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Finsler space connected by angle in two dimensions.
Regular case

By G. S. ASANOV (Moscow)

Abstract. We show that the metrical connection can be introduced in the two-

dimensional Finsler space such that entailed parallel transports along curves joining

points of the underlying manifold keep the two-vector angle as well as the length of

the tangent vector, thereby realizing isometries of tangent spaces under the parallel

transports. The curvature tensor is found. In case of the Finsleroid-regular space, con-

structions possess the C∞-regular status globally regarding the dependence on tangent

vectors. Many involved and important relations are explicitly derived.

1. Motivation and description

During all the history of development of the Finsler geometry the notion of
connection was attracted sincere and great attention of investigators devoted to
general theory as well as to specialized applications. The methods of construction
of connection are founded upon setting forth a convenient system of axioms.
Various standpoints were taken to get deeper insights into the notion
(see [1]–[5]).

The general idea underlining the present work is to set forth the requirement
that the connection be compatible with the preservation of the two-vector angle
under the parallel transports of vectors.

The notion of angle is of key significance in geometry. In the field of two-
dimensional Finsler spaces the angle between two vectors of a given tangent space
can naturally be measured by the area of the domain bounded by the vectors
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and the indicatrix arc. The theorem can be proved which states that a diffeo-
morphism between two Finsler spaces is an isometry iff it keeps the angles thus
appeared. This fundamental Tamássy’s theorem [6], which explains us that the
angle structure fixes the metric structure in the Finsler space, gives rise to the
following important question: Does the angle structure also generate the connec-
tion? The present work proposes a positive and explicit answer, confining the
Finslerian consideration to the two-dimensional case.

Let M be a C∞-differentiable 2-dimensional manifold, TxM denote the tan-
gent space supported by the point x ∈ M , and y ∈ TxM\0 mean tangent vectors.
Given a Finsler metric function F = F (x, y), we obtain the two-dimensional
Finsler space F2 = (M,F ).

We shall use the standard Finslerian notation for local components lk =
yk/F , yk = F∂F/∂yk ≡ gknyn, gij = ∂yi/∂yj of the unit vector, the covari-
ant tangent vector, and the Finsler metric tensor, respectively. The covariant
components lk = gknln can be obtained from lk = ∂F/∂yk. By means of the
contravariant components gij the Cartan tensor Cijk = (1/2)∂gij/∂yk can be
contracted to yield the vector Ck = gijCijk. It is convenient to use the tensor
Aijk = FCijk and the vector Ak = FCk = gijAijk. The indices i, j, . . . are
specified over the range (1, 2). The square root √ stands always in the positive
sense. It is often convenient to apply the expansion Aijk = Imimjmk in terms of
the mi obtainable from gij = lilj + mimj , where I thus appeared is the so-called
main scalar. Our consideration will be of local nature, unless otherwise is stated
explicitly.

To each point x ∈ M , the Finsler space F2 associates the tangent Riemannian
space, to be denoted by R{x} := {TxM, gij(x, y)}, in which x is treated fixed and
y ∈ TxM is variable. In the Riemannian space the R{x} reduces to the tangent
Euclidean space. The remarkable and well-known property of the Riemannian
Levi Civita connection is that the entailed parallel transports along curves drawn
on the underlined manifold keep the length of the tangent vectors and produce
the isometric mapping of the tangent Euclidean spaces.

We show that these two fundamental Riemannian properties can successfully
be extended to operate in the Finsler space F2. Namely, if sufficient smoothness
holds then it proves possible to introduce the respective connection coefficients
{Nk

i (x, y), Dk
in(x, y)} in a simple and explicit way. The coefficients Nk

i (x, y) are
required to construct the conventional operator dn = ∂xn + Nk

n(x, y)∂yk , where
∂xn = ∂/∂xn and ∂ym = ∂/∂ym. In modern geometrical language, the local
covariant vector fields ∂xn + Nk

