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Binary sequences generated by sequences {nα}, n = 1, 2, . . .

By ŠTEFAN PORUBSKÝ (Prague) and OTO STRAUCH (Bratislava)

Abstract. Let α be an irrational number, I be a subinterval of the unit interval

(0, 1), and {x} denote the fractional part of x. In this paper we shall study arithmetical

properties of the set A = {n ∈ N; {nα} ∈ I} and pseudorandom character of the

sequence xn, n = 1, 2, . . . , where xn = 1 when {nα} ∈ I , and xn = −1 otherwise.

We prove, among others, that the gaps between successive elements of A are at most

of three lengths, a, b and a + b also in the case of an arbitrary interval I ⊂ (0, 1),

thereby extending the known Slater’s results for intervals of the type I = (0, t) with

t < 1/2. Further we exactly describe the set of positive integers which are not equal

to a difference of two arbitrary elements from A and we prove that A contains infinite

double-arithmetic progressions. Then we find a new lower estimate of the Mauduit–

Sárközy well distribution meaasure of xn for an arbitrary interval I . We also prove that

the sequence xn is Sturmian for every interval I of length {α} or 1 − {α} in the sense

that the number of 1’s in any pair of finite subsegments of the same length occurring

in xn can differ by at most one. We prove (Theorem 26) that if |I | ≤ 1/2 then any

subsequence of xn of the form xn+kK , k = 1, 2, . . . , splits into consecutive blocks of

1’s and blocks of −1’s whose lengths also differ by at most one. The proofs employ

two geometric ideas: (i) a transposition of subintervals (cf. Lemma 1) of I to construct

arithmetic progressions of the set A, (ii) properties (cf. Lemma 4) of line segments of

the intersection of the graph of the sawtooth function x + {kα} with I × I to answer

the question when two elements {nα} and {(n + k)α} simultaneously fall into I . This

technique gives, for instance, a new proof of the mentioned Slater’s three gap theorems.

Mathematics Subject Classification: 11K45, 11B83.
Key words and phrases: pseudorandomness, binary sequence, measures of pseudorandomness,

well distribution, uniform distribution, correlation, Sturmian sequences.
The first author was supported by the Grant Agency of the Czech Republic, Grant #

201/07/0191, by the Institutional Research Plan AV0Z10300504, and by the bilateral exchange

agreement between Academy of Sciences of the Czech Republic and Slovak Academy of Sci-

ences. The second author was supported by the Slovak Academy of Sciences VEGA grant No.

2/7138/27.
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1. Introduction

Throughout the paper we shall suppose that α is an irrational number, and

that {nα} denotes the fractional part of nα, n = 1, 2, . . . . Given a fixed interval

I ⊂ [0, 1], define the set

A = A(α, I) = {n ∈ N : {nα} ∈ I}, (1)

and the function

χI(y) =

{

1, if y ∈ I, and

−1, if y /∈ I.
(2)

Ch. Mauduit and A. Sárközy [4] started to investigate some distribution

properties of binary {−1, 1}-sequences generated by formula

xn = χI({nα}), n = 1, 2, . . . , (3)

in the case when I = (0, 1/2). Independently of this, a related class of sequences

is a subject of an extensive interest for a longer time. Namely, if I = (0, {α}), α

irrational, then A = A(α, I) and xn = χI({nα}) yield the so called Sturmian set

and Sturmian sequence, respectively1. The aim of this paper is to study

(I) the pseudorandomness of the sequence xn = χI({nα}), and

(II) arithmetical properties of the set A = A(α, I)

not only for intervals I of length |I| = 1/2 but for intervals I ⊂ (0, 1) of arbitrary

length. Our approach is based on two geometrical ideas: The first one uses a

transposition of subintervals (cf. Lemma 1) of I to construct arithmetic progres-

sions in the set (1). The second one (cf. Lemma 4) employs properties of line

segments of the intersection of the graph of the sawtooth function x + {kα} with

I × I to answer the question when two elements {nα} and {(n + k)α} simultane-

ously fall into I.

In what follows we assume that the interval I ⊂ (0, 1) is open, since the

inclusion of the endpoins of I into consideration causes only finitely many changes

in A. We start with two groups of notes related to our aims:

(I) In [4] Mauduit and Sárközy introduced three measures for measuring

the pseudorandomness of a binary {−1, 1}-sequences. One of them is the so called

well distribution measure

WM = WM (xn) = max
n,K,D

∣

∣

∣

∣

∣

D
∑

k=1

xn+kK

∣

∣

∣

∣

∣

1Sturmian sequences are usually defined as {0, 1}-sequences rather than {−1, 1}-sequences, but

the mutual transformations of these forms are straightforward.
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where the maximum is taken over all n, K, D such that n, K, D ∈ N and 1 ≤
n + K ≤ n + DK ≤ M .

If α is an irrational number, I = [0, 1/2) and xn = χ[0,1/2)({nα}), n = 1,

. . . , M , then they proved [6, Theorem 1,2]:

(a) WM (xn) ≥
√

M/2,

(b) WM (xn) ≤ 6
(

K
log(K+1)

)1/2
(M log M)1/2 +1, provided α is an irrational num-

ber such that the partial quotients of its continued fraction expansion are

bounded by K.

Mauduit and Sárközy also proved estimations of this measure for other se-

quences, e.g. for Champernowne, Rudin–Schapiro and Thue–Morce ones, see [5]

for more details.

In Section 3 we prove two lower bounds of WM for sequences xn = χI({nα})
with an arbitrary interval I ⊂ [0, 1). More precisely, let ⌊·⌋ be the greatest in-

teger function, D⌊
√

M⌋ denote the discrepancy of the sequence {1.α}, {2.α}, . . . ,
{⌊
√

M ⌋.α}, and α = [a0; a1, a2, . . . ] be the continued fraction expansion of α.

Then in Theorem 6 we prove that WM ≥
√

M
√

|I|/2
√

an+1 for infinitely many

M , where M depends on the denominator qn of the nth convergent of α. On

the other hand, in Theorem 7 we prove that WM ≥ |I|/(2D⌊
√

M⌋) for sufficiently

large M . In Theorem 8 we give an upper bound of WM for irrational algebraic

numbers α.

(II) Our motivation to study of the set A = A(α, I) = {a1 < a2 . . . } has

three historical sources:

(i) Three gaps problem saying that the differences ai+1−ai attain at most three

distinct values of the form a, b, a + b, where a is the first positive integer

for which {aα} ∈ (0, |I|) and b is first one such that {bα} ∈ (1 − |I|, 1)).

This problem was introduced and proved by N. B. Slater [11], see also

comments by K. Florek [1] and Slater [12]. 2

(ii) There are many equivalent definitions of Sturmian sequences, and these se-

quences are subject of extensive investigation from various points of view

(e.g. as symbolic dynamic systems) [8]. A Sturmian sequence xn can also

be defined as a {−1, 1}-sequence such that for every k the number p(k) of

2The three gaps problem is directly connected (see Slater [12]) with the so called Steinhaus’

three steps problem asserting: If the sequence {1α}, {2α}, . . . , {Nα} with an irrational α is

reordered with respect to the increasing magnitude of its terms, say {n1α} < {n2α} < · · · <

{nN α}, then for every i = 1, 2, . . . , N −1 we have {ni+1α}−{niα} = d1 or d2 or d1 +d2 where

d1 = {n1α} and d2 = 1−{nN α}. This was proved independently by J. Surányi [16], V. T. Sós

[13] and others.
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different blocks of elements xn+1, . . . , xn+k, n = 1, 2, . . . , is equal to k + 1.

The function p(k) is called the complexity function. It is known that the se-

quence xn = χI({nα}) with a special choice of interval I of length |I| = {α}
or |I| = 1 − {α} is Sturmian.

