approximations

of X.

1. Introduction

Let us start by a classical example, the Hardy–Littlewood maximal operator.
The standard proofs of the weak type (1, 1) boundedness of this operator are
based on covering lemmas. Besicovich type covering lemmas do not hold for
general metrics. Wiener type, instead, are valid for general quasi-distances in
finite metric (or Assouad) dimension spaces. Since the covering balls in Wiener’s
lemma are dilations of the selected balls, the doubling condition of the measure
is the most usual tool to overcome this difficulty. In finite settings the strategy
of Wiener becomes specially simple.

Let [1, L] be the set of all integers between 1 and a given integer L larger
than one, i.e. [1, L] = {i ∈ N : 1 ≤ i ≤ L}. Let ρ be a distance on [1, L]. As
usual Bρ(i, r) denotes the ρ-ball in [1, L] centered at i and with radius r > 0,
Bρ(i, r) = {j ∈ [1, L] : ρ(i, j) < r}. Let ν be a positive function defined on [1, L].
Given a subset E of [1, L] we shall write ν(E) to denote the sum

∑
i∈E ν(i).
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Notice that

ν(Bρ(i, 2r)) =
ν(Bρ(i, 2r))
ν(Bρ(i, r))

ν(Bρ(i, r)) ≤ ν([1, L])
min{ν(j) : j ∈ [1, L]}ν(Bρ(i, r)).

So that ν is a doubling measure on [1, L]. In other words, the set

A = {A : ν(Bρ(i, 2r)) ≤ Aν(Bρ(i, r)) for every r > 0 and every i ∈ [1, L]}

is non empty.

Theorem 1 (Hardy–Littlewood in ([1, L], ρ, ν)). For each A ∈ A, λ > 0 and

any subset E of [1, L], we have that

ν

(⋃
r>0

{
i ∈ [1, L] :

ν(E ∩Bρ(i, r))
ν(Bρ(i, r))

> λ

})
≤ A

λ
ν(E). (1.1)

The proof of the above theorem can be obtained from the following discrete
version of the Wiener covering lemma. Notice that the finite context makes easier
the selection process than in continuous settings such as the Euclidean space.

Lemma 2 (Wiener’s lemma in ([1, L], ρ)). Let E be a subset of [1, L] and

let r : E → R+ be a given positive real function defined on E. Then there exists

a subset F of E such that

(1) Bρ(i, r(i)) ∩Bρ(j, r(j)) = ∅ for every i, j ∈ F with i 6= j;

(2) E ⊆ ⋃
i∈F Bρ(i, 2r(i)).

Proof. Set E1 = E and r1 = maxi∈E1 r(i) = r(i1) for some i1 ∈ E1. Set
E2 = E1\B(i1, 2r(i1)). If E2 = ∅, we take F = {i1} and we are done. If E2 6= ∅
take r2 = maxi∈E2 r(i) = r(i2) for some i2 ∈ E2. Notice that in this case we
have r2 ≤ r1. Assuming that E1, E2, . . . , Ek−1 and i1, i2, . . . , ik−1 have been
constructed, set Ek = Ek−1\Bρ(ik−1, 2r(ik−1)). If Ek 6= ∅ we pick ik ∈ Ek such
that r(ik) = rk = maxi∈Ek

r(i). Notice that rj ≤ rk for k ≤ j. Otherwise,
if Ek = ∅, taking F = {ii, i2, . . . , ik−1} we see that E ⊆ ⋃k−1

m=1 Bρ(im, 2rm).
On the other hand, if i` and ij are two different points in F we have that que
Bρ(i`, r`) ∩Bρ(ij , rj) = ∅. If fact, if ` < j and z ∈ Bρ(i`, r`) ∩Bρ(ij , rj), then

ρ(i`, ij) ≤ ρ(i`, z) + ρ(z, ij) < r` + rj ≤ 2r`.

