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Fibonacci numbers which are sums of three factorials

By MARK BOLLMAN (Albion), SANTOS HERNANDEZ HERNANDEZ (Zacatecas)
and FLORIAN LUCA (Morelia)

Abstract. In this paper, we prove that F; = 13 = 1! 4+ 3! 4 3! is the largest
Fibonacci number expressible as a sum of three factorials.

1. Introduction

Let (F,)n>0 be the Fibonacci sequence given by Fy =0, F; =1 and F,,19 =
Foi1+ F, for all n > 0. In [5], it is shown that if & > 1 is any fixed positive
integer, then the Diophantine equation

Fp = mq! +mal + -+ my! (1)

has at most finitely many positive integer solutions (n,my,...,my) which are all
effectively computable. When k£ = 1, it is an easy consequence of the Primitive
Divisor theorem [3] that the largest such solution is F3 = 2! (see [6] and [8] for
more general variants of this Diophantine equation). When k = 2, the largest
such solution is Fio = 4! + 5! (see [5]). Some variants of this problem appear

3

in [1], where for the case k = 3 it was shown that n < . Here, we find all

solutions of equation (1) when k = 3.

Theorem 1. The only solutions of the Diophantine equation

F,=mil+mol+msl, 1<my <mgy <ms, (2)
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are
Fy=1U+1+1, F=1+242, F=1+1+3, F=1+3+3.

We point out that with the roles of the Fibonacci numbers and the factorials
interchanged, it was shown in [7] that

6! = Fis + Fi1 + Fy = Fi5 + Fio + Fio

give the largest positive integer solutions (n, m1, ma, ms) of the Diophantine equa-
tion
nl=Fo, + Fn, + Frs.

Our argument is based on elementary properties of the Fibonacci sequence com-
bined with some basic facts about biquadratic fields and with a 2-adic linear form
in two logarithms due to BUGEAUD and LAURENT [2]. For technical reasons,
we shall split the argument into two parts, according to whether m; = 1,2, or
mq > 3, where the second case is computationally harder. We start with the
2-adic argument.

Before proceeding to the proofs, we recall a few known facts about the Fi-
bonacci sequence. Binet’s formula says that

Fn: Oén—ﬁ"
a—f

holds for all n > 0, where a = (1 ++/5)/2 and 3 = (1 —/5)/2 are the two
2 — 2 —1 = 0 of the Fibonacci sequence.

3)

roots of the characteristic equation x
The sequence of Lucas numbers (L,,), >0 starts with Ly = 2, L; = 1, and obeys
the same recurrence relation L,y = L,+1 + L,, for all n > 0 as the Fibonacci
sequence. Its Binet formula is

L,=a"+p" foralln>0. (4)

There are many formulas linking the Fibonacci and Lucas numbers such as Fy,, =
F, L, and L? —5F2 = 4(—1)" valid for all n > 0. We shall freely use such formulas
throughout the paper whenever needed.

2. A linear form in logarithms to the rescue

The following lemma will be useful in what follows. For a prime ideal 7 in
a number field L and an algebraic integer m in L we write v,(m) for the exact
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order of 7 in the factorization of the principal fractional ideal generated by m
in L. When 7 is a prime integer, we understand that the underlying field L is the
field Q of rational numbers.

Lemma 1. Let N be a positive integer not of the form F,, for some positive
integer m. Then for all positive integers n > 3 one has
va(F, — N) < 17301og(6N?) max{10, log n}?. (5)
PROOF. We use formula (3). Since 3 = —a~!, it follows that 8" = ea ™",
where ¢ = (—1)" € {£1}. Then
n —n —n

i N= W((a")z— V5ENa™ —€)= 7 (@™ —z1)(a™ — z2),

_ VAN +VA
B 2

Write A = du?, where d is squarefree. Note that d > 1, since if not then
5N? 4 4e = u?, therefore u?> — 5N? = +4. However, it is well-known that all
positive integer solutions (u, N) of the above Diophantine equation are of the

21,2 with A =5N? + 4e.

form (u, N) = (L, F,,) for some positive integer m, and by hypothesis N is a
positive integer which is not a Fibonacci number.