n(x, y)∂yk are the horizontal lifts of the ordinary
gradient fields ∂xn to the tangent bundle TM . The keeping of the Finsler length
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of the tangent vectors means dnF = 0. Let us attract also the angle function
θ = θ(x, y) (to measure the length ds of infinitesimal arc on the indicatrix by
dθ) and raise forth the requirement that dnθ = kn with a covariant vector field
kn = kn(x). If this is fulfilled, then for pairs {θ1 = θ(x, y1), θ2 = θ(x, y2)} we
obtain the nullification dn(θ2− θ1) = 0 which tells us that the preservation of the
two-vector angle θ2 − θ1 holds true under the parallel transports initiated by the
coefficients Nk

i (x, y).
There arise the coefficients Dk

in(x, y) = −Nk
in(x, y) with Nk

in(x, y) =
∂Nk

i (x, y)/∂yn. A careful analysis has shown that a simple and attractive pro-
posal of the coefficients Nk

i (x, y) (namely, (2.6) of Section 2) can be made such
that nullifications diF = 0 and diθ− ki = 0 are simultaneously satisfied, and also
the vanishing lkNk

nmi = 0 holds fine because of the representation FNk
nmi =

−Ak
midn ln |I| entailed (see (2.14)), where Nk

nmi = ∂Nk
nm/∂yi, so that the ac-

tion of the arisen covariant derivative on the involved Finsler metric tensor yields
just the zero. The coefficients Dk

in are not symmetric in the subscripts i, n.
Having realized this program, we feel sure that the arisen mappings of the

space R{x} under the respective parallel transports along the curves running on M

are isometries.
The coefficients {Nk

i (x, y), Dk
in(x, y)} obtained in this way are not con-

structed from the Finsler metric tensor and derivatives of the tensor. This cir-
cumstance may be estimated to be a cardinal distinction of the Finsler connec-
tion induced by the angle structure from the conventional Riemannian precursor
which exploits the Riemannian Christoffel symbols to be the coefficients Dk

in.
The structure of the coefficients Nk

n involves the derivative ∂θ/∂xn on the equal
footing with the derivative ∂F/∂xn (see (2.6)).

The involved vector field ki = ki(x) may be taken arbitrary. However, the
field can be specified if the Riemannian limit of the connection proposed is at-
tentively considered. Indeed, in the Riemannian limit the connection coefficients
Dk

nh(x, y) reduce to the coefficients L̄k
nh = −Lk

nh = L̄k
nh(x) which are not

symmetric with respect to the subscripts (see (4.6)). If we want to obtain the
torsionless coefficients, like to the Riemannian geometry proper, we must make
the choice kn = −nh∇nb̃h in accordance with (4.16), where ∇n is the Riemann-
ian covariant derivative taken with the Christoffel symbols ak

nh. The b̃h = b̃h(x)
is a vector field chosen to fulfill θ(x, b̃(x)) = 0, and the pair ni, b̃i is orthonor-
mal. With the choice we obtain L̄k

nh = ak
nh, thereby completely specifying the

coefficients {Nk
i , Dk

in}.
It is appropriate to construct the osculating Riemannian metric tensor along

the vector field b̃i = b̃i(x) and introduce the θ-associated Riemannian space to
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compare the Finsler properties of the space F2 with the properties of the Rie-
mannian precursor.

In Section 2 the required coefficients Nk
n are proposed and nearest implica-

tions are indicated. By the help of the identities ∂mk/∂ym = −(Imk + lk)mm/F

and ∂mm/∂yi = (Imm− lm)mi/F , the validity of the vanishing lkNk
nmi = 0 can

readily be verified. The angle function θ introduced does measure the length of
the indicatrix arc according to ds = dθ (see (2.23)). We derive also the equal-
ity

∑
{y1,y2} = (1/2)(θ2 − θ1), where the left-hand side is the area of the sector

bounded by the vectors y1, y2 and the indicatrix arc (see (2.27)). The equality
demonstrates clearly that, in context of the two-dimensional theory to which our
treatment is restricted, the method of introduction of the angle by the help of the
function θ is equivalent to the method founded in [6] on the notion of area. We are
entitled therefore to raise the thesis that, in such a context, the angle-preserving
connection is tantamount to the area-preserving connection.

