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Arithmetic progressions of four squares over quadratic fields

By ENRIQUE GONZALEZ-JIMENEZ (Madrid) and JORN STEUDING (Wiirzburg)

Abstract. Let d be a squarefree integer. Does there exist four squares in arith-
metic progression over Q(v/d)? We shall give a partial answer to this question, de-
pending on the value of d. In the affirmative case, we construct explicit arithmetic
progressions consisting of four squares over Q(v/d ).

1. Introduction

Non-constant arithmetic progressions consisting of rational squares have been
studied since ancient times. While it is not difficult to obtain an arithmetic pro-
gression of three rational squares (e.g. 12,52, 72), there are no four distinct ratio-
nal squares in arithmetic progression as already stated by Fermat and proved by
Euler (among others). However, the situation is different over number fields. It is
easy to construct four squares in arithmetic progression over a quadratic number
field; e.g. 12,52, 7%, (v/73)? over Q(+/73). It is even possible to find five squares in
arithmetic progressions; e.g. 72,132,172, (1/409)?2, 232 over Q(1/409). By FarLr-
INGS’ proof of the Mordell conjecture [7] in any finite algebraic extension of Q
there can be at most finitely many arithmetic progressions of at least five squares.
Recently XARLES [25] has proved that six squares in arithmetic progression over
quadratic number fields do not exist. The case of length five over quadratic fields
has been treated by the first author and XARLES [12].

In this paper we consider the following natural problem:
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Let d be an squarefree integer. Do there exist four squares in arithmetic progres-
ston over (@(\/&) ? In the affirmative case, give an algorithm to construct explicit

examples.

For special values of d the following table indicates for which quadratic fields
Q(v/d) there exist or do not exist non-constant arithmetic progressions of four
squares. Here ‘7’ indicates that in this case we do not know whether there exists
a non-constant four term arithmetic progression of squares or not.

p>5 prime Is there a non-constant arithmetic progression of four squares over Q(\/&)"
p mod 24 d=p |d=2p | d=3p |d=6p ||d=—p|d=—-2p | d=—3p | d= —6p
1 ? ? ? ? ? ? ? ?
5 no ? no ? ? ? ? no
7 no no ? ? no ? ? no
11 ? ? no ? no ? ? ?
13 ? no ? ? no no ? no
17 ? ? no ? ? ? no no
19 no ? no ? ? no ? ?
23 yes yes ? yes yes yes yes ?
Table 1

The proof of the correctness of the table will be given in Section 5.

We shall show that four squares in arithmetic progression lead to points on
an elliptic curve. This approach is not new; it seems to be a folklore result,
however, we shall provide our own parametrization of arithmetic progressions of
four squares over a number field k by k-rational points on the modular curve
X0(24). More precisely, there exists a non-constant arithmetic progression of
four squares over a number field k if and only if the Mordell-Weil group of the
elliptic curve X((24) over k contains more than eight points; in this case, there
exist infinitely many arithmetic progressions of four squares over k if and only if
this group has positive rank. For the specific case of a quadratic number field
Q(+/d) this characterization reduces our problem to the problem of determining
the rank of the quadratic d-twists of the underlying elliptic curve.

The above characterization allows us to link our problem with two other
problems, both being generalizations of the famous congruent number problem.
These problems are related to 8-congruent numbers and Euler’s concordant forms.

This paper is organized as follows: Section 2 is devoted to construct a para-
metrization of four term arithmetic progressions of squares over a number field
k by k-rational points of the elliptic curve X(24). Here we derive some partic-
ular results when k is a quadratic field. In Section 3 we introduce the notion of
f-congruent numbers and state some well-known results for the case when @ is
either equal to 7/3 or 27/3, which are the relevant cases with respect to the main
problem of this paper. Section 4 deals with Euler’s concordant forms. In Section 5
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we apply results from the previous sections in order to obtain a partial answer
to our problem. Here we also give examples of arithmetic progressions of four
squares over Q(v/d) for all cases |d| < 40 for which such arithmetic progressions
do exist. Moreover, we give another construction using pythagorean triples and
Thue equations. The last section contains some average results related to our
main problem.

2. Four squares in arithmetic progression

Four squares a2, b2, ¢ and d? over a field k are in arithmetic progression
if and only if b2 — a? = ¢ — b? and ¢ — b? = d? — ¢®. This is equivalent to
[a,b,c,d] € P3(k) being in the intersection of the two quadric surfaces a?+c? = 2b*
and b + d? = 2¢?, resp. lying on the curve

{a2 + 2 =202,

(1)
b2 + d? = 2¢2.