(iii) By the problem of bounded local discrepancy D([1, N ], I) = A([1, N ]) −
N |I|, where A([M, N ]) = {i ∈ N : ai ∈ [M, N ]}. Here E. Hecke [2] and

A. Ostrowski [10] proved (see Theorem 23) that D([1, N ], I) is bounded

if |I| = {hα} for some h ∈ Z and later H. Kesten [7] proved that this

condition is also necessary. Ostrowski also proved that |D([1, N ], I)| < |h|.
In Section 4 (Theorem 10) we give a new proof of the three gaps problem

and extend it (Proposition 18) in the sense, that for arbitrary a ∈ A(α, (0, |I|)),
b ∈ A(α, (1−|I|, 1)) and every n ∈ A(α, I) we have either n+a ∈ A(α, I), or n+b ∈
A(α, I), or n+a+b ∈ A(α, I). In Theorem 19 we characterize all k ∈ N for which

the equation aj −ai = k is not solvable in ai, aj ∈ A. We also prove (Theorems 21

and 22) that the set A contains infinite double arithmetic progressions despite the

fact that it does not contain an infinite arithmetic progression.

For Sturmian sequences it is true that the number of 1’s in any pair of finite

subsegments of the same length occurring in xn can differ by at most one. In

Section 6 we prove (Theorem 26) that if |I| ≤ 1/2 then any subsequence of (3) of

the form xn+kK , k = 1, 2, . . . , splits into consecutive blocks of 1’s and blocks of

−1’s whose lengths also differ by at most one.

2. Basic preliminaries

Since the idea of the proof of the next Lemma will play a decisive role in

what follows, we recap the basic ideas of its proof for the reader’s convenience.

Lemma 1 ([14, Theorem 1, 2]). Let α be an irrational number and I ⊂ (0, 1).

Then the set A contains arbitrarily long arithmetic progressions. More precisely,

let D ∈ N be given, and K1, K2 ∈ N be such that3

|1 − {K1α}| <
|I|
2D

, (4)

|0 − {K2α}| <
|I|
2D

. (5)

Then for every n ∈ A either

{n, n + K1, n + 2K1, . . . , n + DK1} ⊂ A (6)

3Note that {nα}, n = 1, 2, . . . , is dense in [0, 1].
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or

{n, n + K2, n + 2K2, . . . , n + DK2} ⊂ A. (7)

Proof. Let n ∈ A, i.e. {nα} ∈ I. The point {nα} splits the interval I into

two subintervals, say I1, the left one, and I2, the right one, respectively. Translate

these intervals towards the endpoints of [0, 1] as follows: I ′1 = I1 + 1 − {nα} and

I ′2 = I2 − {nα}. Finally, let I ′ = [0, 1] \ (I ′1 ∪ I ′2). Then

{(n + k)α} ∈ I1 ⇔ {kα} ∈ I ′1, (8)

{(n + k)α} ∈ I2 ⇔ {kα} ∈ I ′2 (9)

Which of these two cases occurs depends on the fact whether {(n + k)α} =

{nα} + {kα} − 1, or {(n + k)α} = {nα} + {kα}. Relations (8) and (9) imply

{(k + n)α} ∈ I ⇔ {kα} /∈ I ′. (10)

0

I ′′2

I ′2

I ′′1

I ′1

I1

{nα}
I2

I

1

I ′

Figure 1.

Given D, let the intervals I ′′1 and I ′′2 of lengths |I ′′1 | = |I ′1|/D and |I ′′2 | =

|I ′2|/D, respectively, be located as depicted in the Figure 1. Then

{K1α} ∈ I ′′1 ⇒ {kK1α} ∈ I ′1 for every k = 1, 2. . . . , D, (11)

{K2α} ∈ I ′′2 ⇒ {kK2α} ∈ I ′2 for every k = 1, 2. . . . , D. (12)

The proofs of (11) and (12) follow from the observation that for every triple of

positive integers k, K1, and K2 we have

{k(1 − {K1α})} = 1 − {kK1α} and {k{K2α}} = {kK2α}. (13)

In our case, due to the choice of K1, K2 we have k(1−{K1α}) < k
|I′

1|
D < |I ′1| < 1

and k{K2α} < k
|I′

2|
D < |I ′2| < 1 for k = 1, 2, . . . , D. This together with (13)

implies {k(1 − {K1α})} = k(1 − {K1α}) = 1 − {kK1α} < |I ′1|, and similarly

{k{K2α}} = k{K2α} = {kK2α} < |I ′2|. This proves (11) and (12).
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Consequently,

(i) if {K1α} ∈ I ′′1 , then the sequence {(n + K1)α}, {(n + 2K1)α},. . . ,{(n +

DK1)α} lies in the interval I1 ⊂ I, or in other words, the arithmetic pro-

gression {n, n + K1, n + 2K1, . . . , n + DK1} lies completely in A,

(ii) if {K2α} ∈ I ′′2 , then the sequence {(n + K2)α}, {(n + 2K2)α},. . . ,{(n +

DK2)α} lies in the interval I2 ⊂ I, or that {n, n + K2, n + 2K2, . . . , n +

DK2} ⊂ A,

Since {nα}, n = 1, 2, . . . is dense in [0, 1], we can find K1 and K2 such that

{K1α} ∈
(

1 − |I|
2D

, 1

)

and {K2α} ∈
(

0,
|I|
2D

)

.

In addition, for every {nα} ∈ I either |I1| ≥ |I|/2 or |I2| ≥ |I|/2. Thus either

{K1α} ∈ I ′′1 or {K2α} ∈ I ′′2 and by (i) or (ii) we have either (6) or (7).

0 1

{nα}I1 I2 I ′1I ′2

I

I ′

Figure 2.

Note that even if Figure 1 changes when |I| > 1/2, the used arguments

remain valid also in this case (cf. Figure 2). �

The above ideas also give the following modification of previous results.

Lemma 2. For every n ∈ A we have

(j) if K1 ∈ N be such that {K1α} ∈ I ′1 and 1 − {K1α} < 1 − |I| and D1 =

⌊|I ′1|/(1 − {K1α})⌋ then {n, n + K1, n + 2K1, . . . , n + D1K1} ⊂ A but n +

(D1 + 1)K1 /∈ A, and similarly

(jj) if {K2α} ∈ I ′2 for some K2 and {K2α} < 1 − |I| then {n, n + K2, n +

2K2, . . . , n+D2K2} ⊂ A but n+(D2+1)K2 /∈ A, where D2 = ⌊|I ′2|/{K2α}⌋.

Proof. The definition of D2 implies that D2{K2α} ∈ I ′2 but

(D2 + 1){K2α} /∈ I ′2. Since {K2α} < 1 − |I|, (D2 + 1){K2α} ∈ I ′ which by (10)

implies n + (D2 + 1)K2 6∈ A. Similarly for D1. �
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Example 3. Let α = (
√

5 + 1)/2 and N = 100 and I = [1/2, 1]. Here

{α} = 0.61803 · · · ∈ [1/2, 1], I1 = [1/2, {α}], I2 = [{α}, 1], |I1| = 0.11803 . . .

and |I2| = 0.38196 . . . . . . , i.e. I ′1 = [0.88196 . . . , 1] and I ′2 = [0, 0.11803 . . . ]. The

maximum max1≤n≤N{nα} is attained for n = 55 and {55α} .
= 0.991869 · · · ∈ I1,

so we can take K1 = 55 and Lemma 2(j) gives that

D1 =

⌊ |I1|
(1 − max1≤n≤N{nα})

⌋

= 14.

By Lemma 2 we have {1, 1+55, 1+2 ·55, . . . , 1+14 ·55} ⊂ A, but 1+15 ·55 /∈ A.

Similarly the minimum min1≤n≤N{nα} is attained for n = 89 with {89α} .
=

0.005024 . . . , i.e. Lemma 2(jj) works with K2 = 89 and

D2 =

⌊ |I2|
min1≤n≤N{nα}

⌋

= 76.

Thus {1, 1 + 89, . . . , 1 + 76 · 89} ⊂ A but 1 + 77 · 89 /∈ A. (Note also that the

length of the constructed arithmetic progressions exceeds the initial segment of

N = 100 terms.)

In Lemma 1 we proved that for fixed n ∈ N, {nα} ∈ I, the set of all k ∈ N for

which {(n+ k)α} ∈ I is given by {kα} ∈ I1 or {kα} ∈ I2. In the following lemma

the k ∈ N will be fixed and we ask for all n ∈ N such that ({nα}, {(n + k)α}) ∈
I × I.

Lemma 4. Let I ⊂ [0, 1] be an interval and k ∈ N. Then both numbers

{nα} and {(n + k)α} lie in I if and only if the sawtooth graph of the function

y = x + {kα} mod 1 intersects the square I × I and simultaneously {nα} lies in

the projection of this intersection onto the x-axis.