In Section 3 we show how the curvature tensor ρk
n

ij of the space F2 can be
explicated from the commutator of the covariant derivative arisen, yielding the
astonishingly simple representation (3.14).

In Section 4 we outline Riemannian counterparts. It appears that the tensor
ρknij = gnmρk

m
ij is factorable, in accordance with (4.19).

In Conclusions several ideas are emphasized.
The possibility of global realization of the angle-preserving connection im-

plies high regularity properties of the Finsler metric function and the angle func-
tion. Such a lucky possibility occurs in the Finsleroid-regular space FRPD

g;c (in-
troduced and studied in [7]–[10]). The Finsler metric function K = K(x, y) of
the space FRPD

g;c involves a Riemannian metric tensor amn and the vector field
bn = bn(x) which represents the distribution of axis of indicatrix. We have two
scalars, namely the characteristic scalar g = g(x) and the norm c = c(x) = ‖b‖ ≡√

amnbmbn of the 1-form b = bi(x)yi. The metric function K is not absolute
homogeneous.

Attentive calculation presented in Appendix B in [11] has shown that the
partial derivative ∂K/∂xn obeys the total regularity with respect to the vector
variable y (see (B.59) in [11]). The same regularity is shown by the partial
derivative ∂θ/∂xn of the involved angle function θ = θ(x, y) (see (B.83) in [11]).
Therefore, all the ingredients in the coefficients Nk

n of the form proposed by (2.6)
are of this high regularity. Thus we observe the remarkable phenomenon that
the space FRPD

g;c possesses the angle-preserving connection of the C∞-regular
status globally regarding the y-dependence. Arbitrary (smooth) dependence on
x in g = g(x), bi = bi(x), and aij = aij(x) is permitted. Using an appropriate
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regular atlas of charts in the space R{x} := {TxM, gij(x, y)}, it proves possible to
verify that over all the space TxM\0 the function θ = θ(x, y) is smooth of class
C∞ with respect to y. The entailed two-vector angle θ2 − θ1 is symmetric and
additive. The θ is represented by means of integral and is not obtainable through
composition of elementary functions.

Quite similar evaluation can be performed for the Randers metric function
(Appendix C in [11]), yielding again the angle-preserving connection of the C∞-
regular status globally regarding the y-dependence.

More detail of calculation can be found in [11].

2. Proposal of connection coefficients

It is convenient to proceed with the skew-symmetric tensorial object εik =√
det(gmn) γik, where γ11 = γ22 = 0 and γ12 = −γ21 = 1, to construct

mi = −εiklk. (2.1)

The angular metric tensor hij = gij − lilj and the Cartan tensor Cijk are factor-
ized, and the Finsler metric tensor gij is expanded, according to

hij = mimj , Aijk = Imimjmk, gij = lilj + mimj . (2.2)

It is also convenient to introduce the θ = θ(x, y) by the help of the equation

F
∂θ

∂yn
= mn, (2.3)

assuming that the function θ is positively homogeneous of degree zero with respect
to the variable y. These formulas are known from Section 6.6 of the book [1]. We
denote the main scalar by I, instead of J used in the book. Our θ is the ϕ of
Section 6.6 of [1]. The object εik is a pseudo-tensor, whence mi is a pseudo-vector
and I, θ are pseudo-scalars. However, we don’t consider the coordinate reflections
and, therefore, we are entitled to refer to these objects as to “the vector mi” and
“the scalars I, θ”.