Therefore, k-rational points of C' parametrize arithmetic progressions of four
squares over k. Note that the eight points [+1,+1,+1, £1] belong to C, how-
ever, these points correspond to constant arithmetic progressions. The next step
is to compute an explicit equation for C. In the generic case the intersection of
two quadric surfaces in P? gives an elliptic curve and, indeed, this will turn out
to be true in our case. For this purpose we are going to compute a Weierstrass
equation for C. The system of equations (1) is equivalent to a? + 2d? = 3c?,
b? = 2¢® — d?. A parametrization (up to sign) of the first conic is given by

(ayd,c) = (262 — 4t — 1,2t> + 2t — 1,2t* +1), t €k,

d—c
a—c
if we substitute the values of a, d and ¢ in the second equation, we obtain the

quartic equation

where the inverse is given by t =

ifa#candt= —% if a = ¢. Therefore,

Q: b* =4t — 83 + 8t + 4t + 1. (2)

Our next aim is to find a Weierstrass model for Q. Note that there is only one
point at infinity, namely [0 : 1 : 0]. This point is a node. We denote by ooy
and ooy the two branches at infinity at the desingularization of Q. A Weierstrass
model for Q is E : y? = z(z + 3)(x — 1), where the isomorphism ¢ : @ — FE is
defined by

14+b+2t 14+b+3t+bt+4t2 — 23
¢<P>=(

2tz 23

) if P =(t,b) # (0, %1),
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and ¢(07_1) = (_172)a ¢(Oa 1) = [0 N O]a ¢(001) = (170)a ¢(002) = (_1)_2)
The inverse is defined by

_ +y—1 234522+ 22y — 2y —x+3 .
ip)= (2 f P= +1.
o) = (T T it P = (), 7 #

Therefore, by the above construction we have proved

Theorem 1. Let k be a field of char(k) # 2,3, then arithmetic progressions
of four squares in k are parametrized by k-rational points of the elliptic curve

E:y*=z(z+3)(z—1).

This parametrization is as follows:
o Let [a,b,c,d] € P2(k) such that a?,b?,c?,d? form an arithmetic progression.
If a#candd#c, lett = Z:‘é and define

P<1+b+2t1+b+3t+w+4ﬁ2ﬁ)

212 7 2t3
and
[0:1:0] if [a,b,cd]=][-1,1,1,1],
(-1,2) if la,b,c,d] =[-1,-1,1,1],
p_ (3,—=6) if [a,b,e,d] = [1 1,1,1],

(=3,0) if [a,b,e,d] =1, 71,1,1]
(1,0) if la,b,c,d] =[-1,1,-1,1],
(-1,-2) if la,b,c,d] =]-1,-1,-1,1].

Then P € E(k).
e Let P e BE(k). If P = (z,y), x # £1, let t = Z5=L and define

234+ 522 + 20y —2y —x+ 3

22 41,22 + 2t + 1
@ D@+ 1) S

[a,b,c,d] = |2t% — 4t — 1

and
[-1,-1,1,1] if P=(-1,2),
—-1,—-1,-1,1] if P=(-1,-2),
abe.d] = [ ] ( )
[-1,1,-1,1] if P=(1,0),
[-1,1,1,1] if P=1[0:1:0].

) ) )

Then a2, b?, ¢2, d? form an arithmetic progression in k.
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It is natural to ask for which number fields k there exist arithmetic progres-
sions of four squares over k. In order to investigate this problem we shall make
use of the theory of elliptic curves.

Proposition 1. Let k be a number field. Then there exists a non-constant
arithmetic progression of four squares over k if and only if #E(k) > 8. Further-
more, there exist infinitely many such progressions if and only if rank E(k) # 0.

PROOF. Firstly, note that the points [£1,41,£1,41] in P3(k) give constant
arithmetic progressions. Therefore, using the parametrization ¢, it follows that
the points ¢([+1, £1, £1, £1]) belong to E(k), and this set has cardinality 8. This
concludes the proof. O

As a corollary we obtain

Corollary 1. There is no non-constant arithmetic progression of four ratio-
nal squares.