Let K; = QV5], Ky = Q[Vd], K3 = Q[v5d] and L = K;K. Note that
L = Qz1,2]) = Q[v/5,Vd]. Since d > 1 is coprime to 5 (because A = +4
(mod 5)), it follows that L is of degree 4. The prime 2 is inert in K;, because the
discriminant of K; is 5 (so, congruent to 5 (mod 8)), but it cannot be inert in
LL since when d is odd, one of the numbers d or 5d is congruent to £1 (mod 8).
Thus, in L, we either have 2 = w75, where m; and 7o are distinct primes, or
2 = 72, according to whether d is odd or even, respectively.

Now we let m be any prime ideal dividing 2 in .. As we have seen, it has
Nyjg(m) =4 =27 (so, f =2), and if 7|2, then e € {1,2}. Then

ve(F, —N) 1

vo(F, — N) = = E(Vﬂ(a"le)+1/ﬂ(a”722)). (6)

€

Next, let a be maximal such that 7% | ged; (o™ — 21, @™ — z2). Then
7| (21— 22) = VA, so 7| A. (7)

Observe that if N is odd, then so is A. If 4 | N, then 4||A. Finally, if N = 2Ny,
where Ny is odd, then
A =4(5NF £ 1),
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and 5NZ £ 1 = 4,6 (mod 8). Hence, in all cases we have that v5(A) < 4. Now,
write A = 2v2(8)¢ = 7ev2(8)y where « is an ideal in L coprime to 7. Then the
divisibility relation (7) implies that 2a < evy(A), yielding 2a < 4e < 8, therefore
a <4.

Hence, the above arguments show that

va(F, — N) < % (max{v,(a™ — z1),v.(a™ — 22)} +4). (8)

Now let ¢ = 1,2, and let us find an upper bound on

" —Zi).

V(o
For this, we apply Corollary 1 on Page 315 in [2]. We take oy = a, ag = z;, by = n,
by =1, p = 2. To see that a; and as are multiplicatively independent, assume
that this is not so. Then af = &4 holds for some integers u and v not both zero.
We may assume (by squaring the above relation if necessary), that «w and v are
both even. But note that ay = (22)"/2 belongs to Q[v/5d], while o} € Q[v/5].
Since they are both units (the inverse of z; is —ez), it follows that af is a
unit which belongs to both Q[v/5] and Q[v/5d] and since it is positive, we get
that af = 1. Hence, af = af = 1, leading to v = v = 0, which is false.
With the notations from [2], we have that we can take f = 2, g < p/ —1 = 3,
D=[L:Q]/f =2, and A; and As to be two positive real numbers such that

log 2

log A; > max {h(ai), 5

}, for both i =1, 2.

Here, h(e) is the logarithmic height. Note that

_log((1+5)/2)

h(as) = h(a) A,

so we can take log Ay = (log2)/2. Furthermore, note that the conjugates of z;

+vBN +5N2 + 4¢
2 b

are the four numbers

of which two are of absolute values

’\/EN—\/5N2+45 B 4 2 _,
2 )

~ 2(VBN +V5N? 1+ 4¢) < VBN
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while the other two are of absolute values

VBN + VBN2? + 4e
2

< V/BN2 + 4 < VEN?,

so we can take
~ 2log(V6N?)  log(6N?)
4 o 4 ’

Finally, we take
’ bl b2 2n 1
= + = 5 + .
DlogA; DlogA; log(6N2)  log2
Then, Corollary 1 in [2] shows that

24.2.3.2%
<£) Ur(a™ — z;) < ﬁ max{10,log’ + loglog2 + 0.4} log A; log Ay

2. 95

2 2 2

The factor f/4 above, not present in [2], arises for us because in the statements
of [2] all valuations are normalized, so in particular the upper bounds from there
apply to the normalized valuation (f/4)v,(e). Note that