We need the coefficients Nk
n = Nk

n(x, y) to construct the operator

dn =
∂

∂xn
+ Nk

n

∂

∂yk
(2.4)

which generates a covariant vector dnW when is applied to an arbitrary differen-
tiable scalar W = W (x, y). We shall use also the derivative coefficients

Nk
nm =

∂Nk
n

∂ym
, Nk

nmi =
∂Nk

nm

∂yi
. (2.5)
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Proposal. Take the coefficients Nk
n according to the expansion

Nk
n = −lk

∂F

∂xn
− FmkP̆n (2.6)

with

P̆n =
∂θ

∂xn
− kn, (2.7)

where kn = kn(x) is a covariant vector field, such that the equalities

dnF = 0, dnθ = kn, ykNk
nmi = 0 (2.8)

be realized.

The vanishing dnF = 0 and the equality dnθ = kn just follow from the choice
(2.6). Considering two values θ1 = θ(x, y1) and θ2 = θ(x, y2), we have

dnθ1 =
∂θ1

∂xn
+ Nk

n(x, y1)
∂θ1

∂yk
1

, dnθ2 =
∂θ2

∂xn
+ Nk

n(x, y2)
∂θ2

∂yk
2

, (2.9)

and from dnθ = kn we may conclude that the preservation

dn(θ2 − θ1) = 0 (2.10)

holds because the vector field kn is independent of tangent vectors y.
From (2.6) it follows directly that

Nk
nm = −lk

∂lm
∂xn

− lmmkP̆n − F
∂mk

∂ym
P̆n −mk ∂mm

∂xn
. (2.11)

It is convenient to use the identities

F
∂mk

∂ym
= −lkmm + Immmk, F

∂mk

∂ym
= −Imkmm − lkmm (2.12)

(they are tantamount to the identities written in formula (6.22) of chapter 6 in [1]),
together with their immediate implication F∂(mkmn)/∂ym = −(lnmkmm +
lkmnmm). Short evaluations show that

Nk
nmi =

1
F

mkmm

(
F

∂I

∂yi
P̆n −mi

∂I

∂xn

)
. (2.13)

Indeed, from (2.11) it follows straightforwardly that

Nk
nmi = − 1

F
hk

i ∂nlm − lk∂n

(
1
F

hmi

)
− 1

F
hmim

kP̆n
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+ lm

(
I mkmi + lkmi

)
P̆n − lmmk∂n

(
1
F

mi

)

+
∂I

∂yi
mkmmP̆n + I mkmm∂n

(
1
F

mi

)
− IlkmimmP̆n − ImklmmiP̆n

+
1
F

hk
i mmP̆n − lk(lm − Imm)miP̆n + lkmm∂n

(
1
F

mi

)

+ (Imk + lk)mi
1
F

∂nmm + mk∂n

( 1
F

lmmi − 1
F

I mimm

)
,

where ∂n means ∂/∂xn. The identity hmi = mmmi has been taken into account.
Canceling similar terms leads to (2.13). Owing to the identity lkmk = 0, the
vanishing lkNk

nmi = 0 holds fine.
Because of yi∂yiI = 0, the equality (2.13) can be written in the concise form

Nk
nmi = − 1

F
mkmmmidnI ≡ − 1

F
Ak

midn ln |I|. (2.14)

The sought Finsler connection

FC = {Nk
n , Dk

nm} (2.15)

involves also the coefficients Dk
nm = Dk

nm(x, y) which are required to construct
the operator of the covariant derivative Dn which action is exemplified in the
conventional way:

Dnwk
m := dnwk

m + Dk
nhwh

m −Dh
nmwk

h, (2.16)

where wk
m = wk

m(x, y) is an arbitrary differentiable (1,1)-type tensor.
If we differentiate the vanishing diF = 0 with respect to the variable yj and

multiply the result by F , we obtain the vanishing

Diyj :=
∂yj

∂xi
+ Nk

i gkj −Dh
ijyh = 0 (2.17)

when the choice
Dk

in = −Nk
in (2.18)

is made. Differentiating (2.17) with respect to ynjust manifests that the choice is
also of success to fulfill the metricity condition