This statement is due to Fermat, however, the first proof is attributed to Euler
who applied Fermat’s method of infinite descent. For the sake of completeness
and since some of the data that appear will be useful later, we give the short

PROOF. Using SAGE [22] or MAGMA [4], one can check that E is the curve 24A1
in CREMONA’s tables [5], resp. 24B in the Antwerp tables [1]. In other words, E
is the modular curve X((24). Checking these tables or using one of the above
mentioned computer algebra systems, one can prove E(Q) ~ Z/2Z®Z/4Z. There
are no Q-rational points on E apart from those eight points [+1, +1, +1, +1] which
correspond to constant arithmetic progressions. ([l

Next we shall consider the case of quadratic number fields. Here the question
translates to study the Mordell-Weil group E(Q(v/d )). However, instead of treat-
ing the elliptic curve F over Q(v/d) directly, we are going to study the quadratic
d-twist of the elliptic curve E over Q, i.e., the elliptic curve

E:dy? = x(x + 3)(x — 1).

It should be noted that F and E¢ are Q(v/d )-isomorphic.

Corollary 2. Let d be a squarefree integer. Then there is a non-constant
arithmetic progression of four squares over Q(v/d) if and only if rank E? # 0; in
this case, there exist infinitely many such progressions.
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PROOF. We are going to compute the structure of E(Q(v/d)). Since the
2-torsion subgroup of E is defined over Q, by applying KwON’s results [18] we
see that E(Q(\/&))wrs and E(Q)iors are equal. Thus Proposition 1 shows that
if there exists a non-constant arithmetic progression of four squares over (@(\/& ),
then there exist infinitely many or, equivalently, rank E(Q(v/d)) # 0. Now, since

rank F(Q(Vd)) = rank E(Q) + rank E*(Q), (3)

the statement follows from rank E(Q) = 0. O

Therefore, the problem to decide for which quadratic fields Q(v/d ) there exist
non-constant arithmetic progressions of four squares is reduced to the question
whether the rank of £4(Q) is positive or not. In Section 5 we give a partial solution
to this problem and for some quadratic number fields we also give explicit four
term arithmetic progressions of squares.

For number fields of higher degree we have the following result:

Theorem 2. There are infinitely many cyclic cubic number fields in each
of which there exist infinitely many non-constant arithmetic progressions of four
squares.

PROOF. Applying [8, Theorem 6.1] to the elliptic curve E = X(24), we find
#E(Q) = 8 > 6. Hence, for infinitely many cyclic cubic extensions K/Q we have
rank F(K) > rank E(Q) = 0. O

3. 0-congruent numbers

A positive integer n is called a congruent number if there exists a right
triangle with rational sides and area equal to n. The problem to decide whether
a given integer is a congruent number has been studied since Diophantus. In
1983, TUNNELL [23] found a deterministic criterion for this problem; if the Birch
and Swinnerton-Dyer conjecture is true, then his criterion also can be used to
determine congruent numbers. The notion of congruent numbers was extended by
FuJIwARA [9] to rational 6-triangles, that are triangles with rational sides where
one angle is equal to §. Note that for such a triangle, cos § = s/r for some coprime
integers r, s with r > 0. It follows that sinf = «agy/r, where ay := vr? — 52 is
uniquely determined by 6. Then #-congruent numbers are defined as follows:

Definition 1. Let be 6 € [0, 7). A positive integer n is a f-congruent number
if there exists a rational #-triangle whose area is equal to nag.
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Therefore, 7 /2-congruent numbers coincide with the ordinary congruent num-
bers (in which case r = 1 and s = 0). Generalizing the case of ordinary congruent
numbers, there is a characterization of 6-congruent numbers in terms of rational

points on elliptic curves.

Theorem 3 ([9], [10]). For 6 € [0,7) and n € N, define the elliptic curve
Eno:y® =a(@+ (r+s)n)(z—(r—sn).

Then, n is a -congruent number if and only if there exists a rational point on
E, ¢ of order greater than 2. Moreover, if n # 1,2,3,6, then n is a §-congruent
number if and only if rank E,, ¢(Q) > 0.

Remark. Note that the elliptic curve E, ¢ is the n-twist of E; g. Therefore,
whenever n # 1,2, 3,6, to prove that n is a f-congruent number is equivalent to
show that the rank of the n-twist of the elliptic curve E; ¢ is non-zero. Another
interesting remark is that E,, _g is the (—n)-twist of Ey g .