Proof. Since

{(n + k)α} =







{nα} + {kα}, if {nα} + {kα} < 1,

{nα} + {kα} − 1, if {nα} + {kα} ≥ 1,

the statement ({nα}, {(n + k)α}) ∈ I × I is equivalent to the assertion of the

Lemma. �

As mentioned in the introduction, the result of the previous Lemma will

play an important role, therefore we introduce the following notation. Given an

interval I ⊂ [0, 1] and a positive integer k, denote by Xk the intersection of the

graph {(x, x+{kα}) mod 1 : x ∈ [0, 1]} of the linear function y = x+{kα} mod 1
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{kα}

0 1

1

ProjxXk

I × I

Figure 3.

with I × I. The projection of Xk onto the x-axis will be denoted by Projx Xk,

see Figure 3.

Using this notation Lemma 4 has the form

({nα}, {(n + k)α}) ∈ I × I ⇔ {nα} ∈ Projx Xk (14)

Note that the role of intervals I1, I2, I ′1, I ′2 in the equivalences (8) and (9)

can be stated more precisely by introducing a parameter 0 < t < 1 denoting the

distance between {nα} and {(n + k)α}.

Lemma 5. For every n, k ∈ N and every 0 < t < 1 we have

0 < {nα} − {(n + k)α} = t ⇔ 1 − {kα} = t, (15)

0 < {(n + k)α} − {nα} = t ⇔ {kα} = t (16)

3. Lower bounds for WM

Theorem 6. Let α = [a0; a1, a2, . . . ] be the continued fraction expansion of

a given irrational number α. Assume that {α} ∈ I and that it divides the interval

I into two subintervals I1 and I2 (see Figure 1). Put

Mi = qn

⌊

|Ii| qn

(

rn+1 +
qn−1

qn

)⌋

for i = 1, 2, (17)

where rn+1 = [an+1; an+2, an+3 . . . ] and pn

qn
= [a0; a1, a2, . . . , an]. Then

WMi
≥
√

Mi

√

|Ii|an+1 (18)

for odd n if i = 1 and for even n if i = 2, provided qn−1 > max(1/|I1|, 1/|I2|).
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Proof. Reorder the elements of the sequence {1α}, {2α}, . . . , {Nα} increas-

ingly

0 < {n1α} < {n2α} < · · · < {nNα} < 1 (19)

and denote

D1 =

⌊ |I1|
1 − {nNα}

⌋

and D2 =

⌊ |I2|
{n1α}

⌋

.

Lemma 2 shows that

each of the numbers {1α}, {(1 + nN )α}, . . . , {(1 + D1nN )α} belongs to the

interval I, and

that also the numbers {1α}, {(1 + n1)α}, . . . , {(1 + D2n1)α} belong to the

interval I.

Consequently

WM1
≥ D1 + 1 for M1 = 1 + D1nN , and

WM2
≥ D2 + 1 for M2 = 1 + D2n1.

This can be simplified to the form

WMi
≥ Di (20)

for i = 1, 2, but now with M1 = D1nN and M2 = D2n1.

Take N = qn. Using the well-known relation

qnα − pn =
(−1)n

qn

(

rn+1 + qn−1

qn

)

and the fact that pn/qn is the best approximation to α of the second kind, we

can derive that

n1 = qn for even n, and nN = qn for odd n.

Thus

Di =

⌊

|Ii| qn

(

rn+1 +
qn−1

qn

)⌋

,

where i = 1 for odd n and i = 2 for even n and

Mi = Diqn.

If θi is the fractional part

θi =

{

|Ii| qn

(

rn+1 +
qn−1

qn

)}

,
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then

Di =
√

Mi

√

|Ii| an+1 C,

where

C =

√

√

√

√

(

rn+1 + qn−1

qn

an+1

)(

1 − θi

|Ii| qn

(

rn+1 + qn−1

qn

)

)

.

If qn−1 > max(1/|I1|, 1/|I2|), then C > 1 and thus C can be omitted in (20) to

get (18). �

Theorem 7. Given an irrational α and an arbitrary interval I ⊂ [0, 1], the

inequality

WM ≥ max(|I|, 1 − |I|)
2D⌊

√
M⌋

,

holds for all sufficiently large M , where D⌊
√

M⌋ is the extremal discrepancy of the

sequence {1α}, {2α}, . . . , {⌊
√

M⌋α}.

Proof. Since the value of WM is influenced by blocks of +1’s or by blocks

of −1’s sitting on places with indices n in an arithmetic progression, we shall

proceed in two steps.

10. For each sufficiently large M there exists a positive integer B such that

|I|
2B

> D⌊
√

M⌋ ≥
|I|

2(B + 1)
. (21)

The left hand side inequality of (21) shows that there exists an integer K1, 1 ≤
K1 ≤ ⌊

√
M⌋, for which {K1α} ∈

(

0, |I|
2B

)

and that there also exists a K2, 1 ≤
K2 ≤ ⌊

√
M⌋, with {K2α} ∈

(

1 − |I|
2B , 1

)

. Since there exists an integer n, 1 ≤
n ≤ ⌊

√
M⌋, such that {nα} ∈ I, Lemma 1 implies that each element of the finite

sequence

{nα}, {(n + K)α}, . . . , {(n + BK)α} (22)

lies in I for a K with 1 ≤ K ≤ ⌊
√

M⌋. Thus

WM ≥ B + 1 (23)

provided that (22) is a subsequence of

{1α}, {2α}, . . . , {Mα}.

This is equivalent to

n + BK ≤ M. (24)
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Since both n, K ≤
√

M , the inequality (24) holds if (B + 1)
√

M ≤ M , i.e. if

B +1 ≤
√

M . On the other hand, (21) implies that B < |I|/(2D⌊
√

M⌋), therefore

inequality (24) holds if
√

M − 1 > |I|/(2D⌊
√

M⌋), i.e. if

|I|
2

< D⌊
√

M⌋
√

M − D⌊
√

M⌋. (25)

Moreover, the extremal discrepancy DN of an arbitrary sequence t1, t2, . . . , tN in

[0, 1) satisfies (see [15, p. 1–43])

1

N
≤ DN ≤ 1,

and the sequence {mα}, m = 1, 2, . . . , is uniformly distributed. Consequently,

(25) is true for all sufficiently large M . Then (23) implies that

WM ≥ |I|
2D⌊

√
M⌋

holds for all sufficiently large M .

20. Now take an n with {nα} ∈ I. For sufficiently large M there exists n + k ≤√
M such that {(n + k)α} 6∈ I, what, by Lemma 1, is equivalent to {kα} ∈ I ′,

where interval I ′ is determined as it is shown in Figure 1. If we now take interval

I ′ instead of I in the previous step 10 we get

WM ≥ |I ′|
2D⌊

√
M⌋

.

Since |I ′| = 1 − |I|, the Theorem is proved. �

Theorem 8. If α is an irrational algebraic number and I ⊂ [0, 1] is an

arbitrary interval, then

WM = M |1 − 2|I| | + O
(

M
1
2
+ε
)

. (26)

for every ε > 0.

Proof. We obtain directly from the definition of xn = χI({nα}) that

N
∑

k=1

xn+kK = #{k ≤ N ; {(n + kK)α} ∈ I}

− #{k ≤ N ; {(n + kK)α} ∈ [0, 1]− I}
= N(|I| − (1 − |I|)) + O(NDN ((n + kK)α)),
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where DN ((n + kK)α)) is the discrepancy of the sequence

{(n + K)α)}, {(n + 2K)α)}, . . . , {(n + NK)α)}.

By Lemma 1 of [4] we have

DN ((n + kK)α)) = DN (kKα) ≤ KDN(kα),

where DN (kα) is the discrepancy of the sequence {1α}, {2α}, . . . , {Nα}. Thus

∣

∣

∣

∣

∣

N
∑

k=1

xn+kK

∣

∣

∣

∣

∣

= N |1 − 2|I| | + O(KNDN (kα)). (27)

According to the definition, WM is the maximum of the left hand side of (27)

over all possible n, K, D ∈ N such that 1 ≤ n + K < n + NK ≤ M .