Digjn := digjn −Dh
ijghn −Dh

ingjh = 0, (2.19)

because of ykNk
nmi = 0.
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If we contract (2.18) by yn and take into account the definition of the coef-
ficients Nk

in indicated in (2.5), we obtain the equality

Nk
i = −Dk

inyn. (2.20)

The contravariant version of the vanishing (2.17) is obtained through the
chain

Diy
j := diy

j + Dj
ihyh = N j

i + Dj
ihyh = 0. (2.21)

Because of Dih
nk = 0, applying the derivative Di to the equality hnk =

mnmk (see (2.2)) and contracting the result by mn, we conclude that

Dim
k = 0, which means dim

k = Nk
ihmh. (2.22)

Because of the homogeneity, the unit tangent vector components ln = ln(x, y)
can obviously be regarded as functions ln = Ln(x, θ) of the pair (x, θ). Let us
denote lnθ = ∂Ln/∂θ. Since ∂F/∂θ = 0 and lnlnθ = 0, we may conclude from
(2.3) that lnθ = mn. Measuring the length of the indicatrix (which is defined
by F = 1) by means of a parameter s, so that ds =

√
gijdlidlj , we obtain

ds =
√

gij liθl
j
θ dθ = dθ, assuming ds > 0 and dθ > 0. Thus

ds = dθ along the indicatrix, (2.23)

which explains us that the θ measures the length of indicatrix.
If at a fixed x we introduce in the tangent space TxM the coordinates zA =

{z1 = F, z2 = θ} and consider the respective transforms

GAB = gij
∂yi

∂zA

∂yi

∂zB
, A = 1, 2, B = 1, 2, (2.24)

of the Finsler metric tensor components gij , we obtain simply

G11 = 1, G12 = 0, G22 = F 2. (2.25)

With these components, it is easy to calculate the area of domain of the tangent
space TxM by using the integral measure

∫ √
det(GAB) dz1dz2 =

∫
FdFdθ. (2.26)

In particular, for the sector σ{y1,y2} ⊂ TxM bounded by the vectors y1, y2 and
the indicatrix arc we obtain by integration the area

∑
{y1,y2} which is given by

∑

{y1,y2}
=

1
2
(θ2 − θ1), (2.27)
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so that in the two-dimensional case the angle in the Finsler geometry can be
defined by the area just in the same way as in the Riemannian geometry. The
difference

θ2 − θ1 = θ(x, y2)− θ(x, y1) (2.28)

can naturally be regarded as the value of angle between two vectors y1, y2 ∈ TxM ,
the two-vector angle for short. The formula (2.27) is equivalent to Definition (2)
of [6] which was proposed to define angle by area; we use the right orientation of
angle.

As well as the area is attributed to the tangent space by means of the integral
measure (2.26) and the conditions dnF = 0 and dn(θ2 − θ1) = 0 are fulfilled, the
angle-preserving connection keeps the area under parallel transports along curves
joining point to point in the background manifold. Thus we are entitled to set
forth the thesis: the angle-preserving connection is the area-preserving connection.

3. Curvature tensor

With arbitrary coefficients {Nk
n , Dk

nm}, commuting the covariant derivative
(2.16) yields the equality

(DiDj −DjDi)wn
k = Mh

ij
∂wn

k

∂yh
− Ek

h
ijw

n
h + Eh

n
ijw

h
k (3.1)

with the tensors
Mn

ij := diN
n
j − djN

n
i (3.2)

and
Ek

n
ij := diD

n
jk − djD

n
ik + Dm

jkDn
im −Dm

ikDn
jm. (3.3)

If the choice Dk
in = −Nk

in is made (see (2.18)), the tensor (3.2) can be
written in the form

Mn
ij =

∂Nn
j

∂xi
− ∂Nn

i

∂xj
−Nh

i Dn
jh + Nh

j Dn
ih, (3.4)

which entails the equality

Ek
n

ij = −∂Mn
ij

∂yk
. (3.5)