So that ij ∈ Bρ(i`, 2r`), which is impossible. Since E itself is a finite set, the
selection stops. ¤



On approximation of maximal operators 89

Proof of Theorem 1. Let us take A ∈ A. Set

Eλ =
⋃
r>0

{
i ∈ [1, L] : λ−1ν(E ∩Bρ(i, r)) > ν(Bρ(i, r))

}
.

Notice that for each i ∈ Eλ we have a positive number ri = ri(E) such that

ν(Bρ(i, r(i))) <
1
λ

ν(E ∩Bρ(i, r(i))).

Applying Lemma 2 to this positive real function r : Eλ → R+ we obtain a finite
subset F = {i1, . . . , im} of Eλ such that (a) and (b) hold. Hence

ν (Eλ) ≤ ν

( ⋃

j∈F

Bρ(j, 2r(j))
)
≤ A

∑

j∈F

ν(Bρ(j, r(j)))

<
A

λ

∑

j∈F

ν(E ∩Bρ(j, r(j))) ≤ A

λ
ν(E). ¤

Notice that Theorem 1 is nothing but the restricted weak type inequality for
the Hardy–Littlewood maximal operator on ([1, L], ρ, ν). In fact, with f = XE ,
the set ⋃

r>0

{
i ∈ [1, L] :

ν(E ∩Bρ(i, r))
ν(Bρ(i, r))

> λ

}

is the same as {i ∈ [1, L] : Mf(i) > λ}, where as usual

Mf(i) = sup
r>0

1
ν(Bρ(i, r))

∫

Bρ(i,r)

|f | dν.

The above situation seems to be very particular because the basic set in
which M is defined is the integer interval [1, L]. Nevertheless the generality of
the above elementary result comes from the generality of the distance ρ. To
illustrate this and the type of problems considered here, let us start by the most
classical probability space: X = [0, 1]n equipped with the Euclidean distance d

and Lebesgue measure m.
Let Sj be the regular dyadic net 2−jZn∩ [0, 1)n = {xj

` : ` = (`1, . . . , `n), 1 ≤
`i ≤ 2j}. Since Sj contains 2jn points, let us consider any one to one correspon-
dence between Sj and the integer interval [1, 2jn]. In other words we label each
point in Sj with an integer number in [1, 2jn], so that Sj = {xj

k : 1 ≤ k ≤ 2jn}.
Let µj be the probabilistic Borel measure on X supported on Sj , given by
µj({xj

k}) = 2−nj , for every xj
k ∈ Sj . Given a non-negative integer j, let us define



90 Hugo Aimar, Marilina Carena and Bibiana Iaffei

a distance ρj on the integer interval [1, 2jn] by ρj(k, i) = |xj
k − xj

i |. The measure
µj also gives rise to a measure νj on [1, 2jn], taking νj({k}) = µj({xj

k}) = 2−nj .
Of course each

Aj =
{
A : A is a doubling constant for ([1, 2nj ], ρj , νj)

}

is non empty for each j. But more than that, it is easy to see that
⋂∞

j=0 Aj 6= ∅. Let
A = inf

⋂∞
j=0 Aj , then the sequence of spaces of homogeneous type ([1, 2nj ], ρj , νj)

has A as a uniform doubling constant. Hence Theorem 1 can be applied to each
space ([1, 2nj ], ρj , νj) and (1.1) with 2njλ instead of λ, gives

νj

({
k ∈ [1, 2nj ] : 2−njMjXE(k) > λ

}) ≤ A
2njλ

2nj

H =
A
λ

H (1.2)

for every j and every λ > 0, where E is a subset of [1, 2nj ], H is the number of
elements of E and

MjXE(k) = sup
r>0

1
νj(Bρj (k, r))

∫

Bρj
(k,r)

XE(i) dνj(i)

= sup
r>0

1
νj(Bρj (k, r))

νj(E ∩Bρj (k, r)) = sup
r>0

card(E ∩Bρj (k, r))
card(Bρj (k, r))

.

