On exponentiation in concrete categories

By JOSEF ŠLAPAL (Brno)

Generally speaking our terminology will follow the book of Herrlich and Strecker [3]. By a concrete category \mathcal{K} we understand such a category whose objects are structured sets, i.e. pairs consisting of underlying sets and \mathcal{K}-structures on them, and whose morphisms are structurecompatible maps. For any two objects A, B of a concrete category \mathcal{K} the set of all morphisms of A into B in \mathcal{K} will be denoted by $\operatorname{Mor}_{\mathcal{K}}(A, B)$. A binary operation on objects of a concrete category \mathcal{K} assigning to any two objects $A, B \in \mathcal{K}$ an object $A^{B} \in \mathcal{K}$ whose underlying set is $\operatorname{Mor}_{\mathcal{K}}(B, A)$ is called an exponentiation in \mathcal{K} and the object A^{B} is called a power of A and B. By a concrete category with exponentiation we shall mean a concrete category in which an exponentiation is defined.

An exponentiation in a concrete category can be defined in many ways. If a concrete category \mathcal{K} is finitely productive (i.e. has finite cartesian products), then there arises the natural problem how to define an exponentiation in \mathcal{K} for the relation $A^{B \times C} \simeq\left(A^{B}\right)^{C}$ (where \simeq denotes the isomorphism in \mathcal{K}) to hold for any objects $A, B, C \in \mathcal{K}$. A solution of this problem is well known for cartesian closed topological categories - see [2]. In the present note we solve a more special problem: for three given objects A, B, C of a finitely productive concrete category with exponentiation we find sufficient conditions under which the relation $A^{B \times C} \simeq\left(A^{B}\right)^{C}$ is valid. In the second part of the paper we show an application of the obtained result to categories of relational systems.

Let \mathcal{K} be a finitely productive concrete category with exponentiation and $A, B \in \mathcal{K}$ its objects. By the evaluation map for the power A^{B} we understand the map $e: B \times A^{B} \rightarrow A$ defined by $e(y, f)=f(y)$ (see [3]).

Definition. Let \mathcal{K} be a finitely productive concrete category with exponentiation and $A, B \in \mathcal{K}$ its objects. The power A^{B} is called regular if the following two conditions are fulfilled:
(i) The evaluation map for A^{B} is a morphism of $B \times A^{B}$ into A in \mathcal{K}.
(ii) If $C \in \mathcal{K}$ is an object for which each constant map of B into C is a morphism in \mathcal{K} and if $f \in \operatorname{Mor}_{\mathcal{K}}(B \times C, A)$ is a morphism, then the map $f^{*}: C \rightarrow A^{B}$ defined by $f^{*}(z)(y)=f(y, z)$ is a morphism in \mathcal{K}, too.

From the definition it immediately follows that a topolgical category \mathcal{K} is cartesian closed iff there exists an exponentiation in \mathcal{K} with all powers regular.

Theorem. Let \mathcal{K} be a finitely productive concrete category with exponentiation and $A, B, C \in \mathcal{K}$ its objects. Let all constant maps of B into C, of C into $A^{B \times C}$ and of $B \times C$ into $\left(A^{B}\right)^{C}$ be morphisms in \mathcal{K}. Let all the three powers $A^{B}, A^{B \times C},\left(A^{B}\right)^{C}$ be regular. Then $A^{B \times C} \simeq\left(A^{B}\right)^{C}$ is valid.

Proof. First of all, let Y and Z denote the underlying sets of B and C respectively. For each morphism $f \in \operatorname{Mor}_{\mathcal{K}}(B \times C, A)$ put $\varphi(f)=f^{*}$ where $f^{*}: C \rightarrow A^{B}$ is the map defined by $f^{*}(z)(y)=f(y, z)$. As any constant map of B into C is a morphism in \mathcal{K} and as A^{B} is regular, there holds $\varphi(f) \in \operatorname{Mor}_{\mathcal{K}}\left(C, A^{B}\right)$ for every $f \in \operatorname{Mor}_{\mathcal{K}}(B \times C, A)$. Hence φ maps $A^{B \times C}$ into $\left(A^{B}\right)^{C}$ and it is evident that φ is an injection. Let $g \in \operatorname{Mor}_{\mathcal{K}}\left(C, A^{B}\right)$ be an arbitrary morphism and put $f(y, z)=g(z)(y)$ for each $y \in Y$ and $z \in Z$. Next, put $\hat{g}(y, z)=(y, g(z))$ for all $y \in Y$ and $z \in Z$. Then clearly $\hat{g} \in \operatorname{Mor}_{\mathcal{K}}\left(B \times C, B \times A^{B}\right)$. Let e_{1} be the evaluation map for A^{B}. Since A^{B} is regular, we have $e_{1} \in \operatorname{Mor}_{\mathcal{K}}\left(B \times A^{B}, A\right)$. Hence $e_{1} \circ \hat{g} \in \operatorname{Mor}_{\mathcal{K}}(B \times C, A)$. There holds $e_{1}(\hat{g}(y, z))=e_{1}(y, g(z))=g(z)(y)=$ $f(y, z)$ for each $y \in Y$ and $z \in Z$. Thus $e_{1} \circ \hat{g}=f$, i.e. $f \in \operatorname{Mor}_{\mathcal{K}}(B \times C, A)$. As $g=f^{*}=\varphi(f), \varphi$ is a surjection.