Theorem 3.2 in [3, p. 123] shows that

NDN (kα) = O(N1− 1
η
+ε) (28)

if α is of the finite type η (see Definition 3.4 in [3, p. 121]). Since an algebraic

irrational α is of type η = 1 (cf. Example 3.1 [3, p. 124]), relation (28) reduces to

the form

NDN (kα) = O(Nε).

We distinguish two cases:

10. If K >
√

M then

N ≤ M − n

K
≤

√
M,

and
∣

∣

∑N
k=1 xn+kK

∣

∣ ≤
√

M in this case.

20. Let K ≤
√

M . Since 1 ≤ n + K < n + NK ≤ M , the error term in (27)

reduces to O(M
1
2
+ε). Similarly, the maximal possible value of N (in N |1− 2|I| |)

such that n + NK ≤ M is N = M if n = 1 and K = 1. This finishes the proof

of (26). �

4. Differences of consecutive terms of A(α, I) with arbitrary I ⊂ [0, 1]

Let α be an irrational number, the interval I ⊂ [0, 1] be fixed but arbitrary,

and let

A = A(α, I) = {n ∈ N : {nα} ∈ I} = {a1 < a2 < . . . } and

∆ = {an+1 − an : n ∈ N}.
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This section will be devoted to the study of the set of differences ∆. Slater

[11] proved the so-called three gaps problem saying not only that ∆ is finite, but

in addition it has at most three distinct elements. More precisely:

Theorem 9 (Slater [11], [12]). Given an interval I of the form I = (0, t),

t ≤ 1/2, define a and b as the least positive integers such that {aα} ∈ (0, t) and

{bα} ∈ (1− t, 1). Let {nα} ∈ (0, t) and let k be minimal with {(n + k)α} ∈ (0, t).

Then

k =



















a, if 0 ≤ {nα} < t − {aα},
a + b, if t − {aα} ≤ {nα} < 1 − {bα},
b, if 1 − {bα} ≤ {nα} < t.

(29)

Moreover a and b are relatively prime.

The next result gives another way how to compute the elements of ∆ for

an arbitrary interval I ⊂ (0, 1). As a consequence we obtain an interesting fact

that ∆ depends only on t, that is it has the property to be shared by all intervals

I ⊂ (0, 1) of a given length |I| = t, 0 < t < 1. Consequently also the integers a, b

of Theorem 9 depend only on t.4 Due to the importance of Slater’s Theorem we

shall now state our next theorem bringing Slater’s result in a new connection with

our geometric approach, despite the fact that the proofs will partially depend on

some parts of Proposition 13 and Theorem 19 which are proved later, the proofs

of corresponding used parts do not depend on the results of the following theorem,

however.

Theorem 10. Let I be an arbitrary interval of (0, 1). Let N be such an

integer that the sequence {1α}, {2α}, . . . , {Nα} meets both intervals (0, |I|/2),

and (1 − |I|/2, 1). Let the function k(x) be defined for x ∈ [0, |I|] as5

k(x) = min
{

min{i ≤ N : {iα} ∈ (0, x)},
min{i ≤ N : {iα} ∈ (1 − |I| + x, 1)}

}

. (30)

Then we have:

(i) the set ∆ coincides with the set {k(x) : x ∈ [0, |I|]},

4In the report [1] of the meeting of the Mathematical Society held on December 1, 1950 we can

read that K. Florek independently claims that the minimal k mentioned in Theorem 9 can be

determined in the same way for an interval I ⊂ [0, 1] of an arbitrary length t, t ≤ 1/2. Since

Florek gives no proofs, we supply here a proof for this general situation using our approach.
5Here we use the convention that min ∅ = ∞.
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(ii) if {nα} ∈ I and I is arbitrary, say I = (u, v), then the minimal k with

{(n + k)α} ∈ I equals k({nα} − u),

(iii) the function k(x) and the set ∆ depend only on the length |I| of the interval I

but not on the position of I within (0, 1),

(iv) if I = (0, t) with t ≤ 1/2 then the value k ({nα}) coincides with k given

by (29),

(v) we have t−{aα} ≤ 1−{bα} for every t ≤ 1/2 and a, b defined in Theorem 9.

Proof. Note that the choice of the number N satisfying the assumptions of

the Theorem does not influence the value of function k due to the fact that we

take the minima over the given sets.

(i) and (ii): Let {nα} ∈ I. Then the minimal k such that {(n + k)α} ∈ I is

given by

k = min {min{i ≤ N : {iα} ∈ I ′1}, min{i ≤ N : {iα} ∈ I ′2}} , (31)

where the intervals I ′1, I ′2 are defined in Figure 1.

To prove this, let K1, K2 be such that {K1α} ∈ (1 − |I|/2, 1), and {K2α} ∈
(0, |I|/2). Since (0, |I|/2)⊂ I ′2 or (1−|I|/2, 1)⊂ I ′1, then either {(n+K2)α}∈ I or

{(n+K1)α}∈ I, that is k≤ max{K1, K2}≤N . On the other hand, {(n+k)α}∈ I

implies that either {kα} ∈ I ′1 or {kα} ∈ I ′2, what shows that k belongs to the

sets over which the minimum is computed. Finally note that there follows from

the density of {nα} that I ′2 = (0, x) can be arbitrarily close to (0, |I|) (see also

Figure 1).

(iii): This follows from the definition (30) of function k(x) which depends

only on the length of I and not on its position within (0, 1). The invariancy of ∆

with respect to a translation of I follows from (i).

(iv): This is actually Slater’s result expressed in terms of our function k. In

the rest of the proof we prove (iv) using our geometric approach developed in

Lemmas 1 and 4, thereby giving a new proof of Slater’s Theorem.

Suppose that I = (0, t) and t ≤ 1/2. Let N be the first positive integer

such that the initial segment {1α}, {2α}, . . .{Nα} meets both intervals (0, t) and

(1 − t, 1) and that a and b are the least positive integers with {aα} < t and

{bα} > 1 − t. Clearly, either a = N or b = N . In what follows we shall suppose

that

b = N. (32)

for the sake of simplicity. Reorder the numbers {1α}, {2α}, . . .{Nα} with respect

to their increasing magnitude to get, say 0 < {n1α} < {n2α} < · · · < {nNα} < 1.

Clearly nN = b = N . What is less obvious is that n1 = a. This follows from the

following first observation:
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10. {aα} < {(a + i)α} for i = 1, 2, . . . , b − 1.

Suppose on the contrary, that {aα} > {(a+i)α} for some such i, cf. Figure 4.

Then Lemma 1 and (8) imply

{(a + i)α} ∈ I1 ⇔ {iα} ∈ I ′1 ⊂ (1 − t, 1).

Since if i < b, then {iα} /∈ (1 − t, 1), and we have i ≥ b.

0 1{(a + i)α} {aα} t {iα}{bα}1 − t

I1 I2 I ′1

I

Figure 4.

We similarly have:

20. {(b + i)α} < {bα} for i = 1, 2, . . . , a − 1.

Again, if {(b + i)α} > {bα}, then (cf. Figure 5) Lemma 1 and relation (9)

yield

{(b + i)α} ∈ I2 ⇔ {iα} ∈ I ′2 ⊂ (0, t),

which in turn implies that i ≥ a for a = min{i < N : {iα} ∈ (0, t)}.

0 1

{iα}

{aα} t {bα} {(b + i)α}1 − t

I1 I2I ′2

I

Figure 5.

Further we prove:

30. The numbers a and b are minimal positive integers such that if {nα} ∈ I

and k is a minimal positive integer with {(n + k)α} ∈ I then either k = a or

k = b.

Suppose that {nα} ∈ I and {(n + k)α} ∈ I. Then Lemma 4 implies that

{nα} ∈ Projx Xk (i.e. Projx Xk 6= ∅), and that the point ({nα}, {{nα}+{kα}}) =

({nα}, {(n + k)α}) lies on the graph of y = x + {kα} mod 1, see Figure 3. Since
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I = (0, t), the projection Projx Xk is non-empty if and only if the graph of

y = x + {kα} mod 1 meets either (0, t) × (0, t) or (0, t) × (1 − t, 1), that is if

{kα} ∈ (0, t) or {kα} ∈ (1 − t, 1) (see also Theorem 19). Geometrically seen,

the sets Xa+i, i ≥ 0, are in the “shadow” of Xa when projected from interval I

upwards. This geometrical argument shows that if for n ∈ A we have n+a+i ∈ A,

then necessarily also n + a ∈ A. Along the same arguments we also can prove

the implication, if n ∈ A and n + b + i ∈ A, then n + b ∈ A, This proves the

minimality of a and b in the above described way.