960034, £0.034 21n
logb’ 4 0.034 =1 log | ———<+1.5
ogb + o8 <log(6N2) + 1og2) < o8 (log(GNQ) * )

< log (2415” + 1.5) < logn,
where the above inequalities hold because N > 4 (N is not a Fibonacci number),
and n > 3. Since 32 - 2°/(log 2)3 < 864.9 and f = 2, we get that
Vr(a™ — 2;)
2
The above inequality together with inequality (8) gives us that

va(Fy—N) < max{vy(a" —21), vz (0" — 22) } +4 < 1730 log(6 N?) max{10, log n}?,

< 864.91og(6N?) max{10,logn}>.

which is what we wanted. O

From now on, we distinguish two cases according to whether m; = 1,2, or
mq > 3. We first ran a short calculation with Mathematica which shows that
if n < 100, then the only solutions are the ones appearing in the statement of
Theorem 1. From now on, we assume that n > 100 and our goal is to prove that
there are no such solutions.

We continue with some elementary considerations about the situation when
my € {3, 4}
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3. The case m, € {3,4}

Assume first that m; > 3. Then 6 | F,, and in particular 12 | n, therefore
144 = Fy5 | F,,. This shows, for example, that m; = 3 and my > 4 is impossible,
for then 8 divides both Fj, and ms!+mg! but not m4!. Similarly, if m; = my = 3,
then either mg > 4, which is impossible since then 8 divides both F,, and ms!
but not my! + meo! = 12, while if m; = my = mg3 = 3, then the right hand side of
equation (2) is 18 which is not a Fibonacci number.

Thus, my > 4. The case m; = 4 and msy > 6 is impossible since then 9
divides both Fj, and ms! + mg3! but not mq! = 24. When m; = mo = 4, then the
case ms > 6 leads again to a contradiction modulo 9, while when mgs = 4,5, one
gets that the right hand side of equation (2) is either 72 or 168 and none of these
is a Fibonacci number. When m; = 4, mgy = 5, then equation (2) becomes

anFlg :m3! (9)

Since 12 | n, one checks that the left hand side of equation (9) above can be
factored as F,,112)/2L(n—12)/2. Since n > 100 > 12, we have that (n+12)/2 > 12,
therefore the number F{,12)/2 has a primitive prime factor p. Recall that a
primitive prime factor of F,, (or L,,) is a prime divisor of F,, (or L,,) which
does not divide Fy (or Lg) for all 1 < ¢ < m. For technical reasons, such a
prime is taken to be different from 5. Whenever it exists, it has the property
that it is congruent to £1 modulo m. The fact that it exists for all m > 12
is a result of CARMICHAEL [3] of 1913. Returning to our problem, we get that
Fin412)/2 has a prime factor p such that p = £1 (mod (n+12)/2). In particular,
p>(n+12)/2 —1 = (n+ 10)/2. Since p | mg!, we get that ms > (n + 10)/2.
Thus,

n p p
a" > F, > F, — Fia = F19)2L(ny12)/2 = ms! > pl > (*)

e
n 10 (n+10)/2 n 410 n/2
> > .
2e 2e

In the above calculation we used the well-known inequality m! > (m/e)™, which
holds for all m > 1. We thus get that

n+10 < 2ea? < 15,

which is false because n > 100. Thus, we have just showed that if m; > 3, then
my > 5. In particular, 5 | F,,, therefore 5 | n. Hence, 60 | n.
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4. A bound on n when m; > 3

Up to now, we have seen that m; > 5 and that 60 | n. We show that n < elo.
Assume, on the contrary, that n > e!?.
Let s = vo(mq!). It is known that

e ey o

since my > 5. Since s > 3 and 2° | F,,, we get that 3-2572 | n. Since also 5 | n,
we get that

