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Approximately convex functions on topological vector spaces

By JACEK TABOR (Kraków), JÓZEF TABOR (Rzeszów) and MAREK ŻOÃLDAK (Rzeszów)

Abstract. Let X be a real topological vector space, let D be a subset of X and

let α : X → [0,∞) be an even function locally bounded at zero.

A function f : D → R is called (α, t)-preconvex (where t ∈ (0, 1) is fixed), if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + α(x− y) for x, y ∈ D such that [x, y] ⊂ D.

We prove the Bernstein–Doetsch type theorem for (α, t)-preconvex functions.

1. Introduction

Let D be a convex subset of a real vector space X. A function f : D → R is
called convex if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) for x, y ∈ D, t ∈ [0, 1].

If the above inequality holds for all x, y ∈ D, t = 1
2 then f is called midconvex

(or Jensen convex ) and if it holds for x, y ∈ D and fixed t ∈ (0, 1) then f is called
t-convex.

The relation between convexity and midconvexity was established in the cel-
ebrated Bernstein–Doetsch Theorem [1]. An interesting version of Bernstein–
Doestch Theorem for t-convex functions is presented in [8].

The notion of convex function was generalized by several authors. The main
idea is based on modyfing the right hand side of defining inequality. The first
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step in this direction was done by D. H. Hyers and S. M. Ulam [6]. They
introduced the term “approximately convex function”. Let δ > 0. A function
f : D → R is called δ-convex if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + δ for x, y ∈ D, t ∈ [0, 1].

Further generalizations were made by S. Rolewicz who introduced in [10]
the notions of paraconvex and strongly paraconvex function (for more informa-
tion the reader is refered to [11], [12]). A different modification of approximate
convexity can be found in the papers of A. Házy and Zs. Páles (see for exam-
ple [4]).

Conditional version of approximate convexity (similar in the spirit to para-
convex functions of S. Rolewicz) has been studied by P. Cannarsa and C. Sines-

trari [2]. In this case we resign from the convexity of the domain. Since our
definition is inspired by that from [2] let us quote it.

Let S be a subset of Rn. We say that a function f : S → R is semiconvex
if there exists a nondecreasing upper semicontinuous function ω : R+ → R+ such
that lim%→0+ ω(%) = 0 and

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + t(1− t)‖x− y‖ω(‖x− y‖)

for any pair x, y ∈ S such that the segment [x, y] := {sx + (1− s)y : s ∈ [0, 1]} is
contained in S and for any t ∈ [0, 1].

It is worth mentioning that a semiconvex function defined on an open subset
of Rn is locally Lipschitz [2, Theorem 2.1.7].

Our aim in this paper is to study approximately convex function on a Haus-
dorff real topological vector space X. From now on we assume that D is an open
subset of X, α : X → [0,∞) is a even function locally bounded at zero and
t ∈ (0, 1) is a fixed number.

Definition 1.1. We call a function f : D → R (α, t)-preconvex if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + α(x− y) for x, y ∈ D such [x, y] ⊂ D.

In the case t = 1
2 we say that f is α-premidconvex.

The above definition generalizes all the mentioned before versions of the
notion of approximately convex function.
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2. Bernstein–Doetsch theorem

We will generalize some results from [4] and [14]. Our general aim is to obtain
an analogue of Bernstein–Doetsch theorem. To prove it we need some auxiliary
results.

Lemma 2.1. Let N ∈ N, ak ∈ R for k = −N, . . . , N , and let b ∈ R be such

that

ak ≤ ak−1 + ak+1

2
+ b for k ∈ {−N + 1, . . . , N − 1}. (1)

Then

−
(

a−N − a0

N

)
− (N + 1)b ≤ a1 − a0 ≤ aN − a0

N
+ (N − 1)b.

Proof. From (1) we directly obtain

a1 − a0 ≥ a1 − a0,

a2 − a1 ≥ a1 − a0 − 2b,

a3 − a2 ≥ a2 − a1 − 2b ≥ a1 − a0 − 4b,

...

aN − aN−1 ≥ · · · ≥ a1 − a0 − 2(N − 1)b.

Summing the above inequalities up we obtain that

aN − a0 ≥ N(a1 − a0)−N(N − 1)b,

and consequently that

a1 − a0 ≤ aN − a0

N
+ (N − 1)b.

We show the estimation from below. Making analogous reasoning as above
for the sequence a−k we get

a−1 − a0 ≤ a−N − a0

N
+ (N − 1)b.

From (1) we directly conclude that (a−1 − a0) ≥ (a0 − a1) − 2b, which by the
above inequality gives

a0 − a1 − 2b ≤ a−N − a0

N
+ (N − 1)b,

which makes the proof complete. ¤
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As a direct corollary from Lemma 2.1 we obtain the following result.

Corollary 2.1. Let f : D → R be an α-premidconvex function, let x ∈ D,

b ∈ [0,∞), M ∈ R and let U be a balanced neighbourhood of zero such that

x + U ⊂ D and

α(u) ≤ b for u ∈ U,

f(x + u) ≤ M for u ∈ U.