We have proved that φ is a bijection. Let e_{2} be the evaluation map for $A^{B \times C}$. Then $e_{2} \in \operatorname{Mor}_{\mathcal{K}}\left(B \times C \times A^{B \times C}, A\right)$ because $A^{B \times C}$ is regular. Put $e_{2}^{*}(z, f)(y)=e_{2}(y, z, f)$ for every $y \in Y, z \in Z$ and $f \in \operatorname{Mor}_{\mathcal{K}}(B \times C, A)$. As all constant maps of B into C and of C into $A^{B \times C}$ are morphisms in \mathcal{K}, any constant map of B into $C \times A^{B \times C}$ is a morphism in \mathcal{K}, too. Now, the regularity of A^{B} yields $e_{2}^{*} \in \operatorname{Mor}_{\mathcal{K}}\left(C \times A^{B \times C}, A^{B}\right)$. Next, put $e_{2}^{* *}(f)(z)=$ $e_{2}^{*}(z, f)$ for any $z \in Z$ and $f \in \operatorname{Mor}_{\mathcal{K}}(B \times C, A)$. Since any constant map of C into $A^{B \times C}$ is a morphism in \mathcal{K} and since $\left(A^{B}\right)^{C}$ is regular, we have $e_{2}^{* *} \in \operatorname{Mor}_{\mathcal{K}}\left(A^{B \times C},\left(A^{B}\right)^{C}\right)$. But $e_{2}^{* *}(f)(z)(y)=e_{2}^{*}(z, f)(y)=$ $e_{2}(y, z, f)=f(y, z)=f^{*}(z)(y)=\varphi(f)(z)(y)$ for all $y \in Y, z \in Z$ and $f \in$ $\operatorname{Mor}_{\mathcal{K}}(B \times C, A)$. Hence $e_{2}^{* *}=\varphi$ and therefore $\varphi \in \operatorname{Mor}_{\mathcal{K}}\left(A^{B \times C},\left(A^{B}\right)^{C}\right)$.

Finally, we are to show that $\varphi^{-1} \in \operatorname{Mor}_{\mathcal{K}}\left(\left(A^{B}\right)^{C}, A^{B \times C}\right)$. On that account, let $h: B \times C \times\left(A^{B}\right)^{C} \rightarrow A$ be the map defined by $h(y, z, g)=$ $g(z)(y)$. Let e_{3} be the evaluation map for $\left(A^{B}\right)^{C}$ and put $\hat{e}_{3}(y, z, g)=$ $\left(y, e_{3}(z, g)\right)$ for each $y \in Y, z \in Z$ and $g \in \operatorname{Mor}_{\mathcal{K}}\left(C, A^{B}\right)$. As $\left(A^{B}\right)^{C}$ is regular, there holds $e_{3} \in \operatorname{Mor}_{\mathcal{K}}\left(C \times\left(A^{B}\right)^{C}, A^{B}\right)$ and consequently $\hat{e}_{3} \in$ Mor $_{\mathcal{K}}\left(B \times C \times\left(A^{B}\right)^{C}, B \times A^{B}\right)$. Thus $e_{1} \circ \hat{e}_{3} \in \operatorname{Mor}_{\mathcal{K}}\left(B \times C \times\left(A^{B}\right)^{C}, A\right)$. We have $e_{1}\left(\hat{e}_{3}(y, z, g)\right)=e_{1}\left(y, e_{3}(z, g)\right)=e_{1}(y, g(z))=g(z)(y)=h(y, z, g)$ for any $y \in Y, z \in Z$ and $g \in \operatorname{Mor}_{\mathcal{K}}\left(C, A^{B}\right)$. This yields $h=e_{1} \circ \hat{e}_{3}$ and $h \in \operatorname{Mor}_{\mathcal{K}}\left(B \times C \times\left(A^{B}\right)^{C}, A\right)$. Put $h^{*}(g)(y, z)=h(y, z, g)$ whenever $y \in Y, z \in Z$ and $g \in \operatorname{Mor}_{\mathcal{K}}\left(C, A^{B}\right)$. Since any constant map of $B \times C$ into $\left(A^{B}\right)^{C}$ is a morphism in \mathcal{K}, from the regularity of $A^{B \times C}$ we get $h^{*} \in$ $\operatorname{Mor}_{\mathcal{K}}\left(\left(A^{B}\right)^{C}, A^{B \times C}\right)$. There holds $h^{*}(g)(y, z)=h(y, z, g)=g(z)(y)=$ $\varphi^{-1}(g)(y, z)$ for all $y \in Y, z \in Z$ and $g \in \operatorname{Mor}_{\mathcal{K}}\left(C, A^{B}\right)$. Therefore $h^{*}=\varphi^{-1}$. Consequently $\varphi^{-1} \in \operatorname{Mor}_{\mathcal{K}}\left(\left(A^{B}\right)^{C}, A^{B \times C}\right)$ which completes the proof.