By applying the commutation rule (3.1) to the vanishing set {DiF = diF = 0,
Diy

n = 0, Diyk = 0, Dignk = 0}, we respectively obtain the identities

ynMn
ij = 0, ykEk

n
ij = −Mn

ij , ynEk
n

ij = gknMn
ij ,

Emnij + Enmij = 2CmnhMh
ij . (3.6)
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In case of the coefficients {Nk
n , Dk

nm} proposed by (2.6) and (2.18) the direct
calculation of the right-hand parts in (3.2) and (3.3) results in

Theorem 3.1. The tensors Mn
ij and Ek

n
ij are represented by the following

simple and explicit formulas:

Mn
ij = FmnMij (3.7)

and

Ek
n

ij =
(−lkmn + lnmk + Imkmn

)
Mij , (3.8)

where

Mij =
∂kj

∂xi
− ∂ki

∂xj
. (3.9)

To verify this theorem it is convenient to use (2.22)) and (2.11) and obtain

dim
k = −mhlk

∂lh
∂xi

+ (Imk + lk)P̆i −mhmk ∂mh

∂xi
.

Full evaluations can be found in Appendix A of [11].
It proves pertinent to replace in the commutator (3.1) the partial derivative

∂wn
k/∂yh by the definition

Shwn
k =

∂wn
k

∂yh
+ Cn

hkwh
k − Cm

hkwn
m (3.10)

which has the meaning of the covariant derivative in the tangent Riemannian
space R{x}. With the curvature tensor

ρk
n

ij = Ek
n

ij −Mh
ijC

n
hk, (3.11)

the commutator takes on the form

(DiDj −DjDi)wn
k = Mh

ijShwn
k − ρk

h
ijw

n
h + ρh

n
ijw

h
k. (3.12)

The skew-symmetry
ρmnij = −ρnmij (3.13)

holds (cf. the last item in (3.6)).
If we take into account the form of the tensor Cijk indicated in (2.2), from

(3.8) and (3.11) we may conclude that the curvature tensor is of the following
astonishingly simple form:

ρk
n

ij = (lnmk − lkmn)Mij ≡ εn
kMij . (3.14)

The tensor ρknij = gnmρk
m

ij can be represented in the form

ρknij = εnkMij . (3.15)

We have lkmnρk
n

ij = −Mij .



Finsler space connected by angle in two dimensions. Regular case 255

4. Riemannian counterparts

If the Finsler space F2 is a Riemannian space with a Riemannian metric
function S =

√
aijyiyj , where aij = aij(x) is a Riemannian metric tensor, we can

consider the Riemannian precursor coefficients

Lk
n = Nk

n
∣∣Riemannian limit

. (4.1)

From (2.6) it follows that

Lk
n = −yk 1

S

∂S

∂xn
− Smk

(
∂θ

∂xn
− kn

)
. (4.2)

On the other hand, denoting by ak
nh the Riemannian Christoffel symbols con-

structed from the Riemannian metric tensor amn, we can obtain the equality

ak
nhyh =

1
S

∂S

∂xn
yk +

(
∂θ

∂xn
+ nh∇nb̃h

)
Smk (4.3)

(see [11]), where b̃h = b̃h(x) is a vector field chosen to fulfill

θ(x, b̃(x)) = 0 (4.4)

and the pair ni, b̃i is orthonormal with respect to the tensor aij . The reciprocal
pair is {b̃i, ni} with b̃i = aij b̃j and ni = aijnj , where aij is the inverse of aij . The
∇n stands for the Riemannian covariant derivative taken with ak

nh. We get

Lk
n = SmkTn − ak

nhyh ≡ Lk
nhyh (4.5)

with
Lk

nh = −akjεRiem
jh Tn − ak

nh (4.6)

and
Tn = nh∇nb̃h + kn. (4.7)