2572 E
— 157
therefore o4 |
1
5 < loglin/15) logn (11)
log 2 log 2
Comparing estimates (10) and (11), we get that
21
my < T2 (12)

log2 °

Next we bound ms. Let N = mgq!. The largest Fibonacci number which is a
factorial is 2! = F3 (see [6]). Thus, N is not a Fibonacci number. Since m > 5,
we have

3-2-3-4\°
6N? =6(m1))? < (3mi)2=(3-2-3---m1)? < (54> mam < m2m

(because 72/625 < 1), we get that

4 21
log(6N?) < 2my logm; < —— lognlog o871
log 2 log 2

Lemma 1 (note that n > €' so logn > 10) now shows that

2logn - 2logn
1 3] 10%(1 3] .
(logn) og< Tog 2 > < 10%(log n)” log Tog 2

1730 -4

F,—mq!) <
va(Fn =) log 2

Since vo(F,, — mq!) = va(ma!) > ma/2, we get that

2logn
< 2-10%(1 31 .
<210/ 251
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Next take N = mq! + mo! < 2ms!. The largest Fibonacci number which is a sum
of two factorials is F1o = 4! 4 5! (see [5]). Since ma > my > 5, it follows that N
is not a Fibonacci number. Furthermore, again as in the previous case,

6N? < 24(ma!)? < (5mp!)? = (5-2-3---my)?

2.3.4\2
< (B5) e <,

(because 24/125 < 1), therefore

21
log(6N?) < 2mylogmy < 4 - 10*(logn)? log < A

log ms.
o)

Let us next observe that logmy < 8loglogn + 1. Indeed, to see why this is so

observe that since logn > 10, we have that n > 5 and for such positive integers
n we know that 2" > n2. Thus, it follows that

21
log < ogn) < logn,
log 2

my < 2-10*(logn)?* < 2(logn)®,

so, in particular,

Hence, indeed
logmso < 8loglogn + 1.
Thus,
2logn
log 2

log(6N?) < 4 - 10*(logn)® log < > (8loglogn + 1)

< 32-10*(logn)?(loglogn + 1.1)2,
where we used the fact that log(2/log2) < 1.1. Now Lemma 1 shows that
va(Fy —my! —ma!) <1730 -32-10* - (logn)® - (loglogn + 1.1)?

< 6-10%(logn)®(loglogn + 1.1)2.

Clearly,
log(ms + 1)

VQ(Fn—ml!—mQ!) :1/2(m3!) :m3—02(m3) ng— 10g2

where we used og(m) for the sum of the binary digits of m (see, for example,
Lemma 2.2 in [4]). Thus,

_ log(ms +1)

s log 2

< 6-10%(logn)®(loglogn + 1.1)2.
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On the other hand,
F,
ms® > mg! > ?n > a0,
S0
mglogms > (n — 6) log a,

which implies that
(n—6)loga
ms = log((n —6)loga)

Since the function z +— 2z — log(z + 1)/log?2 is increasing for x > 1, we get that
(n—6)loga 1 (n—6)loga
— lo +1
log((n — 6)loga) log2 log((n — 6)log a)
< 6-10%(logn)®(loglogn + 1.1)2,

(13)

giving
n<2-10%.

We now immediately get that m; < 35. Indeed, assume that m; > 36. Since

23431758 .75 . 113 . 132 . 172 | 36,
it follows that
232.316.58 . 74.112.13 .17 | n,

but this is impossible since the number on the left above is > 2 - 10%?, whereas
the number on the right is < 2-10%°. Thus, m; < 35. Next, a quick computation
revealed that for each m; € [5, 35] there is a prime p € [m; + 1, 61] such that the
congruence

F,=m;! (mod p)

has no integer solution x. This shows that my < 60. Thus,
N < 26!+ 60! < 1082,
giving that log(6/N?) < 380. Hence, we get that