Now we shall present an application of the Theorem.
Let X and I be non-empty sets. Any set of maps $\varrho \subseteq X^{I}$ is called a relation on X. The set I is called the domain (or index set) of ϱ. By a relational system we understand a pair $F=(X, \varrho)$ where X is a nonempty set and ϱ is a relation on X. By the domain of a relational system $F=(X, \varrho)$ we mean the domain of the relation ϱ. If $F=(X, \varrho)$ and $G=$ (Y, σ) are two relational systems with the same domain I and $h: X \rightarrow Y$ a map, then h is called a morphism of F into G if for each map $f \in \varrho$ there holds $h \circ f \in \sigma$. The class of all relational systems with the same domain I together with morphisms defined above forms a concrete category which we denote by \mathcal{R}_{I}. For objects $F, G \in \mathcal{R}_{I}$ we write $\operatorname{Mor}_{I}(F, G)$ instead of $\operatorname{Mor}_{\mathcal{R}_{I}}(F, G)$. Of course, \mathcal{R}_{I} has finite cartesian products: if $F=(X, \varrho)$ and $G=(Y, \sigma)$ are two objects of \mathcal{R}_{I}, then $F \times G=(X \times Y, \tau)$ where $\tau \subseteq(X \times Y)^{I}$ is the relation defined by $h \in(X \times Y)^{I}, h \in \tau \Longleftrightarrow$ there exist $f \in \varrho$ and $g \in \sigma$ such that $h(i)=(f(i), g(i))$ for each $i \in I$. In [5] an exponentiation in \mathcal{R}_{I} is defined as follows: for $F=(X, \varrho)$ and $G=(Y, \sigma)$ of \mathcal{R}_{I} we put $F^{G}=\left(\operatorname{Mor}_{I}(G, F), \tau\right)$ where $\tau \subseteq\left(\operatorname{Mor}_{I}(G, F)\right)^{I}$ is defined by $h \in\left(\operatorname{Mor}_{I}(G, F)\right)^{I}, h \in \tau \Longleftrightarrow{ }^{y} h \in \varrho$ for each $y \in Y$; here ${ }^{y} h: I \rightarrow X$ is the map defined by ${ }^{y} h(i)=h(i)(y)$. Obviously, this exponentiation is an extension of BIRKHOFF's cardinal exponentiation for ordered sets [1] onto relational systems. In [5] there are also defined the following two properties
of relational systems: A relational system $F=(X, \varrho)$ with domain I is said to be
(a) reflexive if for any constant map $c: I \rightarrow X$ there holds $c \in \varrho$,
(b) diagonal if the following condition is fulfilled: if $\left\{f_{i} \mid i \in I\right\}$ is a family of elements of ϱ and if the family $\left\{g_{j} \mid j \in I\right\}$ of elements of X^{I} defined by $g_{j}(i)=f_{i}(j)$ whenever $i, j \in I$ fulfils $g_{j} \in \varrho$ for each $j \in I$, then putting $h(i)=f_{i}(i)$ for every $i \in I$ we get $h \in \varrho$.
For n-ary relations (i.e. relations with finite domains) the diagonality coincides with the diagonal property defined in [4]. In particular, if ϱ is a binary relation on a non-empty set X, then (X, ϱ) is diagonal iff ϱ is transitive.