{bα} {bα}
{(b + i)α}

{(a + i)α}
{aα} {aα}

{(a + b)α}

{aα}

{bα}

0 t 1 0 t 1

0 t 1

t

1 − t

1

t

1 − t

1

t

1 − t

1

(a) (b)

(c)

Figure 6.

The above proof shows the importance of the coverage of interval I by the

union Projx Xa ∪ Projx Xb. As a byproduct we obtained that if Projx Xa ∪
Projx Xb = I, then the minimal k of Slater’s Theorem can attain only two values

a and b. In the next step we shall analyse the cases when Projx Xa ∪ Projx Xb

covers I = (0, t) or does not.

40. A condition under which a + b joins the possible cases {a, b}.
Consider two cases of the relationship between Projx Xa ∪ Projx Xb and I:
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40
1. 1 − {bα} ≤ t − {aα}.

Then, cf. Figure 6(b), Projx Xa ∪ Projx Xb = (0, t). Consequently, for every

n ∈ A we have either n + a ∈ A or n + b ∈ A.

40
2. t − {aα} < 1 − {bα}.

In other words, t < {aα} + 1 − {bα}. Then, see Figure 6(c), the segment

I \ (Projx Xa ∪ Projx Xb) is the projection of the segment joining the points

(t − {αa}, t − (1 − {αb})) and (1 − {bα}, {aα}), that is Projx Xa ∪ Projx Xa+b ∪
Projx Xb = (0, t). Thus for every n ∈ A we have either n + a ∈ A or n + b ∈ A or

n + a + b ∈ A in accordance with (29).

We know (cf. the previous cases 10 and 20) that the values a and b are the

least possible. To prove that also a + b is the least possible, we shall employ the

result of Theorem 19 below. As already mentioned, the proof of this theorem does

not depend on the proof of the results just proved, however. In one direction, the

arguments of part 30 show that Projx Xa+b−i ⊂ Projx Xa if {(a+b− i)α} ∈ (0, t),

and similarly Projx Xa+b−i ⊂ Projx Xb if {(a+ b− i)α} ∈ (1− t, 1). On the other

hand, Theorem 19 shows that the case {(a+b−i)α} ∈ (t, 1−t) cannot be realized

for n ∈ A such that n + a + b − i ∈ A.

50. The constants a and b depend on the length |I| = t of interval I but not

on the position of I.6

To see this note that the lengths of the intersections of the translated square

[u, t + u) × [u, t + u) with the line segments of the graph of function y = x +

{qα} mod 1, q a positive integer, are preserved, and consequently does not depend

on u.

This proves the first part of the statement of Theorem 10. The second one

claims that

60. The integers a, b are relatively prime.

Slater [12, (8), (9)] proved this through the equality b{aα}+a(1−{bα})=1,

which implies a(1 + ⌊bα⌋) − b⌊aα⌋ = 1, and the coprimness of a, b follows imme-

diately. In what follows we use another argument to prove this.

Suppose on the contrary, that gcd(a, b) = d > 1. It follows from 30 and 40

that every n ∈ A(α, I) with I ⊂ [0, 1], |I| = t, has the form n = n1 + xa + yb,

where n1 is the minimal element of A(α, I). By 50 the sets A = A(α, (0, t)) and

B = A(α, (1 − t, 1)) corresponding to the translated intervals (0, t) and (1 − t, 1)

share the same a and b. Since the first element of A is a and the first element

of B is b, any element n of A or B is divisible by d. Consequently, if d ∤ n

then {nα} ∈ (t, 1 − t), and moreover t < 1/2 under the assumption d > 1.

Let t1 = sup t, where the supremum is taken over those t < 1/2 for which every

6What follows is actually the second proof of this fact. The first one is given (iii).
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0 1

1

u v = u + t{nα}{nα} − u t

{aα}

{bα}

{(a + b)α}

t

1 − t

y = x + {aα} mod 1

Figure 7.

element in A(α, (0, t)) is divisible by d. Now, choose integers n and n+k satisfying

the conditions (see Figure 8):

(i) d ∤ n, e.g. {nα} ∈ [t1, 1 − t);

(ii) {(n + k)α} ∈ (0, t1), e.g. d|(n + k);

(iii) 0 < {nα} − {(n + k)α} < t.

Relation (15) of Lemma 5 shows that 1 − {kα} = {nα} − {(n + k)α}, therefore

1−{kα} < t. Consequently k ∈ B, and thus d|k, a contradiction, which proves 60.

0 1{(n + k)α} {nα} {kα}t 1 − t

t1

Figure 8.

Slater [12, p. 1118] writes that the difference a + b appears if t < 1 −
{bα} + {aα}. Using 40

1 and 40
2 we can conclude from (v) that this characterizes

the appearance of this difference:

(v) This result actually says that the strict inequality 1−{bα} < t−{aα} is

not possible in the case 40
1.
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Indeed,

(a) If a = 1 or b = 1, then the next Proposition 13, (i) and (ii), shows that

t − {aα} ≤ 1 − {bα}.
(b) Let 1 − {bα} < t − {aα}. 40

1 implies ∆ = {a, b} and a > 1 together with

b > 1 by (a). Let a < b. Suppose that there exists a ∆t > 0 such that intervals

(0, t) a (0, t+∆t) have the same constants a, b. Let A(α, (0, t)) = (a1 < a2 < . . . )

and A(α, (t, t + ∆t)) = (c1 < c2 < . . . ). Then for every cj there exists an ai with

ai < cj < ai+1. Then ai+1 − cj = a and also cj − ai = a, i.e. ai+1 − ai = b = 2a

what contradicts the fact that gcd(a, b) = 1. If 1 − t = {(b − 1)α} then such ∆t

does not exist, and we can use a negative ∆t in a similar way. �

Remark 11. Since d · A(dα, I) ⊂ A(α, I) for every positive integer d, the

set A(α, I) has the following interesting divisibility property: For every positive

integer d there exist infinitely many ai ∈ A(α, I) such that d divides ai.

Example 12. Let α = (
√

5 + 1)/2 and I = (1/2, 1). The N in Theorem 10

is N = 3, where {α} = 0.61 . . . , {2α} = 0.23 . . . and {3α} = 0.85 . . . . Then for

x = 0.15 the minimum k(x) = min{min ∅, min{3}} = 3, for x = 0.23 it is k(x) =

min{min{2}, min{3}} = 2 and for x= 0.5 it is k(x)= min{min{2}, min{1, 3}}=1.

Thus the shortest distances between ai, aj ∈ A are 1, 2, or 3 only, and each of them

is realized infinitely many times. This coincides with the statement of Theorem 9

where t = 1/2, a = 2, b = 1, a + b = 3, t − {2α} = 0.27 · · · < 1 − {α} = 0.38 . . . ,

and in (29) (after shifting by 0.5 ) we have

k =



















2, if 0.5 < {nα} < 0.77 . . . ,

3, if 0.77 · · · < {nα} < 0.88 . . . ,

1, if 0.88 · · · < {nα} < 1.

Moreover, b{aα} + a(1 − {bα}) = 1 · 0.23 . . . + 2 · 0.38 . . . = 1, which implies

2(1 + ⌊1α⌋) − 1⌊2α⌋ = 1 and really 2 · 2 − 1 · 3 = 1.

In some cases we are able to give the differences a and b explicitly. For this

purpose, to stress their dependence on the length t of the interval I we shall write

∆t = {an+1 − an : n = 1, 2, . . . } instead of the previously used notation ∆, where

A(α, I) = {a1 < a2 < . . . }.

Proposition 13. If t ≤ 1/2, then

(i) If {α} ∈ (0, t) then a = 1, b =
⌊

1−t
{α}
⌋

+ 1 and

∆t = {1, b, 1 + b} if t < 1 − {(b − 1)α}, but
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∆t = {1, b}, and b > 2, if t = 1 − {(b − 1)α}.
(ii) If {α} ∈ (1 − t, 1) then b = 1, a =

⌊

1−t
1−{α}

⌋

+ 1 and

∆t = {a, 1, a + 1} if t < {(a − 1)α}, but

∆t = {a, 1}, a > 2, if t = {(a − 1)α}.
(iii) If {α} ∈ (t, 1 − t) then min{a, b} ≤ 1

t − 1.