Inequality (1.2) can be restated in (Sj , d, µj) in the following way

µj

(
{xj

k ∈ Sj : Mjg(xj
k) > λ}

)
≤ A

λ
H (1.3)

for every λ > 0, where

Mjf(xj
k) = sup

r>0

1
µj(Bd(x

j
k, r))

∫

Bd(xj
k,r)

|f(xj
i )| dµj(x

j
i ),

and g =
∑

k∈E δxj
k
, with δxj

k
the “unit mass” at xk

j given by 2−njX{xj
k}, and

H = card(E).
In other words, Theorem 1 allows to obtain a uniform weak type (1, 1) in-

equality for the approximate Hardy–Littlewood operator on finite sums of Dirac
deltas on an increasing approximation of the whole space X = [0, 1]n.

A basic question, regarding the above considerations, is whether or not a weak
type inequality for a maximal operator of a sequence of integral operators on a
general metric measure space (X, d, µ) can be obtained from such uniform weak
type inequalities on finite sums of Dirac deltas on finite settings like (Sj , d, µj).
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The previous works by one of the authors contained in [3] provide the ingredi-
ent in order to prove a positive result in this direction. There an extension of the
results of Carrillo and de Guzmán concerning the weak type boundedness of max-
imal operators on finite sums of Dirac deltas (see [4]) to spaces of homogeneous
type is given.

A caveat for this program is provided by the example given by Akcoglu–
Baxter–Bellow–Jones in [2]: the maximal of a sequence of convolution operators
in Z which is of restricted weak type (1, 1) but not of weak type (1, 1).

In this note we give sufficient conditions on the metric measure space (X, d, µ)
and on the kernel sequence, in such a way that a uniform discrete family of
inequalities like (1.3) imply the weak type (1, 1) boundedness of the maximal
operator defined by the given sequence on (X, d, µ).

In Section 2 we state the two results of this note, which are proved in Sec-
tion 3.

2. Basic notation and statement of the results

Let us start by stating the precise properties of the setting for the result in
this paper. Let (X, d) be a complete metric space. Assume that ω is a Borel
measure with the following general structure

dω = w dµ,

where w is a locally integrable non-negative function defined on X and µ is a
doubling regular Borel measure on X. This means that there exists a constant
A > 0 such that 0 < µ(Bd(x, 2r)) ≤ Aµ(Bd(x, r)) for every x ∈ X and r > 0.
In other words (X, d, µ) is a space of homogeneous type with A as a doubling
constant.

Let {k` : ` ∈ N} be a sequence of continuous kernels with compact support
on X ×X. Given f ∈ L1(X) we define

K`f(x) =
∫

X

k`(x, y)f(y) dω(y),

and
K∗f(x) = sup

`
|K`f(x)| .

Notice that from Fubini–Tonelli’s theorem, K`f(x) is well defined for µ-almost
every x ∈ X, and then K∗f is a measurable function defined on X.

Let {(Xj , ωj) : j ∈ N} be a sequence of measure spaces such that
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(1) each Xj is a Borel subset of X;

(2) Xj ⊆ Xj+1;

(3)
⋃

j∈NXj is dense in X;

(4) supp ωj ⊆ Xj ;

(5) ωj → ω in the weak star convergence.

We shall use superscripts to denote points in a particular subspace Xj of X.
In other words we write xj to denote a generic point in Xj . We reserve the
subscripts to denote different points in the same space. In the sequel we shall
write xj

1, . . . , x
j
H to denote H points in Xj .

