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On solutions of the Golab-Schinzel functional equation

By JANUSZ BRZDEK (Rzeszéw)

Let X be a real topological linear space and let R denote the set of
all reals. In this paper we are mainly concerned with solutions f : X — R
of the functional equation

(1) [+ f(@)"y) = f(@)f(y),

where n is a given positive integer.
Equation (1) is a generalization of the well-known Golab—Schinzel
functional equation

(2) fle+ fle)y) = f(2)f(y),
which has been considered and solved in several classes of functions. For
details we refer e.g. to [2]-[6], [8]-[12], [17], [18], and [20].

Equation (1) is also a particular case of the functional equation

(3) FUF)Fe + fa)™y) = tf(z)f(y)

studied by many authors in variuous case (see e.g. [5]-[7], [16], and [19]).

Finally, we must mention that equation (1) is tightly connected with
some classes of subgroups of the Lie groups L., the one-dimensional affine
group, and some other groups (see [8], cf. also [2], pp. 309-311, [3], [6],
[16], and [20]).

We determine solutions of (1) having the Darboux property in the
class of functions f : X — R. Such solutions f : R — R of equation (3)
have already been studied in [19] for £ > 0 and ¢ = 1 and in [5] for k = 0.
Our results (see Corollary 2 and Theorem 1) are interesting especially in
view of the second part of Hilbert’s fifth problem (cf. [1], p. 153).

We also prove that every linear functional g : X — R having the
Darboux property is continuous (see Corollary 1) and give an application
of some of the results obtained to the question of finding subgroups.

Let us remind that a function f : X — R has the Darboux property,
whenever, for every non-empty connected set D C X, the set f(D) is
connected in R.
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We start with some facts concerning linear functionals, which are
necessary in the proof of Theorem 1.

Proposition 1. Let g : X — R be a linear functional such that the
set g(D) is connected in R for every non-empty and connected (in X ) set
D C B:=g '((—1,+00)). Then g is continuous.

For the proof of Proposition 1 we need the following two lemmas.

Lemma 1. Let g : X — R, g # 0 (ie. g(X) # {0}), be a linear
functional. Then 0 € cl(g~'((—1,0))).

Proor. For the proof by contradiction suppose that this is not the
case. Then the set By = X \ cl(¢71((—1,0))) is open and 0 € By. Since
g # 0, int(kerg) = (. Thus there is z € By with g(z) # 0. By the
continuity of the function R 3 a — az € X at 0, there exists a real ¢ > 0
such that bz € By for every b € (—c, ¢). On the other hand, it is easily seen
that there is d € (—c, ¢) satisfying the condition: ¢g(dz) = dg(z) € (—1,0).
This yields a contradiction.

Lemma 2. Suppose that g : X — R is a linear functional such that
the set ker g is not closed. Then the set D = g~ 1((—1,+00)) \ kerg is
connected.

ProoFr. For the proof by contradiction suppose that D is not con-
nected. Put B; = ¢g71((0,+0)) and By = g~ ((—1,0)). B; and By are
connected, because they are convex. Thus By Ncl(Bz) = 0 (cf. e.g. [15]).
This yields

(4) Cl(BQ) N Cl(—Bg) = Cl(BQ) N (— CI(BQ)) cX \ (Bl U (—Bl)) = kerg.

On the other hand, z +cl(Bs2) = cl(x+ Bz) and x + By = By for every
x € kerg. Hence (ker g) + cl(Bz) = cl(Bs). Since ker g = —ker g and, by
Lemma 1, kerg C (kerg) + cl(Bz), we obtain kerg C cl(B3) N cl(—Bs),
which, in view of (4), implies ker g = cl(B3) N cl(—Bz). This contradicts
the hypothesis on ker g.