Then we have

− (M − f(x))
N

− (N + 1)b ≤ f(y)− f(x) ≤ M − f(x)
N

+ (N − 1)b

for y ∈ x + 1
N U , N ≥ 2, N ∈ N.

Proof. We apply Lemma 2.1 for the sequence ak = f(x + k · (y − x)). ¤
Remark 2.1. Corollary 2.1 means in particular that for α-premidconvex func-

tion local boundedness from above (at a point) implies local boundedness (at the
same point).

Lemma 2.2. Let D ⊂ X be an open set, let x ∈ D, and let U be a balanced

neighbourhood of zero such that x+U +U ⊂ D and α is bounded on U +U +U .

If f : D → R is an α-premidconvex function locally bounded above at a point of

x + U then f is locally bounded above at x.

Proof. Let y ∈ x + U , and let V be a balanced neighbourhood of zero such
that V ⊂ U , y+V ⊂ x+U and f is bounded above by M on y+V . We are going
to show that f is bounded above on x + 1

2V . Consider an arbitrary h ∈ 1
2V . Let

z0 := y + 2h, z1 := 2x− y. Then

z0 ∈ y + V ⊂ x + U

and
z1 = x− (y − x) ∈ x + U.

Moreover for arbitrary t ∈ [0, 1] we have

tz0 + (1− t)z1 = x + (2t− 1)(y − x) + t(2h) ∈ x + U + V ⊂ x + U + U,

which means that [z0, z1] ⊂ x+U +U ⊂ D. By α-premidconvexity of f we obtain

f(x + h) = f

(
z0 + z1

2

)
≤ f(z0) + f(z1)

2
+ α(z0 − z1)

=
f(y + 2h) + f(2x− y)

2
+ α(2(y − x) + 2h) ≤ M + f(2x− y)

2
+ α(2(y − x) + 2h).
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Furthermore 2(y − x) + 2h ∈ 2U + V ⊂ U + U + U .
It completes the proof. ¤

We will also need the following simple lemma.

Lemma 2.3. Let f : D → R be an (α, t)-preconvex function. Then f is

αt-premidconvex with

αt(x) :=
1

t(1− t)
α(x/2) for x ∈ X.

Proof. We will use a similar method as in [3]. Let x, y ∈ D such that
[x, y] ⊂ D be arbitrary. We begin with an obvious equality

x + y

2
= t

[
t
x + y

2
+ (1− t)x

]
+ (1− t)

[
ty + (1− t)

x + y

2

]
.

From (α, t)-preconvexity of f we obtain

f

(
x+ y

2

)
≤ tf

(
t
x+ y

2
+ (1− t)x

)
+(1− t)f

(
ty +(1− t)

x+ y

2

)
+ α

(
x− y

2

)

≤ t

[
(tf

(
x + y

2

)
+ (1− t)f(x) + α

(
x− y

2

)]

+ (1− t)
[
tf(y) + (1− t)f

(
x + y

2

)
+ α

(
x− y

2

)]
+ α

(
x− y

2

)

= (2t2 − 2t + 1)f
(

x + y

2

)
+ t(1− t)(f(x) + f(y)) + 2α

(
x− y

2

)
.

Whence we get f
(

x+y
2

) ≤ f(x)+f(y)
2 + 1

t(1−t)α
(

x−y
2

)
.

It is obvious that αt is even and locally bounded above at zero. ¤

Now we are ready to prove the main result of this section.

Theorem 2.1. Let D be an open connected subset of X. Let f : D → R
be an (α, t)-preconvex function locally bounded above at a point of D. Then f is

locally bounded at every point.

Proof. By Lemma 2.3 f is αt-premidconvex. Let

B := {x ∈ D : f is locally bounded above at x}.
Clearly B is open and nonempty. We are going to show that B = D. Since D

is connected it is sufficient to prove that B is a closed subset of D. Consider an
arbitrary x ∈ (clB) ∩D. Let U be a balanced neighbourhood of zero such that
x + U + U ⊂ D and that αt is bounded on U + U + U . Since x ∈ clB there exists
a y ∈ (x + U) ∩ B. By Lemma 2.2 we obtain that x ∈ B. We have proved that
B = D. Corollary 2.1 completes the proof. ¤
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To prove a full analogue of Bernstein–Doetsch Theorem we need to deal with
the continuity of f . We will apply Corollary 2.1.

Theorem 2.2. Let D be an open connected subset of X and let f : D → R
be an (α, t)-preconvex function locally bounded above at a point. We assume

additionally that α(0) = 0 and that α is continuous at zero. Then f is locally

uniformly continuous.

Proof. By Theorem 2.1 f is locally bounded at every point of D. Consider
an arbitrary x0 ∈ D. There exist an M ∈ R+ and a balanced neighbourhood U

of zero such that x0 + U + U ⊂ D and

|f(x0 + u)| < M for u ∈ U.

We take an arbitrary δ > 0, δ ≤ 2M . We can find a balanced neighbourhood V

of zero such that V ⊂ U and

α(v) ≤ δ for v ∈ V.