εRiem
jh =

√
det(amn) γjh, where γ11 = γ22 = 0 and γ12 = −γ21 = 1. The metricity

property
∂amn

∂xi
+ Ls

imasn + Ls
inams = 0 (4.8)

holds independently of presence of the vector Tn. In contrast to the Christoffel
symbols ak

nh, the coefficients Lk
nh obtained are not symmetric with respect to

the subscripts.
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Let us take the coefficients L̄n
ik = −Ln

ik from (4.6) and construct the tensor

L̄k
n

ij =
∂L̄n

jk

∂xi
− ∂L̄n

ik

∂xj
+ L̄m

jkL̄n
im − L̄m

ikL̄n
jm ≡ L̄k

n
ij(x). (4.9)

We obtain
L̄k

n
ij = (∇iTj −∇jTi) antεRiem

tk + ak
n

ij , (4.10)

where
ak

n
ij =

∂an
jk

∂xi
− ∂an

ik

∂xj
+ am

jkan
im − am

ikan
jm (4.11)

is the Riemannian curvature tensor constructed from the Riemannian metric ten-
sor amn. We have taken into account the vanishing ∇iε

Riem
tk = 0.

From the equalities

∇ib̃
k = −nk b̃m∇in

m, ∇in
k = −b̃knm∇ib̃

m (4.12)

it follows that

∇i(nt∇j b̃t)−∇j(nt∇ib̃t) = nt(∇i∇j b̃t −∇j∇ib̃t) = −ntb̃lat
l
ij . (4.13)

Therefore, taking the Ti from (4.7), we find that

∇iTj −∇jTi = Mij − ntb̃lat
l
ij .

Noting the equality
ntb̃lat

l
ija

ntεRiem
tk = ak

n
ij (4.14)

(see [11]), we conclude that the tensor (4.10) can be read merely

L̄k
n

ij = antεRiem
tk Mij . (4.15)

If we want to have L̄s
ij = as

ij , we must make the choice

kn = −nh∇nb̃h, (4.16)

which entails Ti = 0, in which case the tensor L̄k
n

ij given by (4.9) is the ordinary
Riemannian curvature tensor ak

n
ij .

If the Finsler space F2 is not a Riemannian space, it is possible to introduce
the θ-associated Riemannian space R{θ} as follows.

The angle function θ = θ(x, y) is defined (from equation (2.3)) up to an
arbitrary integration constant which may depend on x, which is the reason why
dnθ should not be put to be zero in (2.8) (in distinction from the vanishing



Finsler space connected by angle in two dimensions. Regular case 257

dnF = 0). There exists the freedom to make the redefinition θ → θ + C(x). To
specify the value of θ unambiguously in a fixed tangent space TxM , we need in
this TxM an axis from which the value is to be measured. Let the distribution of
these axes over the base manifold be assigned by means of a contravariant vector
field bi = bi(x). Then we obtain precisely the equality θ(x, b(x)) = 0 which does
not permit the redefinitions anymore.

It is appropriate to construct the osculating Riemannian metric tensor
amn(x) = gmn (x, b(x)) and introduce the normalized vector b̃i = bi/

√
amnbmbn.

Because of the homogeneity, gmn (x, b(x)) = gmn

(
x, b̃(x)

)
. The vector ni(x) can

be taken to equal the value of the derivative ∂θ/∂yi at the argument pair
(
x, b̃(x)

)
.

Then, because of θ(x, b̃(x)) = 0 and gij = lilj+mimj (see (2.2) and (2.3)), the pair
{b̃i, ni} thus introduced is orthonormal with respect to the tensor aij produced
by osculation. This tensor aij introduces the Riemannian space R{θ} on the base
manifold M . We obtain the equalities

amnb̃mb̃n = 1, amnnmnn = 1, amnb̃mnn = 0, (4.17)

and F
(
x, b̃(x)

)
= 1 together with

amn(x) = gmn

(
x, b̃(x)

)
, θ(x, b̃(x)) = 0,

∂θ

∂yi

(
x, b̃(x)

)
= ni(x),

∂θ

∂yi

(
x, n(x)

)
= −b̃i(x). (4.18)

The arisen expansion ym = b̃b̃m + nnm is convenient to use in many fragments of
evaluations. The last equality in the list (4.18) is explicated from (2.1).