Proof. (i) If for some positive integer j we have j{α} < 1, then j{α} =

{jα}. This observation yields the expression for b in (i). Moreower {(b − 1)α} ≤
1− t < {bα} due to minimality of b, and {bα}−{α} ≤ {(b−1)α}. If {(b−1)α} <

1 − t, then t − {α} < 1 − {bα}, and Theorem 9 implies ∆t = {1, b, 1 + b}. If

{(b − 1)α} = 1 − t, then b > 2 and ∆t = {1, b}.7
(ii) If j(1−{α}) < 1 then j(1−{α}) = 1−{jα}, what implies the expression

for a given in (ii). Moreover, {aα} < t ≤ {(a − 1)α}, due to minimality a. If

t < {(a − 1)α}, then t − {aα} < {(a − 1)α} − {aα} = 1 − {α} = 1 − {bα} and

Theorem 9 implies ∆t = {a, 1, a+1}. If t = {(a− 1)α}, then t−{aα} = 1−{bα}
what implies a > 2 and ∆t = {a, 1}.8

(iii) This result can be found in [12, p. 1119]. We reprove it now by our

method.

As in our proof of Theorem 9 assume a < b. Then case 10 of the proof of

Theorem 10 implies that

{1α}, {2α}, . . . , {(a − 1)α} ∈ (t, 1 − t).

We claim that |{iα} − {kα}| ≥ t for every pair (i, k) with i, k ∈ {1, 2, . . . , a − 1}
and i 6= k.

0 1{(i + j)α} {iα} {jα}t 1 − t

I1 I2 I ′1

I

Figure 9.

To prove this, assume on the contrary that |{iα} − {kα}| < t for some (i, k)

such that i < k = i + j for some j. Suppose that {(i + j)α} lies as shown on

7Note in connection with part (b) in proof of (v) where the stretching of the interval lead to a

contradiction, in this case we have {(b − 1)α} ∈ (1 − t − ∆t, 1) and ∆t+∆t = {1, b − 1, b}.
8Again, for suitable ∆t we have {(a − 1)α} ∈ (0, t + ∆t) and ∆t+∆t = {a − 1, 1, a}.
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Figure 9. Lemma 1 via relation (8) shows that {(i + j)α} ∈ I1 ⇔ {jα} ∈ I ′1.

Since the position of I is not relevant, we can choose I in such position that

I ′1 ⊂ (1− t, 1). Consequently j > b, due to minimality of b. But this is impossible

because j < a < b.

0 1{(i + j)α}{iα}{jα} t 1 − t

I1 I2I ′2

I

Figure 10.

If {(i+ j)α} and iα lies as in Figure 10, then using Lemma 1 and relation (9)

we have {(i + j)α} ∈ I2 ⇔ {jα} ∈ I ′2 ⊂ (0, t), and if |{(i + j)}α − {iα}| < t then

we can choose interval I in such a way that I ′1 ⊂ (1 − t, 1) and again j > b, a

contradiction again. �

Remark 14. Parts (i) and (ii) of Proposition 13 imply that if t ≤ 1/2 then

the case ∆t = {a, b} = {1, 2} is not possible. This can also be proved directly.

Namely, if, say, {1α} ∈ (0, t) and {2α} ∈ (1 − t, 1) and if 1 − {2α} ≤ t − {1α},
then we get the impossible inequality 1 ≤ t + {1α}. The case {1α} ∈ (1 − t, 1)

can be handled in a similar way.

Note also an important fact implied by Proposition 13 (iii): if t = 1/2 then

min(a, b) = 1.

Now, we shall focus on the case |I| ≥ 1/2. We shall determine the minimal

k for which {(n + k)α} ∈ I provided {nα} ∈ I. The case |I| = 1/2 is also covered

by Slater’s Theorem 9 and for the associated differences a, b we have either a = 1

or b = 1 depending on the fact whether {α} ∈ (0, 1/2) or {α} ∈ (1/2, 1) (another

proof is in Remark 14 above). So we can suppose that t > 1/2. For the sake of

simplicity of the formulation of the result and used notation we shall first analyze

the case I = (0, t).

Proposition 15. Let I = (0, t) with t > 1/2 and suppose that {nα} ∈ I.

Let k be the minimal positive integer such that {(n + k)α} ∈ I.

(I) Let {1.α} ∈ (0, 1/2) and let b be the minimal positive integer such that

{bα} ∈ (1/2, 1). Then for every j = 0, 1, 2, . . . , b − 1 we have:
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If t ∈ (1 − {(b − j)α}, 1 − {(b − j − 1)α}), then

k =



















1, if 0 < {nα} < t − {1.α},
b − j + 1, if t − {1.α} < {nα} < 1 − {(b − j)α},
b − j, if 1 − {(b − j)α} < {nα} < t.

(33)

If t = 1 − {(b − j − 1)α}, then

k =







1, if 0 < {nα} < t − {1.α} = 1 − {(b − j)α},
b − j, if 1 − {(b − j)α} < {nα} < t.

(34)

(II) Let {1.α} ∈ (1/2, 1) and let a be the minimal positive integer such that

{aα} ∈ (0, 1/2). Then for every j = 0, 1, 2, . . . , a − 1 we have:

If t ∈ ({(a − j)α}, {(a − j − 1)α}), then

k =



















a − j, if 0 < {nα} < t − {(a − j)α},
a − j + 1, if t − {(a − j)α} < {nα} < 1 − {1.α},
1, if 1 − {1.α} < {nα} < t.

(35)

If t = {(a − j − 1)α}, then

k =







a − j, if 0 < {nα} < t − {(a − j)α} = 1 − {1.α},
1, if 1 − {1.α} < {nα} < t.

(36)

Proof. (I) Slater’s Theorem 9 implies that ∆1/2 = {1, 1+b, b}. Increasing

the length of interval I we add new indices into A and this consequently decreases

the mutual differences, therefore for every t > 1/2 and i ∈ ∆t we have i ≤ b+1. If

we represent all graphs of functions y = x + {iα} mod 1, i = 1, 2, . . . , b + 1 in the

unit square (0, 1)2, then the desired k has the following geometric representation

k = min{i ≤ b + 1; (vertical-line x = {nα})
∩ (graph y = x + {iα} mod 1) ∩ (I × I) 6= ∅}.

The equations (33) and (34) directly follow from Figure 11. The case (II) can be

proved in a similar way. �
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0 1

1

{1α}

1 − {1α}

{2α}

1 − {2α}

1/2

{3α}

1 − {3α}

t

{4α}

1 − {4α}

1/2 t

Figure 11. For t = 1/2 we have a = 1, b = 3, a + b = 4.

Proposition 16. Let I = (u, v) ⊂ (0, 1) be an arbitrary interval of length

|I| = t > 1/2 and suppose that {nα} ∈ I. Then the minimal positive integer k

such that {(n + k)α} ∈ I can be determined by relations (33)–(35) with {nα}
replaced by {nα} − u.

Proof. We can reduced this general case to the one considered in the previ-

ous theorem using the translation applied in the proof of Theorem 10, 50, which

shifts I × I onto the square (0, t) × (0, t), see also Figure 7. The proof is then

finished using the fact that the lengths of intersections of the line segments of

graphs of functions y = x + {qx} mod 1 with I × I and (0, t) × (0, t) remain

unchanged. �

Remark 17. From Proposition 15 we see that Slater’s Theorem 9 also holds

in case |I| > 1/2 if the constants a, b are selected in the following way:

(I) If {α} ∈ (0, 1/2) and b is the least positive integer such that {bα} ∈ (1/2, 1),

then a = 1, and b is the least number belonging to {1, 2, . . . , b − 1} such that

1 − {bα} < t.

(II) If {α} ∈ (1/2, 1) and a is again the least positive integer such that {aα} ∈
(0, 1/2), then b = 1, and a is the least number belonging to {1, 2, . . . , a− 1} such

that {aα} < t.

Now we shall apply our proof of Slater’s Theorem to sets C ⊂ N having the
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property that for every n ∈ A there exists a c ∈ C such that n + c ∈ A, where

A = A(α, (0, t)).