Several papers [9], [10], [13], [15], [16], [26], [27] have been studying the 6-
congruent number problem for 6 # 7 /2. For our purposes the cases § = /3 and
¢ = 27/3 are of special interest (see Section 5). In these cases, the curve E; /3
is the curve 24A1 and FEj 5,3 is the curve 48A1 in Cremona’s tables, respectively.

The following table resumes all known results on 7/3-congruent and 27/3-
congruent numbers (see [9], [15], [16], [26], [27]). Here ‘?’ indicates that in this
case we do not know whether n is #-congruent or not.

p > 5 prime Is n a 7/3-congruent number? Is n a 27 /3-congruent number?
p mod 24 n=p|n=2p | n=3p | n=6p||n=p|n=2p | n=3p | n==06p
1 ? ? ? ? ? ? ? ?
5 no ? no ? ? ? ? no
7 no no ? ? no ? ? no
11 ? ? no ? no ? ? ?
13 ? no ? ? no no ? no
17 ? ? no ? ? ? no no
19 no ? no ? ? no ? ?
23 yes yes ? yes yes yes yes
Table 2

Let n be a squarefree positive integer from one of the residue classes 1,7
or 13 mod 24. YOSHIDA [26], [27] proved along the lines of Tunnell’s approach
to the congruent number problem that n is not a 27 /3-congruent number if the
number of representations of n by the ternary quadratic forms

X2 +3Y? + 144272 and  3X249Y?%+1622
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with integral X,Y, Z are not equal; if the conjecture of Birch and Swinnerton—
Dyer is true, then also the converse implication holds, i.e., n is 27 /3-congruent
if the number of representations are identical. In particular, it follows from the
theory of quadratic forms that all primes p = 7 or 13 mod 24 are not 27/3-
congruent numbers. Moreover, if n # 1 is squarefree with n = 1,7 or 19 mod 24,
then he showed that n is not a m/3-congruent number if the number of integer
representations of n by the ternary quadratic forms

X2 412241522 +12YZ and 3X24+4Y2 41322 +4YZ

are not equal; if the conjecture of Birch and Swinnerton—Dyer is true, then also
the converse implication is true. Here it follows that no prime p = 7 mod 24 is
a 7/3-congruent number. For other residue classes Yoshida obtained analogous
statements with, of course, different quadratic forms, which explain the ‘no’s in
the above table. Note that all affirmative ‘yes’ rely on primes p = 23 mod 24 by a
theorem of KAN [16]. We collect these results on primes in the following theorem;
for the other cases we refer to the mentioned papers.

Theorem 4 ([16], [26], [27]). There is no prime number p = 7,11, 13 mod 24
which is a 2w /3-congruent number, and there is no prime number p = 5,7,19 mod
24 which is a m/3-congruent number where p > 5. On the contrary, any prime
p = 23 mod 24 is a O-congruent number for both § = 7/3 and 0 = 27 /3.

A classical conjecture, supported by numerical evidence (based on computa-
tions from the 1970s), states that all squarefree positive integers congruent 5, 6
or 7 modulo 8 are congruent numbers. In fact, this conjecture is a direct conse-
quence of the Birch and Swinnerton—Dyer conjecture. Similar to this conjecture
the following one covers the cases of 7/3- and 27 /3-congruent numbers, respec-
tively.

Conjecture 1. Let n be a squarefree positive integer.
o If n=11,13,17,23 mod 24, then n is a w/3-congruent number.
e If n=5,17,19,23 mod 24, then n is a 27 /3-congruent number.

4. Euler’s concordant forms

Another equivalent formulation of the congruent number problem is the fol-
lowing: a positive integer n is a congruent number if and only if the system of
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diophantine equations

22 4 ny? = 12

2?2 — ny? = 22
has a solution z,y, z,t € Z with zy # 0. In 1780, EULER [6] gave another gener-
alization of the congruent number problem. He was interested to classify those
pairs of distinct non-zero integers M and N for which there exist x,y,z,t € Z
with zy # 0 such that

2?2 + My? = 12

2?2 + Ny? = 22

This is known as Euler’s concordant forms problem. If the above diophantine
system has a solution, then the pair (M, N) is said to be concordant, otherwise
discordant. In the particular case when M = —N this yields the congruent
number problem. As for the congruent number problem and its generalization
to f-congruent numbers, there is a characterization due to ONO [20] for Euler’s
concordant forms problem in terms of rational points of an elliptic curve.