Now we are in a position to PROVE Proposition 1. So, suppose that
g is not continuous. Then the set ker g is not closed. Thus, according
to Lemma 2, the set D = g~ !((—1,+00)) \ kerg is connected. Since
g(D) = (—1,+00) \ {0}, we get a contradiction. This completes the proof
of Proposition 1.

In particular, from Proposition 1 we get the next

Corollary 1. Every linear functional g : X — R having the Darboux
property is continuous.
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Remark 1. Corollary 1 is the more interesting as there are discontin-
uous additive functions h : R — R having the Darboux property (see [13],
cf. also [14], pp. 286-291). Given a continuous linear functional g : X — R,
g # 0, and a discontinuous additive function h : R — R having the Dar-
boux property, we can obtain a discontinuous additive function f : X — R
having the Darboux property by putting f(z) = h(g(z)) for z € X.

In the sequel we shall need some results from [8]. Let us recall them.

Lemma 4 (see [8], Corollary 1). Let f: X — R, f # 0, be a function
satisfying equation (1). Put A= f~Y({1}) and W = f(X) \ {0}. Then:
(i) A is an additive subgroup of X;
(ii) W is a multiplicative subgroup of R;
(iii) a"™A = A for every a € W.

Lemma 5 (see [8], Proposition 3). Let f : X — R be a function
satisfying (1). Let A= f~1({1}) and W = f(X)\ {0}. If there is ap € W
such that aff # 1 and (aj — 1)A C A, then

(5) a"#1 forae W\ {1}
and there exists zg € X \ J{(a™ —1)"1A:a € W\ {1}} such that

a ifxe(a”—1)zg+ Aandac W;

for x € X.
0 otherwise,

(6) flx) = {

The next proposition will be very useful in the proof of Theorems 1
and 2. The proposition gives us, as well, some examples of solutions of
equation (1).

Proposition 2. A function f : X — R satisfies equation (1) and
int(f(X)) # 0 iff there exists a linear subspace Y C X, Y # {0}, and a
linear functional g : Y — R, g # 0, such that,

1° in the case when n is odd, either

) (g(x)+1) forxeY;
") f(x)_{o forx € X \Y,
_ J /sup(g(2) +1,0) forze;
) f(x)_{o forz e X \Y;

2° in the case when n is even, (8) holds.

PrOOF. Put A = f~1({1}) and W = f(X) \ {0}. According to
Lemma 4(ii), we have either W = (0,400) or W = R\ {0}. Thus, by
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Lemma 4(i), (iii), A is a linear subspace of X. Hence (¢ — 1)A C A for
every a € W. Consequently, in view of Lemma 5, conditions (5) and (6)
are valid with some zg € X \ A. Put Y = Rxp + A and define a linear
functional g : Y — R by the formula:

glaxo +y) =a fora e R, y € A.
It is easy to check that, according to (6),
g(x) = f(x)" =1 for x € (W,, — 1)z + A,

where W,, = {a™ : a € W}. Further, in virtue of (5),
— in the case when n is odd, W =R\ {0} or W = (0, +00);
— in the case when n is even W = (0, +00).

Whence, by the definition of g and (6), conditions 1°, 2° hold.
The converse is easy to verify. This completes the proof.

Now we have all the tools to prove our main result.

Theorem 1. A function f : X — R, f # 0, has the Darboux prop-
erty and satisfies the functional equation (1) if and only if there exists a
continuous linear functional g : X — R such that,

1° in the case when n is odd,

9) flz)= /(g9(z)+1) forxz € X
(10) f(z) = /sup(g(x) + 1,0) for z € X;

2° in the case when n is even, f is of form (10).

PROOF. The case f = 1is trivial. So, assume that f(X) # {1}. Since
X is connected, the set f(X) is connected. Further, in virtue of Lemma 4
(ii), 1 € f(X). Thus int(f(X)) # 0. Hence, according to Proposition 2,
there exist a linear subspace Y of X and a linear functional g : ¥ — R
such that conditions 1°, 2° of Proposition 2 are valid.