_ log(ms +1)

og 2 < vy(m3!) = vo(F, — N) < 1730 - 380(log n)?

m3
< 6.6 -10°(logn)®.
Combining this with the lower bound (13) on mg3, we get

(n—6)loga 1 o ( (n—6)loga
log((n —6)loga) log2 log((n — 6) log «)

+ 1) < 6.6 -10°(logn)?,
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giving n < 2-10'°. We now get that m, < 19, since if m; > 20, then since

218.38 . 54,72 | 20!
we get that
216.37.5%. 7| n,

which is impossible since the number on the left above is > 2 - 10'°. Hence,
my < 19 and also my < 60. A quick computation with Mathematica shows that
for each 5 < my < mo with my < 19 and ms < 60, there exists a prime p in the
interval [61,859] such that the congruence

F, =mq!+msy! (mod p)
has no integer solution x. This shows that mg < 858, therefore
F, < 19!+ 60!+ 858!,

leading to n < 5000, which is a contradiction. Hence, n < e'©.

5. A bound on n when m, € {1, 2}

Assume first that m; = mo = 1. Since n > 100, we have that mg is very
large and in particular F;,, = 2 (mod 8), which implies that n = +3 (mod 12).
We now rewrite our equation (2) as

Fn 7F3 :mg!. (14)

Since n is odd, we get that the left hand side above is F{,,4.3y /2 L(n+3)/2 according
to whether n = 1,3 (mod 4) (see Lemma 2 in [9]). Since n > 100 is large, it follows
that (n 4 3)/2 > 12, therefore both F{;,+3)/2 and L(,+3)/2 have primitive prime
factors. Thus, thereis a prime p = +1 (mod (n+3)/2) which divides the left hand
side of equation (14) leading to the fact that ms >p > (n+3)/2—1= (n+1)/2.
Hence, we get that

n/2
P 1
a”>Fn>Fn—F3:m3!2p!2<B> ><n2_|_ ) )
(§ [§

leading to n + 1 < 2ea? < 15, contradicting the fact that n > 100. This shows
that in our range for n it is not possible that m; = mo = 1.
Assume still that m; = 1 but that mo = 2. Then, since m3 > 3, we get that
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3| F,, therefore 4 | n. Hence, equation (2) is
Fn —F4 :m3! (15)

Since 4 | n, the left hand side above factors as F(,,_4)/2L(n+4)/2- Since
(n+4)/2 > 12, it follows that the left hand side of equation (15) has a prime
factor p = £1 (mod (n+4)/2). Hence, m3 >p > (n+4)/2—1=(n+2)/2. We
thus get that

P
a”>Fn>Fn7F4:m3!Zp!2(B> >< 5
e

e
leading to n + 2 < 2ea? < 15, which is again a contradiction.
If my =1 and my = 3, then since mg is large, we get that F,, =4 (mod 8),
which is a contradiction. From now on, we assume that mo > 4 whenever m; = 1.
If m; = mo = 2, then since mg > 4, we get that F,, = 4 (mod 8), which
is impossible. If m; = 2 and mg = 3, then since ms > 4, we get that 8 | F,,
therefore 6 | n. We thus get that equation (2) is

Fn 7F6 :mg!, (16)

where n is even. In particular, the left hand side of equation (16) above is of the
form F{;,46)/2L(n76)/2 according to whether n = 0,2 (mod 4). Since n > 100 is
large, we have that (n+6)/2 > 12, therefore the left hand side of equation (16) is
divisible by a prime p = +1 (mod (n + 6)/2). Hence, mg > p > (n+6)/2—-1>
(n+4)/2, and, as before, we reach the contradiction n+4 < 2ea?. From now on,
we assume that mo > 4 when m; = 2.

Next we shall show that n < e'®. Assume that this is not so.

