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On exponentiation in concrete categories

By JOSEF ŠLAPAL (Brno)

Generally speaking our terminology will follow the book of Herrlich
and Strecker [3]. By a concrete category K we understand such a cat-
egory whose objects are structured sets, i.e. pairs consisting of underly-
ing sets and K-structures on them, and whose morphisms are structure-
compatible maps. For any two objects A,B of a concrete category K the
set of all morphisms of A into B in K will be denoted by MorK(A,B). A
binary operation on objects of a concrete category K assigning to any two
objects A,B ∈ K an object AB ∈ K whose underlying set is MorK(B, A)
is called an exponentiation in K and the object AB is called a power of
A and B. By a concrete category with exponentiation we shall mean a
concrete category in which an exponentiation is defined.

An exponentiation in a concrete category can be defined in many
ways. If a concrete category K is finitely productive (i.e. has finite carte-
sian products), then there arises the natural problem how to define an
exponentiation in K for the relation AB×C ' (AB)C (where ' denotes the
isomorphism in K) to hold for any objects A,B, C ∈ K. A solution of this
problem is well known for cartesian closed topological categories — see
[2]. In the present note we solve a more special problem: for three given
objects A,B, C of a finitely productive concrete category with exponentia-
tion we find sufficient conditions under which the relation AB×C ' (AB)C

is valid. In the second part of the paper we show an application of the
obtained result to categories of relational systems.

Let K be a finitely productive concrete category with exponentiation
and A,B ∈ K its objects. By the evaluation map for the power AB we
understand the map e : B ×AB → A defined by e(y, f) = f(y) (see [3]).

Definition. Let K be a finitely productive concrete category with ex-
ponentiation and A,B ∈ K its objects. The power AB is called regular if
the following two conditions are fulfilled:

(i) The evaluation map for AB is a morphism of B×AB into A
in K.
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(ii) If C ∈ K is an object for which each constant map of B into C
is a morphism in K and if f ∈ MorK(B×C, A) is a morphism,
then the map f∗ : C → AB defined by f∗(z)(y) = f(y, z) is
a morphism in K, too.

From the definition it immediately follows that a topolgical category
K is cartesian closed iff there exists an exponentiation in K with all powers
regular.

Theorem. Let K be a finitely productive concrete category with ex-
ponentiation and A, B,C ∈ K its objects. Let all constant maps of B into
C, of C into AB×C and of B × C into (AB)C be morphisms in K. Let all
the three powers AB , AB×C , (AB)C be regular. Then AB×C ' (AB)C is
valid.

Proof. First of all, let Y and Z denote the underlying sets of B and
C respectively. For each morphism f ∈ MorK(B × C, A) put ϕ(f) = f∗

where f∗ : C → AB is the map defined by f∗(z)(y) = f(y, z). As any
constant map of B into C is a morphism in K and as AB is regular,
there holds ϕ(f) ∈ MorK(C,AB) for every f ∈ MorK(B × C,A). Hence
ϕ maps AB×C into (AB)C and it is evident that ϕ is an injection. Let
g ∈ MorK(C, AB) be an arbitrary morphism and put f(y, z) = g(z)(y) for
each y ∈ Y and z ∈ Z. Next, put ĝ(y, z) = (y, g(z)) for all y ∈ Y and
z ∈ Z. Then clearly ĝ ∈ MorK(B × C,B × AB). Let e1 be the evaluation
map for AB . Since AB is regular, we have e1 ∈ MorK(B ×AB , A). Hence
e1 ◦ ĝ ∈ MorK(B×C, A). There holds e1(ĝ(y, z)) = e1(y, g(z)) = g(z)(y) =
f(y, z) for each y ∈ Y and z ∈ Z. Thus e1◦ĝ = f , i.e. f ∈ MorK(B×C,A).
As g = f∗ = ϕ(f), ϕ is a surjection.