We shall consider two different restrictions to Xj × Xj of each k` of the
given kernel sequence. The first one is just the usual restriction to Xj × Xj .
In other words kj

` (x
j , yj) = k`(xj , yj) for xj , yj ∈ Xj . The second one avoids

the diagonal and is defined by k j
` = k`X4c

j
, where 4c

j is the complement of the
diagonal in Xj ×Xj . In other words, k j

` (xj , yj) = k`(xj , yj) if xj and yj are two
different points in Xj , and k j

` (xj , xj) = 0. Associated to these kernels we have
the corresponding sequences of integral operators and their maximal operators.
Precisely

Kj
` f(xj) =

∫
kj

` (x
j , y)f(y) dωj(y) =

∫

Xj

k`(xj , yj)f(yj) dωj(yj),

and

(Kj∗f)(xj) = sup
`

∣∣Kj
` f(xj)

∣∣, (2.1)

for f ∈ L1(Xj , ωj). In a similar way, we define

K j
` f(xj) =

∫

X

k j
` (xj , y)f(y) dωj(y) =

∫

Xj−{xj}
k`(xj , yj)f(yj) dωj(yj),

and

(K j∗f)(xj) = sup
`

∣∣K j
` f(xj)

∣∣. (2.2)

The main results of this note are contained in the following statements. The
first one proves that the uniform weak type (1, 1) boundedness of K j∗ over finite
sums of Dirac deltas on different points of (Xj , ωj), is sufficient for the weak type
(1, 1) boundedness of K∗ on (X,ω).

Theorem 3. Assume that ω({x}) = 0 for each x ∈ X. Let (Xj , ωj) be a

sequence satisfying (a) to (e). If there exists a constant C such that for every
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λ > 0 and every finite set xj
1, x

j
2, . . . , x

j
H of different points in Xj , we have

ωj

({
xj ∈ Xj : sup

`∈N

∣∣∣∣∣
∑

i=1,...,H

xj 6=xj
i

k`(xj , xj
i )

∣∣∣∣∣ > λ

})
≤ C

H

λ
(2.3)

for every j, then K∗ is of weak type (1, 1) on (X, ω).

Corollary 4. If each Xj is finite, then the uniform restricted weak type

(1, 1) of the sequence K j∗ in (Xj , ωj) implies the weak type (1, 1) boundedness

of K∗ on (X,ω).

The second result proves that the uniform weak type (1, 1) boundedness
of Kj∗ for linear combinations of Dirac deltas with positive integer coefficients
on (Xj , ωj) implies the weak type (1, 1) boundedness of K∗ on (X,ω).

Theorem 5. Let (Xj , ωj) be a sequence satisfying (a) to (e). If there exists

a constant C such that for every λ > 0 and every finite set xj
1, x

j
2, . . . , x

j
H of not

necessarily different points in Xj , we have

ωj

({
xj ∈ Xj : sup

`∈N

∣∣∣∣∣
H∑

i=1

k`(xj , xj
i )

∣∣∣∣∣ > λ

})
≤ C

H

λ
(2.4)

for every j, then K∗ is of weak type (1, 1) on (X, ω).

Let us point out that the existence of a sequence of finite spaces (Xj , ωj) as
in Corollary 4 is contained in [1, Thm. 4.1] for X compact. Also in Euclidean
spaces or even in general settings it is not difficult to build sequences (Xj , ωj)
satisfying those properties.

Let us make some remarks regarding the scope of Theorems 3 and 5. First
of all let us point out that since the kernels k` are integrable, the study of the
weak type (1, 1) boundedness of the associated maximal operator can be reduced
to the case of non-negative kernels. With this observation in mind it is clear that
the operator K j∗ which is involved in (2.3) is generally smaller than the operator
Kj∗ involved in inequality (2.4).

Not only from this point of view we see that hypothesis (2.3) is weaker
than (2.4), but also because the class of “test functions” in Theorem 5 is larger
than the class of test functions in Theorem 3. In fact, the former coincides with
the class of all linear combinations of Dirac deltas with positive integer coefficients,
the latter instead is just the class of all finite sums of Dirac deltas on different
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points. Nevertheless the geometric hypothesis in Theorem 3, ω({x}) = 0 for each
x ∈ X, can not be relaxed as the above mentioned example in [2] shows.

