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Abstract. The present paper gives a complete answer to the question of the card-

inality of sumsets of finite geometric progressions with positive real quotient. The proof

of the main result is based on theorems concerning irreducibility and GCD of trinomials

and quadrinomials.

1. Introduction

In a lecture given at the University of Debrecen, I. Z. Ruzsa asked, what

can we say about the cardinality of sumsets of finite geometric progressions with

positive real quotient. The goal of the present paper is to completely answer this

question.

For non-empty sets A and B we define their sumset by

A+B := {a+ b : a ∈ A, b ∈ B}.
If A = B we also define the restricted sumset of A by

A+̂A := {a+ b : a ∈ A, b ∈ A, a 6= b}.
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Our results belong to the family of sum-product estimates, which say that the

number of sums and the number of products cannot be both small for a given set.

Geometric progressions represent one extremity, when the number of products is

as small as possible, namely 2n− 1 for an n-element set. We confirm the natural

expectation, that in this case the number of sums is near to its largest possible

value n(n+ 1)/2. We mention that there is a similar but weaker phenomenon at

the other extreme (arithmetic progressions), see e.g. [1].

Several results on sumsets of various kind of sets are available in the litera-

ture. For such results we refer to [5], [2] and the references given there. However,

since the results of the present paper are not much connected to those results,

and the techniques of the proofs are also quite different, we omit to mention them

explicitly in the introduction.

The above mentioned phenomenon is most clearly shown by the following

corollary to our main result:

Corollary. Put A := {1, q, q2, . . . , qn} where q 6= 1 is a positive real number.

For n ≥ 9, the minimal value of |A+A| is

n(n+ 1)

2
− (4n− 22),

and it is achieved when q is a root of x3 − x+ 1 or x3 − x2 + 1.

Now we present our main result:

Theorem 1.1 (Main Theorem). Put A := {1, q, q2, . . . , qn} where q 6= 1 is

a positive real number. Then we have the following propositions.

(1) If q is not a zero of any polynomial of the form xa − xb − xc + 1 with

a > b > c > 0 then we have |A+̂A| = n(n−1)
2 and |A+A| = n(n+1)

2 .

(2) If q is a zero of a polynomial F (x) = xa − xb − xc + 1 with a > b > c > 0

but F (x) is not of the form x2u − x2u−v − xu + 1, x3u − x3u−v − x2u−v + 1,

x2u − xu − xv + 1 or x3u − xu+v − xv + 1 with u > v then

• if n ≥ a then we have |A+̂A| = n(n−1)
2 − (n − a + 1) and |A + A| =

n(n+1)
2 − (n− a+ 1);

• if n < a then we have |A+̂A| = n(n−1)
2 and |A+A| = n(n+1)

2 .

(3) If q is a zero of a polynomial F (x) = xa − 2xb + 1 with a > b > 0 but the

minimal polynomial of q is not of the form x3r −xr − 1 or x3r +x2r − 1 with

r > 0 then

• if n ≥ a then we have |A+̂A|= n(n−1)
2 and |A+A|= n(n+1)

2 −(n−a+1);
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• if n < a then we have |A+̂A|= n(n−1)
2 and |A+A|=|, n(n+1)

2 .

(4) If q is a zero of one of the polynomials x2u − x2u−v − xu + 1, x3u − x3u−v −
x2u−v + 1, x2u − xu − xv + 1 or x3u − xu+v − xv + 1 with u > v but the

minimal polynomial of q is not of the form x3r −xr − 1 or x3r +x2r − 1 with

r > 0 then

• if n ≥ 3u we have |A+̂A| = n(n−1)
2 − (2n − 5u + 2) and |A + A| =

n(n+1)
2 − (2n− 5u+ 2);

• if 2u ≤ n < 3u we have |A+̂A| = n(n−1)
2 − (n− 2u+ 1) and

|A+A| = n(n+1)
2 − (n− 2u+ 1);

• if n < 2u we have |A+̂A|= n(n−1)
2 and |A+A|= n(n+1)

2 .

(5) If the minimal polynomial of q is of the form x3r − xr − 1 or x3r + x2r − 1

with r > 0 then

• if n ≥ 9r we have |A+̂A|= n(n−1)
2 −(3n−19r+3) and |A+A|= n(n+1)

2 −
(4n− 26r + 4);

• if 7r ≤ n < 9r we have |A+̂A| = n(n−1)
2 − (2n− 10r + 2) and

|A+A| = n(n+1)
2 − (3n− 17r + 3);

• if 6r ≤ n < 7r we have |A+̂A| = n(n−1)
2 − (2n− 10r + 2) and

|A+A| = n(n+1)
2 − (2n− 10r + 2);

• if 4r ≤ n < 6r we have |A+̂A| = n(n−1)
2 − (n− 4r + 1) and

|A+A| = n(n+1)
2 − (n− 4r + 1);

• if n < 4r we have |A+̂A|= n(n−1)
2 and |A+A|= n(n+1)

2 ;

Remark. It is clear, that the sumset of A := {1, q, q2, . . . , qn} has cardinality

at most n(n+1)
2 , and it can be smaller than that only in the case when

qn1 + qn2 = qn3 + qn4

for some integers n1, n2, n3, n4 ∈ {1, . . . , n}. However, this means that q is a zero

of a polynomial of the form xa − xb − xc + 1. The question is in fact, whether

it may happen, that q is a zero of more then one such quadrinomial. So to ans-

wer our original question we have to investigate common zeros of some lacunary

polynomials. Similar reasoning is true in the case of the restricted sumset of A.

