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On exponentiation in concrete categories

By JOSEF SLAPAL (Brno)

Generally speaking our terminology will follow the book of HERRLICH
and STRECKER [3]. By a concrete category K we understand such a cat-
egory whose objects are structured sets, i.e. pairs consisting of underly-
ing sets and C-structures on them, and whose morphisms are structure-
compatible maps. For any two objects A, B of a concrete category K the
set of all morphisms of A into B in K will be denoted by Morx (A, B). A
binary operation on objects of a concrete category K assigning to any two
objects A, B € K an object AP € K whose underlying set is Morx (B, A)
is called an exponentiation in /C and the object AZ is called a power of
A and B. By a concrete category with exponentiation we shall mean a
concrete category in which an exponentiation is defined.

An exponentiation in a concrete category can be defined in many
ways. If a concrete category K is finitely productive (i.e. has finite carte-
sian products), then there arises the natural problem how to define an
exponentiation in K for the relation AP*¢ ~ (A5)¢ (where ~ denotes the
isomorphism in K) to hold for any objects A, B,C € K. A solution of this
problem is well known for cartesian closed topological categories — see
[2]. In the present note we solve a more special problem: for three given
objects A, B, C of a finitely productive concrete category with exponentia-
tion we find sufficient conditions under which the relation AB*¢ ~ (AB)¢
is valid. In the second part of the paper we show an application of the
obtained result to categories of relational systems.

Let IC be a finitely productive concrete category with exponentiation
and A, B € K its objects. By the evaluation map for the power AZ we
understand the map e : B x A® — A defined by e(y, f) = f(y) (see [3]).

Definition. Let K be a finitely productive concrete category with ex-

ponentiation and A, B € K its objects. The power AP is called regular if
the following two conditions are fulfilled:

(i) The evaluation map for A® is a morphism of B x AZ into A
in .
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(ii) If C € Kisan object for which each constant map of B into C
is a morphism in K and if f € Morx (B xC, A) is a morphism,
then the map f* : C — AP defined by f*(2)(y) = f(y, 2) is
a morphism in K, too.

From the definition it immediately follows that a topolgical category
IC is cartesian closed iff there exists an exponentiation in K with all powers
regular.

Theorem. Let K be a finitely productive concrete category with ex-
ponentiation and A, B,C' € K its objects. Let all constant maps of B into

C, of C into AP*C and of B x C into (AP)® be morphisms in K. Let all

the three powers AB, AB*XC (AB)C be regular. Then AB*C ~ (AB)C is
valid.

Proor. First of all, let Y and Z denote the underlying sets of B and
C respectively. For each morphism f € Moryx (B x C, A) put ¢(f) = f*
where f* : C — AP is the map defined by f*(2)(y) = f(y,2). As any
constant map of B into C is a morphism in K and as AP is regular,
there holds ¢(f) € Morx(C, AB) for every f € Morx(B x C, A). Hence
¢ maps ABXC into (AP)¢ and it is evident that ¢ is an injection. Let
g € Mory(C, AB) be an arbitrary morphism and put f(y,z) = g(2)(y) for
each y € Y and z € Z. Next, put §(y,2) = (y,9(2)) for all y € Y and
z € Z. Then clearly § € Morx (B x C, B x AB). Let e; be the evaluation
map for AB. Since AP is regular, we have e; € Morx (B x AP, A). Hence
e10g € Mor (B xC, A). There holds e1(g(y, 2)) = e1(y,g(z)) = g(2)(y) =
f(y,z) foreachy € Y and z € Z. Thusejog = f,ie. f € Morx(BxC, A).
As g = f* = o(f), ¢ is a surjection.