On the other hand, for some very classical settings and kernels such as some
usual approximate identities on Euclidean spaces, K j∗ behaves much better than
Kj∗. Precisely, uniform estimates of type (2.3) are possible while uniform esti-
mates of type (2.4) are not.

Notice also that in the atomic case K j∗ does not give a good control of K∗.
In fact if X = Xj = Z with the counting measure, and k` are supported on the
diagonal of X ×X, K j∗ vanishes but generally K∗ does not.

Let us point out that the hypothesis of continuity of the sequence of kernels
can be relaxed. For example if there exists a sequence {k̃i : i ∈ N} of continuous
and non-negative kernels such that there exists a constant C satisfying that for
every ` ∈ N, |k`| ≤ Ck̃i for some i ∈ N, and for every i ∈ N there exists ` ∈ N such
that k̃i ≤ C|k`|. Then the weak type of the maximal operator associated with
the kernels k` is equivalent to the weak type of the maximal operator associated
with the kernels k̃`.

We shall conclude this section with an example showing how Theorem 3 can
be used to prove the classic weak type (1, 1) inequality for the Hardy–Littlewood
maximal operator. Let us briefly show how (1.3) implies (2.3) with X = [0, 1]n,
d the Euclidean distance, ω = m is Lebesgue measure on X, Xj = Sj as in
Section 1, ωj = µj and k`(x, y) = 1

m(Bd(x,2−`))
XBd(x,2−`)(y) for each ` ∈ N. Let

us point out that even when the kernels k`(x, y) are not continuous, we can apply
the above remark with

k̃`(x, y) =
ϕ

(
2`|x− y|))∫

ϕ (2`|x− z|) dz

where ϕ is the continuous function defined on the non-negative real numbers by
ϕ(t) = 1 for every t in the interval [0, 1], ϕ(t) = 0 if t ≥ 2, and linear on [1, 2]. It is
not difficult to show that each k̃` is continuous and that 2−nk`(x, y) ≤ k̃`(x, y) ≤
2nk`−1(x, y).

In order to show that (1.3) implies (2.3), notice that (1.3) takes the following
form

2−nj card

({
xj

k ∈ Sj : sup
`∈N

2nj card
(
E ∩Bd(x

j
k, 2−`)

)

card
(
Sj ∩Bd(x

j
k, 2−`)

) > λ

})
≤ AH

λ
,

for every subset E = {xj
k1

, . . . , xj
kH
} of Sj , every j ∈ N and every λ > 0. On the
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other hand (2.3) for this particular situation reads

2−nj card

({
xj

k∈Sj : sup
`∈N

1
m(Bd(x

j
k, 2−`))

∑

i=1,...,H

xj
ki
6=xj

k

XBd(xj
k,2−`)(x

j
ki

)>λ

})
≤C

H

λ
.

Hence the desired result shall be a consequence of the following inequalities:

1
m(Bd(x

j
k, 2−`))

∑

i=1,...,H

xj
ki
6=xj

k

XBd(xj
k,2−`)(x

j
ki

) ≤ 2n(j+1) card(E ∩Bd(x
j
k, 2−`))

card(Sj ∩Bd(x
j
k, 2−`))

, (2.5)

for every j, ` ∈ N, every choice of E = {xj
k1

, . . . , xj
kH
} ⊆ Sj and every generic

point xj
k in Sj .

In order to prove (2.5) let us divide the analysis in two cases according to
the relative sizes of j and `. If ` > j, there is nothing to prove since the left hand
side in (2.5) vanishes because, in this case, the only point of Sj in Bd(x

j
k, 2−`) is

xj
k itself. Assume now that ` ≤ j. In this case we have that

2−nj card
(
Sj ∩Bd(x

j
k, 2−`)

)
=

∑

xj
i∈Sj∩Bd(xj

k,2−`)

m(Bd∞(xj
i , 2

−j))

≤ m(Bd(x
j
k, 2−`+1)) ≤ 2nm(Bd(x

j
k, 2−`)).