Proposition 18. For all t ≤ 1
2 we have:

(i) for every ai1 , ai2 , . . . , aik
in A, there exists n ∈ A such that every n+ai1, n+

ai2 , . . . , n + aik
does not belong to A;

(ii) if for a finite C ⊂ N we have that for every n ∈ A there exists c ∈ C such

that n + c ∈ A then C must contain elements from both A and B, where

B = A(α, (1 − t, 1));

(iii) for arbitrary a ∈ A, b ∈ B we have that for every n ∈ A either n + a ∈ A or

n + b ∈ A or n + a + b ∈ A. Moreover:

(iii1) if t < {aα} + 1 − {bα} then all three cases of (iii) can occur.

(iii2) If t > {aα} + 1 − {bα} then there suffices two from the possibilities given in

(iii), that is, for every n ∈ A we have either n + a ∈ A or n + b ∈ A.

Proof. (i) Figure 12(a) shows that {ai2α}< {ai1α}⇒Projx Xai1
⊂Projx Xai2

and that

(ii) Projx Xais
$ (0, t) for every ais

∈ A.

(iii) There follows from Figure 12(b) that in Slater’s Theorem we have

Projx Xa ∪ Projx Xa+b ∪ Projx Xb = (0, t) not only for minimal a, b, but for

arbitrary a ∈ A and b ∈ B, because

(iii1) Projx Xa+b 6= ∅ ⇔ t − {aα} < 1 − {bα} (see Figure 12(b)). For

x ∈ (t − {aα}, 1 − {bα}) we have

x + {(a + b)α} mod 1 = x + {aα} + {bα} − 1

and therefore the straight line y = x + {(a + b)α} mod 1 joins the points

(1 − {bα}, {aα}) and (t − {aα}, t − (1 − {bα})). Thus

Projx Xa+b ⊃ (t − {aα}, 1 − {bα})

for arbitrary a ∈ A and b ∈ B if t < {aα} + 1 − {bα}.
(iii2) Figure 12(c) shows that Projx Xa∩Projx Xb 6= ∅ ⇔ t−{aα} > 1−{bα}.

Thus

Projx Xa ∪ Projx Xb = (0, t)

for arbitrary a ∈ A and b ∈ B if t > {aα} + 1 − {bα}. �
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{ai1α}

ProjxXai1

{ai2α}

ProjxXai2

{(a + b)α}

{aα}

{bα}

0 10 t 1

1 − t

1

ProjxXa

ProjxXa+b

ProjxXb

{aα}

{bα}

0 t 1

0 t 1

t
1 − t

1

t

t
1 − t

1

ProjxXa

ProjxXb

(a) (b)

(c)

Figure 12.

Also note, that if U = ⌊aα⌋, V = 1 + ⌊bα⌋, u = {aα} and v = 1 − {bα},
then Surányi [16] proved that for every irrational α′ ∈ (U/u, V/v) the ordering

of values

{1α′}, {2α′}, . . . .{Nα′}

remains the same as in (19). This implies that for every such α′ the numbers

a, b from Slater’s Theorem 9 are the same, and consequently the same is also the

set ∆.
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I I

I

{k1α}

{k2α}
{k3α}

{k4α}
{k5α}

Figure 13.

Our earlier Theorem 10 can be amended in the following way:

Theorem 19. Suppose that |I| ≤ 1/2 and denote B = {k ∈ N : {kα} ∈
(|I|, 1 − |I|)}. Then

(a) If k ∈ B then the equation aj − ai = k is not solvable in ai, aj ∈ A;

(b) If k 6∈ B then the equation aj − ai = k has infinitely many solutions in

ai, aj ∈ A with the exception, when {kα} = |I| or if 1 − {kα} = |I| and I is

closed, in which case it possesses at most one solution.

Proof. There follows directly from Lemma 4 that if k is fixed, then the

points of the form ({nα}, {(n+k)α}) lie on the graph of the lines y = x+{kα}−1

or y = x + {kα}. Therefore given an n ∈ A we have n + k ∈ A if and only if

({nα}, {(n + k)α}) ∈ I × I (cf. Figure 13). Moreover, the distance between the

two line segments of the graph is
√

2/2. Consequently, if |I| < 1/2 the interval

I × I can meet at most one of the branches.

To prove the Theorem consider the following cases:

1◦ Let k be in position of k1 or k2 of Figure 13, i.e. a segment of the graph

of y = (x + {kiα}) mod 1, i = 1, 2, intersects I × I. Since the points of the

form ({nα}, {(n + ki)α}), n = 1, 2, . . . , i = 1, 2, are dense in the graph, there are

infinitely many of them in the intersection of y = (x+{kiα}) mod 1, i = 1, 2, with

I × I, i.e. ({nα}, {(n + ki)α}) ∈ I × I, i = 1, 2, for infinitely many n. Therefore
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the equation aj − ai = k1 (and similarly the equation aj − ai = k2) has infinitely

many solutions in aj and ai from A.

2◦ If k = k3 as in Figure 13 then all points of the form ({nα}, {(n + k3)α}),
n = 1, 2, . . . , do not lie inside or in I × I, i.e.

{nα} ∈ I ⇒ {(n + k3α) 6∈ I}

for every n = 1, 2, . . . . Thus the equation aj−ai = k3 is not solvable in ai, aj ∈ A.

3◦ If |I| < 1/2, then for all values of k with {kα} between {k4α} = |I| and

{k5α} = 1− |I| the graph of y = x+ {kiα} mod 1, i = 4, 5, does not intersect the

interval I × I, and this interval is maximal for the k’s. This yields (a).

4◦ If |I| = 1/2 and I is closed then the equation aj − ai = k has a unique

solution if and only if {kα} = |I| or 1 − {kα} = |I|. This together with 1◦

implies (b). �

Example 20. Take I = (0, 1/3) and α = (1+
√

5)/2. Then the initial segment

of set A is {2, 5, 7, 10, 13, 15, 18, 23, 26, 28, 31, 34, 36, 39, 44, 47, 49, 52, 57,

60, 62, 65, 68, 70, 73, 78, 81, 83, 86, 89, 91, 94, 96, 99, . . . } and the initial

segment of the set B for whose elements ks the equation aj − ai = ks has no

solution in A is {1, 4, 9, 12, 14, 17, 20, 22, 25, 30, 33, 35, 38, 41, 43, 46, 48,

51, 54, 56, 59, 64, 67, 69, 72, 75, 77, 80, 85, 88, 90, 93, 98, . . . }. Note that for

I = (0, 1/3) and any irrational α the sets A and B from Theorem 19 have the

form A = A(α, I) = {a1 < a2 < . . . } and B = A(α, I ′) = {k1 < k2 < . . . } where

I ′ = [1/3, 2/3]. By Theorem 10 these sets have the same set of differences, i.e.

the same a, b, and a + b. Thus for any aj , ai ∈ A and arbitrary ks ∈ B we have

aj − ai = xa + yb + z(a + b), ks = k1 + x′a + y′b + z′(a + b),

where a, y, z, x′, y′, z′ are non-negative integers. But by Theorem 19 we have

aj − ai 6= ks for all positive integers i, j, and s. Moreover, the set B for A(α, I ′)

is the same as B for B = A(α, I ′). Thus kj − ki 6= ks for all i, j, and s. The set

A(α, I ′) is also the B set of the set A(α, I ′′), where I ′′ = [2/3, 1].

5. Subsequences in A(α, I)

Since the sequence {(n+kK)α}, k = 1, 2, . . . , is uniformly distributed in [0, 1]

for irrational α, the set A does not contain an infinite arithmetic progression. But

Lemma 1 implies that A contains infinite double-arithmetic progressions of the

types described in the next two theorems.
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Theorem 21. Let D ∈ N, and K1, K2 satisfy conditions (4) and (5), re-

spectively. Then for every given n ∈ A the set A contains an infinite double

arithmetic progression of the form n, n+Ki1 , n+2Ki1, . . . , n+DKi1 , n+DKi1 +

Ki2 , n + DKi1 + 2Ki2 , . . . , n + DKi1 + DKi2 , n + DKi1 + DKi2 + Ki3 , . . . , where

i1, i2, i3, · · · ∈ {1, 2}, and Kis
, Kis+1

need not be different.