We have proved that ϕ is a bijection. Let e2 be the evaluation map for
AB×C . Then e2 ∈ MorK(B×C×AB×C , A) because AB×C is regular. Put
e∗2(z, f)(y) = e2(y, z, f) for every y ∈ Y, z ∈ Z and f ∈ MorK(B × C,A).
As all constant maps of B into C and of C into AB×C are morphisms in K,
any constant map of B into C ×AB×C is a morphism in K, too. Now, the
regularity of AB yields e∗2 ∈ MorK(C×AB×C , AB). Next, put e∗∗2 (f)(z) =
e∗2(z, f) for any z ∈ Z and f ∈ MorK(B × C,A). Since any constant
map of C into AB×C is a morphism in K and since (AB)C is regular,
we have e∗∗2 ∈ MorK(AB×C , (AB)C). But e∗∗2 (f)(z)(y) = e∗2(z, f)(y) =
e2(y, z, f) = f(y, z) = f∗(z)(y) = ϕ(f)(z)(y) for all y ∈ Y , z ∈ Z and f ∈
MorK(B × C, A). Hence e∗∗2 = ϕ and therefore ϕ ∈ MorK(AB×C , (AB)C).
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Finally, we are to show that ϕ−1 ∈ MorK((AB)C , AB×C). On that
account, let h : B × C × (AB)C → A be the map defined by h(y, z, g) =
g(z)(y). Let e3 be the evaluation map for (AB)C and put ê3(y, z, g) =
(y, e3(z, g)) for each y ∈ Y , z ∈ Z and g ∈ MorK(C, AB). As (AB)C is
regular, there holds e3 ∈ MorK(C × (AB)C , AB) and consequently ê3 ∈
MorK(B×C× (AB)C , B×AB). Thus e1 ◦ ê3 ∈ MorK(B×C× (AB)C , A).
We have e1(ê3(y, z, g)) = e1(y, e3(z, g)) = e1(y, g(z)) = g(z)(y) = h(y, z, g)
for any y ∈ Y , z ∈ Z and g ∈ MorK(C,AB). This yields h = e1 ◦ ê3 and
h ∈ MorK(B × C × (AB)C , A). Put h∗(g)(y, z) = h(y, z, g) whenever
y ∈ Y , z ∈ Z and g ∈ MorK(C, AB). Since any constant map of B × C

into (AB)C is a morphism in K, from the regularity of AB×C we get h∗ ∈
MorK((AB)C , AB×C). There holds h∗(g)(y, z) = h(y, z, g) = g(z)(y) =
ϕ−1(g)(y, z) for all y ∈ Y , z ∈ Z and g ∈ MorK(C,AB). Therefore
h∗ = ϕ−1. Consequently ϕ−1 ∈ MorK((AB)C , AB×C) which completes
the proof.

Now we shall present an application of the Theorem.

Let X and I be non-empty sets. Any set of maps % ⊆ XI is called
a relation on X. The set I is called the domain (or index set) of %. By
a relational system we understand a pair F = (X, %) where X is a non-
empty set and % is a relation on X. By the domain of a relational system
F = (X, %) we mean the domain of the relation %. If F = (X, %) and G =
(Y, σ) are two relational systems with the same domain I and h : X → Y

a map, then h is called a morphism of F into G if for each map f ∈ % there
holds h ◦ f ∈ σ. The class of all relational systems with the same domain
I together with morphisms defined above forms a concrete category which
we denote by RI . For objects F, G ∈ RI we write MorI(F, G) instead of
MorRI (F,G). Of course, RI has finite cartesian products: if F = (X, %)
and G = (Y, σ) are two objects of RI , then F × G = (X × Y, τ) where
τ ⊆ (X × Y )I is the relation defined by h ∈ (X × Y )I , h ∈ τ ⇐⇒ there
exist f ∈ % and g ∈ σ such that h(i) = (f(i), g(i)) for each i ∈ I. In [5] an
exponentiation in RI is defined as follows: for F = (X, %) and G = (Y, σ)
of RI we put FG = (MorI(G,F ), τ) where τ ⊆ (MorI(G,F ))I is defined
by h ∈ (MorI(G,F ))I , h ∈ τ ⇐⇒ yh ∈ % for each y ∈ Y ; here yh : I → X