Now we can download in the space R{θ} all the relations (4.2)–(4.16) formu-
lated above in the Riemannian precursor space. On doing so, we can conclude
after comparing (4.15) with (3.15) that the tensor ρknij = gnmρk

m
ij is factorable,

namely
ρknij = f1L̄knij with L̄knij = anhL̄k

h
ij ≡ L̄knij(x), (4.19)

where

f1 =

√
det(ghl)
det(amn)

. (4.20)

We have arrived at the following theorem.

Theorem 4.1. The curvature tensor ρk
n

ij of the Finsler space F2 equipped

with the angle-preserving connection is such that the tensor ρknij = gnmρk
m

ij =
ρknij(x, y) is proportional to the tensor L̄knij = anhL̄k

h
ij = L̄knij(x) which does

not involve any dependence on tangent vectors. The factor of proportionality f1

is expressed through the determinants of metric tensors, according to (4.20).



258 G. S. Asanov

5. Conclusions

In the Riemannian geometry the contraction ak
nhyh of the Christoffel sym-

bols ak
nh with the tangent vector y admits the angle representation (4.3)–(4.4).

Why don’t lift the representation to the Finsler level to take the coefficients
Nk

n = Nk
n(x, y) in the operator dn = ∂xn + Nk

n(x, y)∂yk to be of the similar
form? Our proposal in (2.6) was of this kind. At any kn in (2.6), the vanishing
dnF = dnθ − kn = dn(θ2 − θ1) = 0 immediately ensues from this proposal. It
is a big (and good) surprise that the vanishing ykNk

nmi = 0 ensues also, which
enables us to obtain the covariant derivative Dn possessing the metric property
Dngij = 0, where Dngij = dngij − Dh

nighj − Dh
njgih with the connection co-

efficients Dh
ni = −Nh

ni. If we want to obtain torsionless coefficients in the
Riemannian limit of these Dh

ni, we should take the vector field kn(x) to be the
field tn(x) = −nh∇nb̃h in accordance with (4.16).

The induced parallel transports of the objects {F, θ2 − θ1, gij} along the
horizontal curves (running on the base manifold M) are represented infinitesimally
by the elements {dxndnF, dxndn(θ2 − θ1), dxnDngij} which all are the naught
because of dnF = dn(θ2 − θ1) = Dngij = 0. Therefore the transports realize
isometries of the tangent Riemannian spaces R{x} supported by points x ∈ M ,
taking indicatrices into indicatrices. The coefficients Nk

n given by (2.6) are in
general non-linear with respect to the variable y.

In the Riemannian case, the right-hand part of the Riemannian coefficients
(4.3) can be expressed through the Christoffel symbols and, therefore, can be
constructed from the first derivatives of the metric tensor. This is the privilege of
the Riemannian geometry which lives in the ground floor of the Finsler building,
– the right-hand part of the Finsler coefficients (2.6) is not a composition of
partial derivatives of the Finsler metric tensor. In distinction to the Riemannian
geometry which provides us with the simple and explicit angle θ = arctan(n/b),
the Finsler angle function θ = θ(x, y) is defined by the partial differentiable
equation (2.3) which cannot be integrated explicitly, except for rare particular
cases of the Finsler metric function.

The second big surprise is that the angle-preserving connection obtained in
this way admits the C∞-regular realization globally regarding the dependence on
tangent vectors. Such a realization takes place for the Finsleroid-regular metric
function, the Randers metric function, and probably for many other Finsler metric
functions.

The Finsler connection obtained does not need any facility which could be
provided by the geodesic spray coefficients. Due attention to the angle wisdom is
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sufficient: the Finsler space is connected by its angle structure, similarly to the
well known property of Riemannian geometry.

Our consideration was restricted by the dimension 2. Development of due
extensions to higher dimensions is the problem of urgent kind.
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