2. Results on common zeros of some lacunary polynomials

According to the above Remark, in order to prove our Main Theorem we need

some results concerning common zeros of some quadrinomials and trinomials.
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Theorem 2.1. If the polynomials F (x) := xn − xm − xk + 1 and H(x) :=

xα − xβ − xγ + 1 have a common zero which is not a root of unity, then we have

one of the following cases

(1) F = H

(2) F (x) = x2u − x2u−v − xu + 1 and H(x) = x3u − x3u−v − x2u−v + 1, with

u > v

(3) F (x) = x4s − x3s − x2s + 1 and H(x) = x9s − x8s − x5s + 1

(4) F (x) = x9s − x8s − x5s + 1 and H(x) = x4s − x3s − x2s + 1

(5) F (x) = x3u − x3u−v − x2u−v + 1 and H(x) = x2u − x2u−v − xu + 1, with

u > v

and in the cases (2)–(5) the polynomials can be interchanged.

Although the following theorem is due toA. Schinzel (in fact it is Theorem 2

of [4]) we present it here, since its role in the proof of our Main Theorem is similar

to the role played by Theorems 2.1 and 2.3.

Theorem 2.2 (A. Schinzel [4]). If the distinct polynomials F (x) := xn −
2xm +1 and H(x) := xα − 2xβ +1 have a common zero then it is a root of unity.

Theorem 2.3. If the polynomials F (x) := xn − 2xm + 1 and H(x) :=

xα − xβ − xγ + 1 have a common zero which is not a root of unity, then we have

one of the following cases

(1) F (x) = x7r − 2x5r + 1 and H(x) = x4r − x3r − x2r + 1

(2) F (x) = x7r − 2x5r + 1 and H(x) = x9r − x8r − x5r + 1

(3) F (x) = x7r − 2x5r + 1 and H(x) = x6r − x5r − x3r + 1

(4) F (x) = x7r − 2x2r + 1 and H(x) = x4r − x2r − xr + 1

(5) F (x) = x7r − 2x2r + 1 and H(x) = x9r − x4r − xr + 1

(6) F (x) = x7r − 2x2r + 1 and H(x) = x6r − x3r − xr + 1.

In the first three cases the minimal polynomial of the common zero which is not

a root of unity is x3r − xr − 1 and in the last three cases it is x3r + x2r − 1,

respectively.

3. Auxiliary results

A polynomial P (x) = anx
n + an−1x

n−1 + · · · + a0 ∈ R[x] (with an 6= 0) is

called reciprocal if ai = an−i for i = 0, . . . , n and it is called anti-reciprocal if



On the sumset of geometric progressions 265

ai = −an−i for i = 0, . . . , n, respectively. Clearly, a polynomial P (x) ∈ R[x] is
reciprocal if and only if P (x) = xnP

(
1
x

)
and it is anti-reciprocal, if and only if

P (x) = −xnP
(
1
x

)
.

For a polynomial P (x) ∈ R[x] of degree n put P ∗(x) := xnP
(
1
x

)
. Then the

polynomial P (x)P ∗(x) is clearly reciprocal.

Note also, that a polynomial whose zeros are all roots of unity is either

reciprocal or anti-reciprocal, depending on the parity of the multiplicity of 1 as a

zero of the polynomial.

Notation. The following notation shall be useful in the proofs of the results

below. For a polynomial P (x) of degree d denote by m0(P ), . . . ,mt(P ) the mono-

mials of P in decreasing order of their degrees. Further, denote by e0(P ), . . . , et(P )

the coefficients and by d0(P ), . . . , dt(P ) the degrees of m0(P ), . . . ,mt(P ), respec-

tively. Thus P is a reciprocal polynomial if and only if di = d−dt−i and ei = et−i

for every i = 1, . . . , t. Similarly, P is an anti-reciprocal polynomial if and only

if di = d − dt−i and ei = −et−i for every i = 1, . . . , t. Whenever it is clear

which polynomial P is considered we omit the reference to this polynomial in the

notation.

Lemma 3.1 (A. Schinzel [4]). For the factorization of the lacunary poly-

nomial F (x) = xn − 2xm + 1 (n > m) we have one of the following possibilities:

(A) F (x) = x7r − 2x5r + 1 = (xr − 1)(x3r − xr − 1)(x3r + x2r + 1), r ∈ Z,
(B) F (x) = x7r − 2x2r + 1 = (xr − 1)(x3r + x2r − 1)(x3r + xr + 1), r ∈ Z,
(C) F (x) = A(x)B(x), where A(x) is a polynomial whose zeros are all roots of

unity, and B(x) is an irreducible polynomial, which has no zero which is a

root of unity.