We choose an N ∈ N such that

N ∈
[√

2M

δ
, 2

√
2M

δ

]
.

Let x ∈ x0 + U and y ∈ x + 1
N V be arbitrary. By Corollary 2.1 we have

|f(y)− f(x)| ≤ 2
(

2M

N
+ Nδ

)

≤ 2

(
2M√

2M
δ

+ 2

√
2M

δ
· δ

)
= 6

√
(2M)δ ≤ 6

√
2M

√
δ. ¤

3. Preconvexity

As it is well known midconvexity implies Q-convexity (i.e. convexity with
t ∈ [0, 1] ∩ Q). Similar result can be obtained for generalized midconvexity [14,
Theorem 2.2]. To prove analogue of such result in our settings we will need the
function d : R→ R defined as follows

d(x) := 2 dist(x,Z) for x ∈ R.

We will also need the following
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Lemma TT ([14, Corollary2.1]). Let β : [0, 1] → [0,∞) be a nondecreasing

function. We assume that h : [0, 1] → R satisfies the following conditions:

h(0) = h(1) = 0,

h

(
x + y

2

)
≤ h(x) + h(y)

2
+ β(|x− y|) for x, y ∈ [0, 1].

Then

h(r) ≤
∞∑

k=0

1
2k

β(d(2kr)) for r ∈ [0, 1] ∩Q.

Moreover, if h is upper bounded then the above inequality holds for all r ∈ [0, 1].

Proposition 3.1. We assume that for each x ∈ X the function R+ 3 w 7→
α(wx) is nondecreasing. Let f : D → R be a (α, t)-preconvex function. Then

f(rx + (1− r)y) ≤ rf(x) + (1− r)f(y) +
1

t(1− t)

∞∑

k=0

1
2k

α

(
d(2kr)

x− y

2

)
(2)

for all x, y ∈ D such that [x, y] ⊂ D and all r ∈ [0, 1] ∩Q.

If additionally D is open and connected and f is locally bounded above at a

point then (2) holds for all x, y ∈ D such that [x, y] ⊂ D and all r ∈ [0, 1].

Proof. From Lemma 2.3 we obtain that f is αt-premidconvex with αt(x) :=
1

t(1−t)α(x
2 ).

Fix arbitrarily x, y ∈ D such that [x, y] ⊂ D. We define function h : [0, 1] → R
by the formula h(r) := f(rx+(1−r)y)−rf(x)−(1−r)f(y). Then h(0) = h(1) = 0
and we have for r, s ∈ [0, 1]

h

(
r + s

2

)
− h(r) + h(s)

2
≤ αt((r − s)(x− y)).

We put

β(w) := αt(w(x− y)) =
1

t(1− t)
α

(
w

x− y

2

)
for w ∈ [0, 1].

Applying Lemma TT we get

h(r) ≤ 1
t(1− t)

∞∑

k=0

1
2k

α

(
d(2kr)

x− y

2

)
for r ∈ [0, 1] ∩Q,
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i.e.

f(rx + (1− r)y) ≤ rf(x) + (1− r)f(y) +
1

t(1− t)

∞∑

k=0

1
2k

α

(
d(2kr)

x− y

2

)

for r ∈ [0, 1] ∩Q.
Assume now that D is open and connected and that f is locally bounded above
at a point. Then by Theorem 2.1 we obtain that f is locally bounded at each
point. Consequently then h is locally bounded at each point. But h is defined
on a compact set [0, 1]. Therefore h is bounded. Lemma TT completes now the
proof. ¤

S. Rolewicz proved in [10] that if a function f : I → R, where I is an
interval in R, satisfies for certain C > 0, r > 2 the following inequality

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + C|x− y|r for x, y ∈ I, t ∈ [0, 1],

then f is convex. This result was generalized in [14] for α(·)-midconvex function
defined on an open convex subset of a normed space and locally bounded above
at a point. We will prove an analogue of the result from [14] for (α, t)-preconvex
functions.

Theorem 3.1. We assume that

lim inf
n→∞

4nα

(
1
2n

x

)
= 0 for x ∈ X. (3)

Then every (α, t)-preconvex function is premidconvex.

Proof. Let f : D → R be an (α, t)-preconvex function. Consider arbitrary
x, y ∈ D such that [x, y] ⊂ D. We will show that

f

(
x + y

2

)
≤ f(x) + f(y)

2
+

4n−1

t(1− t)
α

(
x− y

2n

)
for n ∈ N. (4)

For n = 1 it follows directly from Lemma 2.3. Assume that (4) is valid for some
n ∈ N. Then applying Lemma 2.3 (with t = 1

2 ) and (4) we obtain

f

(
x + y

2

)
≤ f(x) + f(y)

2
+ 4

4n−1

t(1− t)
α

(
x− y

2n+1

)
.

Hence (4) has been proved. Letting in (4) n →∞ and applying (3) we get

f

(
x + y

2

)
≤ f(x) + f(y)

2
. ¤
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