Theorem 5. [20] For M,N € Z such that NM(M — N) # 0, define the
elliptic curve
By :y? =2(x+ M)(z + N).

Then, the pair (M, N) is concordant if and only if there exists a rational point on
En,n of order # 1,2 or 4. In particular, if rank Eyy v (Q) is positive, then (M, N)
is concordant.

Using Waldspurger’s results and Shimura’s correspondence a la Tunnell, Ono
obtained several results on the ranks of twists of Ej; . In particular, if the
number of integer representations of an odd positive squarefree integer n by the
ternary quadratic forms

X?2+4+2Y?2+122%2 and 2X24+3Y2 4422

is not equal, then (M, N) = (6n,—18n) is discordant; if the conjecture of Birch
and Swinnerton—Dyer is true, then also the converse implication is true. Moreover,
for r being an odd integer with 1 < r < 24, he showed that there are infinitely
many positive squarefree integers n = r mod 24 such that

e (M,N) = (6n,—18n) is discordant.
e (M,N) = (9n, —3n) is discordant, where r # 7,15, 23.
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5. Four squares in arithmetic progressions over quadratic fields

The existence of a non-constant four term arithmetic progression of squares
over a quadratic field is determined by the rank of twist of the elliptic curve
FE = Xo(24). For a real-quadratic field Q(v/d) the elliptic curve E? is equal to
Eq /3, whereas for an imaginary-quadratic field Q(v—d) it is Eqor/3-

Thus, we may use the information of Table 2 to deduce information about
the rank of E4(Q) from Eq /3 and Eg2r/3, respectively, corresponding to d
being positive or negative. This proves the information provided by Table 1
from the introduction. Moreover assuming Conjecture 1 we have that there ex-
ists a non-constant arithmetic progression of four squares over Q(\/ﬁ) if d =
11,13,17,23 mod 24 in the real case and d = 1,5,7,19 mod 24 in the imaginary
case.

Further, note that for (M, N) = (=1,3) or (3,—1) we have Eq /3 = En n;
moreover, if (M, N) = (1,-3) or (=3,1), then Eg./3 = Ep n. In these cases
we can use ONO’s results [20] on the rank of En n(Q).

5.1. Explicit examples. Using MAGMA, we may compute the rank of E4(Q);
if this rank is positive, using the parametrization from Theorem 1, we can also
compute an explicit arithmetic progression of four squares. The following two
tables list explicit examples of such progressions according to Q(\/a) being an
imaginary-quadratic or a real-quadratic number field for the range |d| < 40. Each
of the tables consists of three colums; the first column indicates the value of d,
the second and third one give an example for a,r € Q(\/&) such that a?,a? +
r,a® 4 2r, a® + 3r forms an arithmetic progressions of squares over Q(\/Zi ), where

o :=+/d.
d a r

75 (—da —73)/2 120 — 840
~10 (—600 — 629) /2 —14322a — 55440
—14 —6a — 361 8580a — 65520
—15 (e —19)/4 a—15
—17 3339440« — 57973177 219447603254880c — 2180390987174400
—19 | (—26589360c 4 21015523) /2 22024049983320c + 2196495218332800
—21 —160a — 2393 —590920 — 3141600
—22 —1224720c — 2179673 —3235062111120a 4 19986461510400
—23 (262500 + 11951) /4 —12312300 + 6592950
—29 | (22143940 — 361130617)/2 | 3478556113902870cx — 13110939890248200
—33 —612000c 4- 1945781 673901512480 + 8195655283200
—34 319440« + 650807 —953954047200 4+ 2288266041600
~39 (360 — 683)/2 10450c — 51480
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d a r

6 (2a+1)/2 25a + 60

10 (100 — 19) /2 33a — 60

11 (—13200 + 2843) /2 —7242060c + 23839200
13 1440 4 5183 1323960c + 4773600
17 —15a — 1511 —555360c + 1591200
21 —36a + 163 2200a — 10080

22 (=750 + 3529)/2 453705 — 2009700

1725783576049531078080a+

23 | 19476668640c + 90283636367 82746313858217T37T2800

30 (18a +19)/2 —413a 4 1260
34 68600 — 12239 —125756400 4 43982400
35 —84q + 487 —28968a + 171360

10021678513795431723240a—
24114970612028472976800
39 720c + 3869 7990640 + 49795200

37 | 383066283600 — 276487794001

5.2. Pythagorean triples. Next we use Pythagorean triples to construct arith-
metic progressions of four squares over quadratic number fields. In the following
cases the arithmetic progression consists of four integers, all of them being a
square over a specific quadratic number field.