We have proved that ¢ is a bijection. Let e be the evaluation map for
ABXC Then ey € Mory (B x C x AB*Y A) because AP*C is regular. Put
es(z, f)y) = eay, z, f) forevery y € Y, z € Z and f € Morg (B x C, A).
As all constant maps of B into C' and of C into AP*% are morphisms in K,
any constant map of B into C' x AP*C is a morphism in K, too. Now, the
regularity of AP yields e} € Mory (C x ABXY AB). Next, put e5*(f)(z) =
ex(z, f) for any z € Z and f € Morx(B x C,A). Since any constant
map of C into AP*C is a morphism in K and since (AP)® is regular,
we have e3* € Morx(ABXC (AB)Y). But e3*(f)(2)(y) = ez, f)(y) =
ey, F) = F(5,2) = F*(2)(0) = o(F)(=)(w) for all y € ¥, 2 € Z and [ €
Mory (B x C, A). Hence e3* = ¢ and therefore ¢ € Morx(AP*¢ (AB)C).
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Finally, we are to show that =1 € Morx((A45)¢, ABXY). On that
account, let h : B x C x (AP)® — A be the map defined by h(y, z,g) =
g(2)(y). Let es be the evaluation map for (A%)¢ and put é3(y,z,g9) =
(y,e3(z,9)) for each y € Y, 2z € Z and g € Morg(C, AB). As (AB)C is
regular, there holds e3 € Morx(C' x (AP)Y AB) and consequently é3 €
Mor (B x C x (AB)Y, B x AB). Thus e 0é3 € Morg (B x C x (AB)C A).
We have e1(é3(y, 2, 9)) = e1(y, e3(z, 9)) = e1(y, 9(2)) = 9(2)(y) = h(y, 2, 9)
for any y € Y, 2 € Z and g € Morx(C, AP). This yields h = e; o é3 and
h € Morg(B x C x (AB)Y A). Put h*(g)(y,2) = h(y,z,g) whenever
y€Y,z¢€ Z and g € Morx(C, AP). Since any constant map of B x C
into (AZ)% is a morphism in K, from the regularity of AZ*¢ we get h* €
Mor ((AB)Y, ABXC). There holds h*(g)(y,2) = h(y,z,9) = 9(2)(y) =
0 Hg)(y,z) for all y € Y, z € Z and g € Mork(C, AB). Therefore
h* = ¢~ 1. Consequently p~1 € Morg((AB)¢, ABXC) which completes
the proof.

Now we shall present an application of the Theorem.

Let X and I be non-empty sets. Any set of maps o C X/ is called
a relation on X. The set [ is called the domain (or index set) of po. By
a relational system we understand a pair F' = (X, ¢) where X is a non-
empty set and p is a relation on X. By the domain of a relational system
F = (X, o) we mean the domain of the relation o. If F' = (X, ) and G =
(Y, o) are two relational systems with the same domain [ and h: X — Y
a map, then h is called a morphism of F' into G if for each map f € p there
holds h o f € 0. The class of all relational systems with the same domain
I together with morphisms defined above forms a concrete category which
we denote by R;. For objects F,G € R we write Mor;(F,G) instead of
Morg, (F,G). Of course, R; has finite cartesian products: if F' = (X, p)
and G = (Y,0) are two objects of Ry, then F' x G = (X x Y,7) where
7 C (X x Y)! is the relation defined by h € (X x Y)!, h € 7 <= there
exist f € p and g € o such that h(i) = (f(i),g(i)) for each i € I. In [5] an
exponentiation in R is defined as follows: for F' = (X, p) and G = (Y, 0)
of R; we put F¢ = (Mor;(G, F),7) where 7 C (Mor;(G, F))! is defined
by h € (Mor;(G,F))!, he T <= Yh € gforeachy € Y;hereh:I — X
is the map defined by Yh(i) = h(i)(y). Obviously, this exponentiation is an
extension of BIRKHOFF’s cardinal exponentiation for ordered sets [1] onto
relational systems. In [5] there are also defined the following two properties
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of relational systems: A relational system F' = (X, p) with domain I is said

to be

(a) reflexive if for any constant map ¢ : I — X there holds ¢ € p,

(b) diagonal if the following condition is fulfilled: if {f; | i € I} is a family
of elements of g and if the family {g; | j € I} of elements of X! defined
by g¢;(i) = fi(j) whenever i,j € I fulfils g; € p for each j € I, then
putting h(i) = f;(i) for every i € I we get h € p.