Suppose that there is g € X \ Y. Then the set Rz is connected and
f(Rzg) = {0,1}. This is a contradiction. Consequently ¥ = X.

Notice that (7) or (8) implies g(z) = f(x)"—1for z € g~ 1((—1, +0)).
Thus the set g(D) is connected in R for every non-empty connected set
D c g7 ((~1,4+00)). Hence, in view of Proposition 1, g is continuous.
This completes the first part of the proof. The converse is easy to check.

Since the function f = 0 is continuous, from Theorem 1 we derive the
following

Corollary 2. Every function f : X — R having the Darboux property
and satisfying equation (1) is continuous.
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Remark 2. In the case n = 0 Corollary 2 is not valid. In fact, let h :
R — R be a discontinuous additive function having the Darboux property
and assume that there exists a continuous linear functional g : X — R,

g # 0. Then the function f : X — R given by the formula: f(z) = e"9(=)
for z € X, is discontinuous, satisfies (1) with n = 0, and has the Darboux
property.

Finally, we shall give an example for the application of Proposition 2
to the problem of finding subgroups of some groups.

In the set P = (R \ {0}) x X we introduce a binary operation
-1 P x P — P as follows:

(a,z) - (byy) = (ab,y + b"x) for (a,x), (b,y) € P.

It is easy to verify that (P,-) is a group. In particular, in the case X = R,
(P,-) is isomorphic with a subgroup of the Lie group L}, (see (8], p.2).
For further details concerning the group (P, - ) we refer to [2] (pp. 310-311),
3, [5], [8], and [16].

We have the following description of a class of subgroups of the group
(P )’ ):

Theorem 2. Suppose that f : X — R is a function with f(X) \
{0,1} # (0. Then the set D = {(f(z),z) : x € X, f(x) # 0} is a connected
subgroup of the group (P,-) (P is endowed with the product topology)
if and only if there exist a linear subspace Y of X, Y # {0}, and a
linear functional g : Y — R such that g # 0 and (8) holds, i.e. D =

{(” g(a:)-l—l,x) cx ey, glz) > —1}.

PROOF. First, let us recall a result from [8]. Namely, we have the
following

Lemma 6 (see [8], Theorem 1(ii)). Let f # 0 be a function mapping
X into R. Then the set D = {(f(x),z) : € X, f(x) # 0} is a subgroup
of the group (P,-) iff f satisfies equation (1).

Assume that D is a connected subgroup of (P,-). Then, according
to Lemma 6, f is a solution of equation (1). Further, notice that the
function p : P — R, defined by: p(a,z) = a for (a,z) € P, is continuous.
Thus the set p(D) = f(X) \ {0} is connected. Hence int(f(X)) # 0, since
F(X)\{0,1} # 0 and, by Lemma 4(ii), 1 € f(X). Consequently, in virtue
of Proposition 2, there exist a linear subspace Y of X, Y # {0}, and a
linear functional g : Y — R, g # 0, such that (7) or (8) holds. To complete
the first part of the proof it suffices to notice that in the case when f is of
form (7) the set f(X) \ {0} is not connected.

For the converse, on account of Proposition 2 and Lemma 6, we must

show that the set Dy = {( Vg(z) + 1,:1:) cx ey, glz) > —1} is con-
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nected for every linear subspace Y # {0} of X and every linear functional
g:Y =R, g#0.
Fix z,y € g7 '((—1,+0o0)). Since the function

[0,1] >t — (tg(y — ), t(y—x)) € P

is continuous, the set T = {(g(z) + tg(y —x),x + t(y —x)) : t € [0,1]}
is connected. Moreover (g(x),z),(g(y),y) € T C Dy. So, we have proved
that the set {(g(x),z) : x € X, g(z) > —1} is connected. Consequently
Dy is connected, because the function

(=1,4+00) x X 3 (a,z) —» (Va+1,2) € P

is continuous. This completes the proof.
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