Since clearly

∑

i=1,...,H

xj
ki
6=xj

k

XBd(xj
k,2−`)(x

j
ki

) ≤ card
(
Ẽ ∩Bd(x

j
k, 2−`)

)
,

we have (2.5).
Applying Theorem 3 we obtain the weak type (1, 1) on ([0, 1]n, | · |,m) of

the maximal operator K∗ associated with the sequence {k`}, with constant for
the weak type inequality which only depends on n. By standard homogeneity
arguments for the Hardy–Littlewood maximal operator, this result extends to any
cube of the form [−2i, 2i]n with the same constant for every i ∈ N. This implies
the weak type (1, 1) boundedness of K∗ on (Rn, | · |,m) and hence the weak type
(1, 1) boundedness of the classical Hardy–Littlewood maximal operator.
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3. Proof of Theorems 3 and 5

In this section, X, d, µ, ω and k` are as in Section 2. The main tools in the
proof of Theorems 3 and 5 are the following extensions of the above mentioned
result of Carrillo and de Guzmán. Its proof is contained in [3].

Lemma 6. (A) K∗ is of weak type (1, 1) if and only if there exists a constant

C > 0 such that for every λ > 0 the inequality

ω

({
x ∈ X : sup

`

∣∣∣∣∣
H∑

i=1

k`(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ
(3.1)

holds for every finite sequence (x1, x2, . . . , xH) of points in X.

(B) If ω({x}) = 0 for every x ∈ X, then K∗ is of weak type (1, 1) if and only

if there exists a constant C > 0 such that (3.1) holds for every λ > 0 and every

finite set {x1, x2, . . . , xH} of points in X.

Of course, as usual, the weak type (1, 1) boundedness of K∗ in (A) and (B)
of the above lemma means that there exists a constant C̃ which depends only
on C such that

ω ({x ∈ X : K∗f(x) > λ}) ≤ C̃

λ
‖f‖1,

for every f ∈ L1 and every λ > 0.
Notice that in case (A), when no additional properties are required to the

space, since repetition of the xi’s is allowed then (3.1) is equivalent to the weak
type (1, 1) on the family of all linear combinations of Dirac deltas with positive
integer coefficients. In (B), instead, a smaller class of test function is involved. In
fact, since in the set {x1, . . . , xH} we are assuming that xi 6= xj if i 6= j, the test
functions are finite sums of Dirac deltas supported at different points.

The above mentioned example in [2] shows that (B) is not possible in general
atomic settings.

Proof of Theorem 3. We shall apply the result contained in (B) of Lem-
ma 3.1. Hence we only have to prove that for every λ > 0 and every finite set
x1, x2, . . . , xH of different points in X, we have

ω

({
x ∈ X : sup

`

∣∣∣∣∣
H∑

i=1

k`(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ
, (3.2)
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where C is the constant in (2.3). Let us notice first that (3.2) is an immediate
consequence of a uniform sequence of inequalities of the type

ω

({
x ∈ X : max

1≤`≤N

∣∣∣∣∣
H∑

i=1

k`(x, xi)

∣∣∣∣∣ > λ

})
≤ C

H

λ
,

with C independent of N . Let us the fix N ∈ N and x1, x2, . . . , xH , H different
points in X. Since

⋃∞
j=1 Xj is dense in X and Xj ⊆ Xj+1, we can get a j0 and

a set {yj0
1 , . . . , yj0

H } of distinct points in Xj0 such that yj0
i is as close to xi as we

wish, for each i = 1, . . . ,H. For each 1 ≤ ` ≤ N we write

H∑

i=1

k`(x, xi) =
H∑

i=1

[k`(x, xi)− k`(x, yj0
i )] +

H∑

i=1

k`(x, yj0
i ).