is the map defined by yh(i) = h(i)(y). Obviously, this exponentiation is an
extension of Birkhoff’s cardinal exponentiation for ordered sets [1] onto
relational systems. In [5] there are also defined the following two properties
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of relational systems: A relational system F = (X, %) with domain I is said
to be
(a) reflexive if for any constant map c : I → X there holds c ∈ %,
(b) diagonal if the following condition is fulfilled: if {fi | i ∈ I} is a family

of elements of % and if the family {gj | j ∈ I} of elements of XI defined
by gj(i) = fi(j) whenever i, j ∈ I fulfils gj ∈ % for each j ∈ I, then
putting h(i) = fi(i) for every i ∈ I we get h ∈ %.

For n-ary relations (i.e. relations with finite domains) the diagonality co-
incides with the diagonal property defined in [4]. In particular, if % is
a binary relation on a non-empty set X, then (X, %) is diagonal iff % is
transitive.

For relational systems the following statement is valid:

Lemma. Let F, G ∈ RI be relational systems. If F is diagonal and

G is reflexive, then the power FG is regular.

Proof. (i) Denote F = (X, %), G = (Y, σ) and G × FG = (Z, τ).
Let p ∈ τ . Then there exist g ∈ σ and h ∈ (MorI(G,F ))I with yh ∈ %

for each y ∈ Y such that p(i) = (g(i), h(i)) for every i ∈ I. For each
i ∈ I put fi = g(i)h. Then fi ∈ % for all i ∈ I. For any i, j ∈ I put
gj(i) = fi(j). We have gj(i) = fi(j) = g(i)h(j) = h(j)(g(i)) whenever
i, j ∈ I. Hence gj = h(j) ◦ g for each j ∈ I. Consequently, gj ∈ %

for all j ∈ I. Let e be the evaluation map for FG. For any i ∈ I we
have e(p(i)) = e(g(i), h(i)) = h(i)(g(i)) = g(i)h(i) = fi(i). Thus, putting
h(i) = fi(i) for each i ∈ I we get h = e ◦ p. As F is diagonal there holds
h ∈ %. Therefore e ∈ MorI(G× FG, F ).

(ii) Let H = (U, ξ) be a relational system for which each constant map
of G into H is a morphism in RI . Let f ∈ MorI(G×H, F ). Let h ∈ ξ and
denote (V, η) = G×H. For any y ∈ Y and any i ∈ I put sy(i) = (y, h(i)).
Then the reflexivity of G implies sy ∈ η for each y ∈ Y . Thus, for each
y ∈ Y there holds f ◦ sy ∈ %. Let f∗ : H → FG be the map defined by
f∗(z)(y) = f(y, z). For any elements h ∈ ξ, y ∈ Y and i ∈ I we have
y(f∗ ◦ h)(i) = (f∗ ◦ h)(i)(y) = f∗(h(i))(y) = f(y, h(i)) = f(sy(i)). Hence
y( f∗ ◦ h) = f ◦ sy ∈ % for all y ∈ Y . Consequently, denoting (W, ν) = FG

we have f∗ ◦ h ∈ ν. Therefore f∗ ∈ MorI(H,FG). The proof is complete.

Finally, as an application of Theorem we obtain the following assertion
(which is proved in [5], Theorem 9, but in another, more laborious way):
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Proposition. Let F, G,H ∈ RI be relational systems. A sufficient

condition for FG×H ' (FG)H to be valid is that F is diagonal and both

G and H are reflexive.

Proof. Clearly, if a relational system L ∈ RI is reflexive, then any
constant map of any relational system of RI into L is a morphism in RI .
As G and H are reflexive, FG×H and (FG)H are reflexive, too. Hence all
constant maps of G into H, of H into FG×H and of G × H into (FG)H

are morphisms in RI . Further, since G × H is reflexive and since the
diagonality of F evidently implies the diagonality of FG, all three powers
FG, FG×H , (FG)H are regular according to the Lemma. Now the assertion
follows from the Theorem.
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