For n-ary relations (i.e. relations with finite domains) the diagonality co-

incides with the diagonal property defined in [4]. In particular, if ¢ is

a binary relation on a non-empty set X, then (X, ) is diagonal iff o is

transitive.

For relational systems the following statement is valid:

Lemma. Let F,G € R; be relational systems. If F' is diagonal and
G is reflexive, then the power FC is regular.

PrOOF. (i) Denote F = (X,0), G = (Y,0) and G x F¢ = (Z,71).
Let p € 7. Then there exist g € o and h € (Mor;(G, F))! with Yh € o
for each y € Y such that p(i) = (g(i),h(i)) for every ¢ € I. For each
ieIput f; =99k Then f; € o for all i € I. For any i,j € I put
6;(i) = £:(j). We have g;(i) = fi(7) = "VR(j) = h(j)(g(i)) whenever
i,j € I. Hence g; = h(j) o g for each j € I. Consequently, g; € o
for all j € I. Let e be the evaluation map for F¢. For any i € I we
have e(p(i)) = e(g(i), h(i)) = h(i)(g(i)) = *Ph(i) = f;(i). Thus, putting
h(i) = fi(i) for each i € I we get h = eop. As F is diagonal there holds
h € o. Therefore e € Mor;(G x F¢ F).

(ii) Let H = (U, &) be a relational system for which each constant map
of G into H is a morphism in R;. Let f € Mor;(G x H, F). Let h € £ and
denote (V,n) =G x H. For any y € Y and any i € I put s,(i) = (y, h(7)).
Then the reflexivity of G implies s, € n for each y € Y. Thus, for each
y € Y there holds fos, € p. Let f*: H — F& be the map defined by
f*(2)(y) = f(y,z). For any elements h € £, y € Y and i € I we have
V(f* o h)(E) = (F* 0 h)(@)(y) = F* (h(D)(y) = £y h(0)) = F(s,(i)). Hence
Y(f*oh)= fos, € pforall y € Y. Consequently, denoting (W,v) = F¢
we have f* o h € v. Therefore f* € Mor;(H, F®). The proof is complete.

Finally, as an application of Theorem we obtain the following assertion
(which is proved in [5], Theorem 9, but in another, more laborious way):
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Proposition. Let F,G,H € R; be relational systems. A sufficient
condition for FE*H ~ (FE)H to be valid is that F is diagonal and both
G and H are reflexive.

PrOOF. Clearly, if a relational system L € R is reflexive, then any
constant map of any relational system of R; into L is a morphism in R;.
As G and H are reflexive, FE* and (FY)H are reflexive, too. Hence all
constant maps of G into H, of H into F¢*H and of G x H into (F%)#
are morphisms in R;. Further, since G x H is reflexive and since the
diagonality of F' evidently implies the diagonality of F'“, all three powers
FC, FEH (FGYH are yregular according to the Lemma. Now the assertion
follows from the Theorem.

References

[1] G. BIRKHOFF, Generalized arithmetics, Duke Math. J. 9 (1942), 283-302.

[2] H. HERRLICH, Cartesian closed topological categories, Math. Coll. Univ. Cape Town
9 (1974), 1-16.

[3] H. HERRLICH and G. E. STRECKER, Category Theory, Allyn and Bacon, Boston,
1973.

[4] V. NovAK, On a power of relational structures, Czech. Math. J. 35 (1985), 167—-172.

[5] J. SLAPAL, Direct arithmetic of relational systems, Publ. Math. Debrecen 38 (1991),
39-48.

JOSEF SLAPAL

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF BRNO
616 69 BRNO, CZECH REBUBLIC

(Received July 20, 1992)