Then for each 0 < α < λ we have
{

x : max
1≤`≤N

∣∣∣∣∣
H∑

i=1

k`(x, xi)

∣∣∣∣∣ > λ

}
⊆

{
x : max

1≤`≤N

∣∣∣∣∣
H∑

i=1

[k`(x, xi)− k`(x, yj0
i )]

∣∣∣∣∣ > α

}

∪
{

x : max
1≤`≤N

∣∣∣∣∣
H∑

i=1

k`(x, yj0
i )

∣∣∣∣∣ > λ− α

}

Let us notice that, since each k` is uniformly continuous on X×X, we can choose
yj0

i in such a way that the first set on the right hand side of the above inclusion
becomes empty. With this set Y = {yj0

1 , . . . , yj0
H } so chosen, we have to get an

estimate for

ω

({
x ∈ X : max

1≤`≤N

∣∣∣∣∣
H∑

i=1

k`(x, yj0
i )

∣∣∣∣∣ > λ− α

})

Set

E =

{
x ∈ X : max

1≤`≤N

∣∣∣∣∣
H∑

i=1

k`(x, yj0
i )

∣∣∣∣∣ > λ− α

}
and Ej = E ∩Xj .

We shall prove that ω(E) ≤ C H
λ−α . From (2.3) we have that

ωj(Ej\Y ) ≤ C
H

λ− α

for every j ≥ j0. Since E is a bounded open subset of X, from the weak conver-
gence of ωj to ω and from the regularity of µ, we have that for each ε > 0 the
inequality

ω(E) < ωj(E) + ε = ωj(Ej) + ε
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holds for j large enough. On the other hand, since

ωj(Ej) = ωj(Ej ∩ Y ) + ωj(Ej\Y ) ≤ ωj(Ej ∩ Y ) + C
H

λ− α

for j ≥ j0, we only have to prove that ωj(Ej ∩ Y ) → 0 when j → ∞. Since
Ej ∩ Y ⊆ Y which is compact, again from the convergence of ωj to ω, for each
positive ε we have for j large enough

0 ≤ ωj(Ej ∩ Y ) ≤ ωj(Y ) < ε + ω(Y ) = ε +
H∑

i=1

ω(yj0
i ) = ε.

Hence ω(E) ≤ C H
λ−α for each α positive and less than λ. This proves the desired

inequality. ¤

Proof of Theorem 5. We shall use part (A) of Lemma 6. Assume that
(x1, . . . , xH) is a sequence of not necessarily different points in X. We shall prove
inequality (3.1) with the same constant C as in (2.4), which is our hypothesis.
Let us fix a positive λ. Following the lines of the proof of Theorem 3, for each
natural N and each 0 < α < λ there exist j0 ∈ Z and a subset Y = {yj0

1 , . . . , yj0
H }

of Xj0 in such a way that

max
1≤`≤N

∣∣∣∣∣
H∑

i=1

[k`(x, xi)− k`(x, yj0
i )]

∣∣∣∣∣ ≤ α

for each x ∈ X. Hence

ω

({
x ∈ X : max

1≤`≤N

∣∣∣∣∣
H∑

i=1

k`(x, xi)

∣∣∣∣∣ > λ

})
≤ ω(E),

with

E =

{
x ∈ X : max

1≤`≤N

∣∣∣∣∣
H∑

i=1

k`(x, yj0
i )

∣∣∣∣∣ > λ− α

}
.

Let us prove that ω(E) ≤ C H
λ−α . In fact, if Ej = E ∩Xj from (2.4) we have that

ωj (Ej) ≤ C
H

λ− α
,

for j ≥ j0. Since E is a bounded open set, given ε > 0 there exists j1 = j1(ε)
such that

ω(E) < ωj(E) + ε = ωj(Ej) + ε,

for j ≥ j1. So that for j large enough

ω(E) < C
H

λ− α
+ 2ε,

which proves the theorem by letting first ε → 0 and then α → 0. ¤
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