Proof. Iterate the process used in Lemma 1 starting with n + DKi1 ∈ A

instead of n ∈ A in the second stage, then continue with n+DKi1 +DKi2∈A, etc.

�

The above ideas with Lemma 2 also give the following modification of the

previous result in which the differences K1, K2 really alternate due to choice of

maximal possible lengths D1, D2, D3, . . . .

Theorem 22. Let {K1α} ∈ [1 − |I|/2, 1] and let {K2α} ∈ [0, |I|/2] be

such that 1 − {K1α} < 1 − |I| and {K2α} < 1 − |I|. Then for every n ∈ A

there exists a sequence Di, i = 1, 2, . . . , such that A contains an infinite double

arithmetic progression (i.e. a progression with two alternating differences) of the

form n, n+K1, n+2K1, . . . , n+D1K1, n+D1K1 +K2, n+D1K1 +2K2, . . . , n+

D1K1+D2K2, n+D1K1+D2K2+K1, . . . , n+D1K1+D2K2+D3K1, n+D1K1+

D2K2 + D3K1 + K2, . . . , n + D1K1 + D2K2 + D3K1 + D4K2, . . . , where Di’s are

maximal in the sense that n + D1K1 + K1 /∈ A, n + D1K1 + D2K2 + K2 /∈ A,

n + D1K1 + · · ·+ D2i+1K1 + K1 /∈ A, n + D1K1 + · · ·+ D2iK2 + K2 /∈ A,. . . , and

it can be computed by (j), (jj) in Lemma 2.

6. Arithmetical properties of A(α, I) with |I| = {hα}

In this part we shall study the sets A(α, I) where the length |I| is equal

to {hα} for some integer h. Let A((M, N ]) = #{i ∈ N : ai ∈ (M, N ]} and

let D((M, N ], I) = A((M, N ]) − (N − M)|I| denote the local discrepancy.9 The

impetus to this type of results is given by the following result by E. Hecke, A.

Ostrowski and H. Kesten mentioned in the introduction:

Theorem 23. Let α be an irrational number and I ⊂ [0, 1] be an interval

and h ∈ N. Then the local discrepancy D([1, N ], I) is bounded if and only if the

length |I| = {hα} for some h ∈ Z and |D([1, N ], I)| < |h|.

9The classical local discrepancy D([1, N ], I) is usually defined as D([1, N ], I) = #{n ≤ N :

{nα} ∈ I} − N · |I|.
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Note that for D((M, N ], I) = A((M, N ])−(N−M)I we have |D((M, N ], I)| <

2|h|. For irrational α and |I| = {hα} the set A(α, I) has the following property:

Theorem 24. If (M, N ] and (M ′, N ′] are two arbitrary intervals such that

N ′ − M ′ = N − M and |I| = {hα} then

∣

∣#{i ∈ N : ai ∈ (M, N ]} − #{i ∈ N : ai ∈ (M ′, N ′]}
∣

∣ ≤ 2|h| − 1. (37)

Furthermore, the following well-known Proposition 25 transforms the com-

plexity function p(k) in definition of Sturmian sequence (see Part 1 (ii)) to

bounded local discrepancy.

Proposition 25 ([8]). A {1,−1}-sequence xn is Sturmian if and only if

(i) it is non-eventually periodic,

(ii) the number of 1’s in any pair of finite subsegments of the same length occur-

ring in xn can differ by at most one.

Since if |I| = {1α} or |I| = {−1α} = 1 − {α} then 2|h| − 1 = 1, Theorem 24

and Proposition 25 imply that the set A and the binary {−1, 1}-sequence xn =

χI({nα}) are Sturmian for arbitrary such intervals. This result was known only

for special cases I = (0, {α}) and I = (0, 1 − {α}). A similar property can also

be proved for an arbitray interval I ⊂ (0, 1).

Consider an arbitrary subsequence xn+kK , k = 0, 1, 2 . . . , of xj = χI({jα}),
j = 1, 2, . . . , satisfying conditions xn = xn+K = 1. Split this subsequence xn+kK

into blocks of 1’s of lengths D0, D2, . . . , and blocks of −1’s of lengths D1, D3, . . . ,

that is

xn = xn+K = xn+2K = · · · = xn+D0K = 1,

xn+(D0+1)K = xn+(D0+2)K = · · · = xn+(D0+D1)K = −1,

xn+(D0+D1+1)K = xn+(D0+D1+2)K = · · · = xn+(D0+D1+D2)K = 1,

. . . .

Then using Lemma 1 and 2 we can prove the following result:

Theorem 26. Let the number D0, D1, D2, D3, . . . be defined as above.

(i) If |I| ≤ 1/2, then there exist integers D(1) and D(2) such that

|D2i−1 − D(1)| ≤ 1, and |D2i − D(2)| ≤ 1 (38)

for every i = 1, 2, . . . .
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(ii) If |I| = 1/2 then D(1) = D(2).

(iii) If |I| > 1/2 and {Kα} < 1− |I| then there exist integers D(1) and D(2) such

that (38) again holds.

Proof. (I) For the sake of simplicity first we suppose that |I| ≤ 1/2.

Our hypotheses {nα} ∈ I and {(n + K)α} ∈ I imply that {Kα} ∈ I ′1 or

{Kα} ∈ I ′2, where the intervals I, I ′1, I ′2 are as in Figure 1. Consider the two

alternatives separately.

10. Let {Kα} ∈ I ′2. Introduce new intervals In, n = 0, 1, 2, . . . , on the positive

real axis as follows: I0 = I ′2, I1 = I ′, I2 is the union of I ′1 and the interval which

we get after translating I ′2 by 1 to the right, I3 is the interval I ′ translated by 1

to the right, I4 is I2 translated by 1 to the right, etc., see Figure 14.

I0 I1 I2 I3 I4

I ′2 I ′1 |I ′2| |I ′1|

I ′ |I ′|

0 1 2

{Kα}

Figure 14.

I0I1I2I3I4

I ′1I ′2|I ′1||I ′2|

I ′|I ′|

10−1

{Kα}

Figure 15.

Thus |I2i| = |I| and |I2i−1| = |I ′|, i = 1, 2, . . . , where |I ′| = 1 − |I|. Since

{Kα} < |I| ≤ 1 − |I| = |I ′|, then we have

Di = #{k ∈ N : k{Kα} ∈ Ii}



Binary sequences generated by sequences {nα}, n = 1, 2, . . . 169

for i = 0, 1, 2, . . . . For the numbers

D(0) =

⌊ |I ′2|
{Kα}

⌋

, D(1) =

⌊

1 − |I|
{Kα}

⌋

, D(2) =

⌊ |I|
{Kα}

⌋

. (39)

we have |D0 −D(0)| ≤ 1, |D2i−1 −D(1)| ≤ 1 and |D2i −D(2)| ≤ 1 for i = 1, 2, . . . .

20. In the case {Kα} ∈ I ′1 similar intervals Ii, i = 0, 1, 2, . . . , in (−∞, 1] can be

defined and (39) must be replaced by

D(0) =

⌊ |I ′1|
1 − {Kα}

⌋

, D(1) =

⌊

1 − |I|
1 − {Kα}

⌋

, D(2) =

⌊ |I|
1 − {Kα}

⌋

. (40)

(II) Let |I| > 1/2 and {Kα} ∈ I ′2. Then there are K’s such that {Kα} >

|I ′| = 1 − |I|. In this case we have D(1) = 0 in (39), and for some i it may

happen that #{k ∈ N : k{Kα} ∈ I2i−1} = 0. Thus the length of some blocks of

consecutive 1′s can be > 2D(2) − 2, under these circumstances.

30. However, if {Kα} < 1 − |I| then (38) again holds with D(0), D(1), and D(2)

defined in (39). �

Another form of a proof of Theorem 26 we can get using the ”circular”

representation of the previous model applying the map ϕ(t) = e2πit which maps

interval [0, 1] onto a circle.
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[2] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod Eins, Hamb.
Abh. 1 (1921), 54–76.

[3] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley & Sons,
New York, 1974, Reprint edition Dover Publications, Inc. Mineola, New York, 2006.
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[5] Ch. Mauduit and A. Sárközy, On finite pseudorandom binary sequences. II. The Cham-
pernowne, Rudin – Shapiro, and Thue – Morse sequences a further construction, J. Number
Theory 73 (1998), 256–276.
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