Since my = 1,2, we get that m4! = F; for some t € {1,2,3}. Furthermore,
when mgo = 2, then F,, =2 (mod 8), therefore n = +3 (mod 12), and, in partic-
ular, n is odd, so n = t (mod 2) in this case. Thus, in all these cases we have
that

Fn - m1! = Fn - Ft = F(nj:t)/2L(nj:t)/2v n==4t (mod 4) and t € {1, 2, 3}

We now bound msy. Since my > 4, it follows that by putting s = va(ms!), we
have s > mo/2. Note also that s > 3. Thus,

ma

- < s =wvp(ma!) < va(Fy —ma!) = va(Floan 2 Lintt) /2)-

It is known that L,, is never a multiple of 8. Thus, 2572 | Flntt)/2, leading to
the conclusion that either s = 3, 4, or

3.2 | (n£t)/2.
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Hence,
o< log(8(n+3)/3) _ log(3n)
- log 2 log2 ’
therefore 2 log(3n)
og(3n
_— . 1
2 log 2 (17)

Put N = my! +ms! <24+ ms!. Then

2 2 2 2 3-2-3 ? 2m 2m
6N* <6(ma! +2)° < (Bma)*=(3-2-3---ma)* < el L 2 <my?,
(here, we used the fact that mg > 4 and 18/64 < 1), so

oo, (2o

log(6N?) < 2my 1
og( ) < 2mglogms < log 2 log 2

We are now ready to apply again Lemma 1 observing that for m; = 1,2 and
mg > 4, the number N is not a Fibonacci number by the results from [5]. Thus,
by Lemma 1, we get that

1730 - 4 2log(3n)
N = — 2 N
va(ms!) = va(F,, — N) < Tog 2 (logn)=log(3n) log ( Tog 2 . (18)
On the other hand,
log(ms + 1) (n—6)loga
) >mg — >
va(msl) 2 ms log 2 ~ log((n — 6)log a)
1 (n—6)log
— 1 1 1
log 2 ©8 (log((n —6)loga) i ) (19)

(see inequality (13), for example). Combining inequalities (18) and (19) and using
the fact that 1730 - (4/log2) < 10*, we get

(n—06)loga 1 o (n—6)loga
log((n — 6)loga) log2 ! <log((n —6)log ) + 1>

< 10*(log n)? log(3n) log (QIOg(Sn)) ,

log 2

yielding n < 4 - 10'°. Combining this with (17), we get that my < 73. A short
computation with Mathematica showed that for each my € {1,2} and mo € [4, 73],
there exists a prime p € [79,863] such that the congruence

F, =myi!+my! (mod p)

has no positive integer solution z. Thus, ms < 863, therefore F,, < 2!473!+863!,
so n < 11000, contradicting the fact that n > e'?. Hence, n < e'°.
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6. The final calculation

Let us assume that n < e'%. If m; > 10, then

28.3%.52 10! | F,,
leading to
26.3%.5% | n,

which is impossible because the number on the left above is 43200 > e'%. Thus,
mp < 9. When my; = 1, or 2, inequality (17) shows that mg < 32. When
my € [3,9], a short computation with Mathematica revealed that for each m; €
[3,9], there is a prime p € [11,37] such that the congruence F, = m;! (mod p)
has no positive integer solution x. Thus, mg < 36. A short computation with
Mathematica revealed that for all pairs (mj,ms2) with m; € [1,9] and mqy €
[m1,36] except for (mi,mso) = (1,1),(1,2),(2,3),(4,5), there is a prime p €
[41,523], such that the congruence F, = mj! + my! (mod p) has no positive
integer solution z. Since the cases (m1,m2) = (1,1), (1,2), (2,3), (4,5) have
already been treated, it follows that mgz < 522, therefore F,, < 9! 4 36! + 522!,
leading to n < 6000. A short computation with Mathematica revealed that there
are no numbers which are both of the form F;, for some 100 < n < 6000 and
ma! +ma! +mg! with mq; <9, m; < mso < 36 and my < mgz < 522, which finishes
the proof of Theorem 1.
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