For relational systems the following statement is valid:
Lemma. Let $F, G \in \mathcal{R}_{I}$ be relational systems. If F is diagonal and G is reflexive, then the power F^{G} is regular.

Proof. (i) Denote $F=(X, \varrho), G=(Y, \sigma)$ and $G \times F^{G}=(Z, \tau)$. Let $p \in \tau$. Then there exist $g \in \sigma$ and $h \in\left(\operatorname{Mor}_{I}(G, F)\right)^{I}$ with ${ }^{y} h \in \varrho$ for each $y \in Y$ such that $p(i)=(g(i), h(i))$ for every $i \in I$. For each $i \in I$ put $f_{i}={ }^{g(i)} h$. Then $f_{i} \in \varrho$ for all $i \in I$. For any $i, j \in I$ put $g_{j}(i)=f_{i}(j)$. We have $g_{j}(i)=f_{i}(j)={ }^{g(i)} h(j)=h(j)(g(i))$ whenever $i, j \in I$. Hence $g_{j}=h(j) \circ g$ for each $j \in I$. Consequently, $g_{j} \in \varrho$ for all $j \in I$. Let e be the evaluation map for F^{G}. For any $i \in I$ we have $e(p(i))=e(g(i), h(i))=h(i)(g(i))={ }^{g(i)} h(i)=f_{i}(i)$. Thus, putting $h(i)=f_{i}(i)$ for each $i \in I$ we get $h=e \circ p$. As F is diagonal there holds $h \in \varrho$. Therefore $e \in \operatorname{Mor}_{I}\left(G \times F^{G}, F\right)$.
(ii) Let $H=(U, \xi)$ be a relational system for which each constant map of G into H is a morphism in \mathcal{R}_{I}. Let $f \in \operatorname{Mor}_{I}(G \times H, F)$. Let $h \in \xi$ and denote $(V, \eta)=G \times H$. For any $y \in Y$ and any $i \in I$ put $s_{y}(i)=(y, h(i))$. Then the reflexivity of G implies $s_{y} \in \eta$ for each $y \in Y$. Thus, for each $y \in Y$ there holds $f \circ s_{y} \in \varrho$. Let $f^{*}: H \rightarrow F^{G}$ be the map defined by $f^{*}(z)(y)=f(y, z)$. For any elements $h \in \xi, y \in Y$ and $i \in I$ we have ${ }^{y}\left(f^{*} \circ h\right)(i)=\left(f^{*} \circ h\right)(i)(y)=f^{*}(h(i))(y)=f(y, h(i))=f\left(s_{y}(i)\right)$. Hence ${ }^{y}\left(f^{*} \circ h\right)=f \circ s_{y} \in \varrho$ for all $y \in Y$. Consequently, denoting $(W, \nu)=F^{G}$ we have $f^{*} \circ h \in \nu$. Therefore $f^{*} \in \operatorname{Mor}_{I}\left(H, F^{G}\right)$. The proof is complete.

Finally, as an application of Theorem we obtain the following assertion (which is proved in [5], Theorem 9, but in another, more laborious way):

Proposition. Let $F, G, H \in \mathcal{R}_{I}$ be relational systems. A sufficient condition for $F^{G \times H} \simeq\left(F^{G}\right)^{H}$ to be valid is that F is diagonal and both G and H are reflexive.

Proof. Clearly, if a relational system $L \in \mathcal{R}_{I}$ is reflexive, then any constant map of any relational system of \mathcal{R}_{I} into L is a morphism in \mathcal{R}_{I}. As G and H are reflexive, $F^{G \times H}$ and $\left(F^{G}\right)^{H}$ are reflexive, too. Hence all constant maps of G into H, of H into $F^{G \times H}$ and of $G \times H$ into $\left(F^{G}\right)^{H}$ are morphisms in \mathcal{R}_{I}. Further, since $G \times H$ is reflexive and since the diagonality of F evidently implies the diagonality of F^{G}, all three powers $F^{G}, F^{G \times H},\left(F^{G}\right)^{H}$ are regular according to the Lemma. Now the assertion follows from the Theorem.

References

[1] G. Birkhoff, Generalized arithmetics, Duke Math. J. 9 (1942), 283-302.
[2] H. Herrlich, Cartesian closed topological categories, Math. Coll. Univ. Cape Town 9 (1974), 1-16.
[3] H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon, Boston, 1973.
[4] V. NovÁk, On a power of relational structures, Czech. Math. J. 35 (1985), 167-172.
[5] J. ŠLapal, Direct arithmetic of relational systems, Publ. Math. Debrecen 38 (1991), 39-48.