It is well-known that for arbitrary a,b€Z the triple (a? —b?,2ab, a® + b?)
defines a Pythagorean triple. Then (a? + %)% — 4n, (a® + b2)2, (a® + b*)% + 4n
forms an arithmetic progression of three squares where n = ab(a? —b?). If we add
a new square term, o = (a? + b%)? + 8ab(a® — b?) say, we obtain an arithmetic
progression of four squares over Q(y/(a2 + b2)2 + 8ab(a? — b2) ). In order to con-
struct a quadratic number field Q(\/& ), where d is a squarefree integer, we define
the Thue equation

F(z,y) = (2° + y°)* + 8ay(a® — y*) = d.

Of course, here we are interested in the set of integer solutions. Using MAGMA,
we have observed that for |d| < 100 there exist integer solutions in the cases
d= —T1,-47,-23,73, all of them being congruent to 1 mod 24. By the above
construction this yields the following arithmetic progressions:

d | Four square in arithmetic progression over Q(v/d )

71 (V=T71)2,72,132 172
—47 (v/—4T7)%,172,252,312
—23 (vV/—23)2,1,5%,72

73 1,52,72, (V73 )2
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It is straightforward to compute that (a? + %)% + 8ab(a? — b?) = 1 mod 24
for a,b € Z with coprime a,b and a Z b mod 2. Therefore, our construction is
restricted to the case of number fields Q(v/d ) with d = 1 mod 24. Moreover, all
arithmetic progressions discovered by this method satisfy that the difference of
any two successive members is divisible by 24.

6. Average results

We conclude by discussing some average results for the central values of
L-functions associated with elliptic curves. Let E be an elliptic curve over Q
and denote by L(E,s) its elliptic curve L-function. Roughly speaking, the yet
unproved Birch and Swinnerton—Dyer conjecture states that the order of vanishing
of L(E,s) at s = 1 is equal to the rank of E. KOLYVAGIN [17] has shown that
if E is a modular elliptic curve with L(E, 1) # 0, then the rank of E is equal to
zero. By the proof of WILES et al. [24], [2] of the Shimura—Taniyama conjecture
any elliptic curve over QQ is modular, however, the corresponding statement for
quadratic number fields is not known to be true. Note that

L(E(Q(Vd)),s) = L(E, s)L(E", 5),

where E? denotes the quadratic twist of E by d; here it suffices to consider
squarefree integers d. This formula directly corresponds to (3). Hence in our
case, in order to have rank zero for E(Q(v/d)) we need the non-vanishing of
L(E?,1) since L(E,1) = 0.53...; this computation has been made using SAGE.

We may ask for the statistical behaviour as d varies. GOLDFELD [11] has
conjectured that a positive proportion of 0 < |d| < X have the property that
L(E,1) is non-vanishing. This has been established only in exceptional cases.
For instance, HEATH-BROWN [14] confirmed this conjecture for the congruent
number elliptic curve. Moreover, ONO and SKINNER [21, Corollary 2] have proved
that if E is an elliptic curve over Q with conductor < 100, then either E~P or
E? has rank zero for a positive proportion of primes p. In the special case of our
elliptic curve we obtain:

Corollary 3. For a positive proportion of primes p, there are either no
non-constant arithmetic progressions of four squares in Q(\/—p) or Q(\/p).

If the Birch and Swinnerton-Dyer conjecture is true, then the vanishing of
L(E4,1) would imply that the rank of E(Q(v/d) is positive, and so from (3) and
Proposition 1 it would follow that there exist infinitely many non-constant arith-
metic progressions of four squares over Q(v/d ). M. R. MURTY and V. K. MURTY
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[19] have shown that for L(E, 1) # 0 there are infinitely many fundamental dis-
criminants d < 0 such that L(E?,s) has a simple zero at s = 1; this result was
independently obtained by BumpP, FRIEDBERG and HOFFSTEIN [3]. Hence, in our
special case we may deduce that there exist infinitely many imaginary quadratic
fields Q(\/&) each of which containing infinitely many non-constant arithmetic
progressions of four squares subject to the truth of the Birch and Swinnerton—
Dyer conjecture.
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