Proof. This is Theorem 1 of [4]. ¤

Note. The factors occurring in cases (A) and (B) of Lemma 3.1 are irreducible

(see Lemma 3.8)

Lemma 3.2 (W. H. Mills [3]). The polynomial F (x) = xn − xm − xk + 1

(n > m > k > 1) can be written in the form F (x) = A(x)B(x), where A(x) ∈ Q[x]
is a polynomial whose zeros are all roots of unity, and B(x) ∈ Q[x] is an irreducible

polynomial, which has no zero which is a root of unity.

Proof. This lemma is a part of Theorem 2 of [3]. ¤

Lemma 3.3. Let F (x) := xn − xm − xk + 1 and G(x) := xa − xb − xc + 1

be polynomials such that F (x)G(x) is a reciprocal polynomial. Suppose that 1 is

neither a multiple root of F nor of G. Then we have one of the following cases
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(A) F = G∗

(B) F (x) = x2u − x2u−v − xu + 1 and G(x) = x3u − xu+v − xv + 1, with u > v

(C) F (x) = x4s − x3s − x2s + 1 and G(x) = x9s − x4s − xs + 1

(D) F (x) = x9s − x8s − x5s + 1 and G(x) = x4s − x2s − xs + 1

(E) F (x) = x3u − x3u−v − x2u−v + 1 and G(x) = x2u − xu − xv + 1, with u > v,

and in the cases (B)–(E) the polynomials F and G can be interchanged.

Proof. Put R := FG, and suppose that R is reciprocal. Denote by d :=

n+a the degree of R. Clearly, m0 = xa+n and mt = 1. In order to verify whether

R is reciprocal or not, we have to compare the coefficients and the degrees of the

other monomials, too. Without loss of generality suppose that c ≤ k. The other

cases follow by interchanging the role of F and G. Now we split the proof of

Lemma 3.3 to several cases and subcases.

First suppose that c = k. Then mt−1 = −2xk which means that e1 must be

−2, too, and we must have d1 = d − k. This can happen only if d1 = n + b =

m+ a = (n+ a)− k. This means that n = m+ k which contradicts the condition

that 1 is not a multiple root of F .

Thus we have c < k, which means that mt−1 = −xc. If R is reciprocal we

must have d1 = d− dt−1 and e1 = et−1. For m1 we have 3 possible cases.

If n + b > m + a then m1 = −xn+b and by d1 = d − dt−1 we have n + b =

n + a − c, i.e. a = b + c, which contradicts the fact that x = 1 is a simple root

of G.

If n+ b = m+ a then m1 = −2xn+b and e1 = et−1 cannot be fulfilled.

If n + b < m + a then m1 = −xm+a and by d1 = d − dt−1 we have m +

a = n + a − c, i.e. n = m + c. Since both for m2 and mt−2 now there are 3

possibilities, we have to consider several subcases, according to the order of the

numbers n+ b, a+ k and k, b, respectively.

(I) If n + b = a + k then m2 = −2xn+b. In this case we clearly must have

et−2 = −2, which can happen only if k = b. Thus n = a, and by d2 = d−dt−2

we also have a+ k = n+ b = (n+ a)− k = n+ a− b, i.e. 2b = a and 2k = n.

Further, we also have n = m + c, i.e. c = 2k −m. These altogether mean,

that F (x) = x2k−xm−xk+1 and G(x) = x2k−xk−x2k−m+1. This means

F = G∗, which is case A of our lemma.

(II) If n + b < a + k then m2 = −xa+k, and we have the following cases with

respect to mt−2:

(1) If k = b then mt−2 = −2xk, thus et−2 = −2 which together with

e2 = −1 contradicts the fact that R is reciprocal.
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(2) If k < b then we have mt−2 = −xk, and since m2 = −xa+k we get

a+ k = n+ a− k, which means that n = 2k. Now we have to consider

m3 and mt−3. We have the following possibilities

(i) If n + b > a then m3 = −xn+b, and we have six possibilities to

consider, according to the possible values of b,m and k + c

(a) If c+ k < min(b,m) then mt−3 = xc+k and et−3 = 1, which

together with e3 = −1 contradicts the fact that R is recipro-

cal.

(b) If b < min(c+ k,m) then mt−3 = −xb and n+ b = n+ a− b,

which leads to a = 2b. We have n = m+ c and since we are

in case II2 we also have n = 2k. These show that F (x) =

x2k − x2k−c − xk + 1 and G(x) = x2b − xb − xc + 1. Thus

R(x) = (x2b+2k − x2b+2k−c − x2b+k − xb+2k) + x2k+b−c −
x2k+c+x2b+xk+b+2x2k+xk+c−x2k−c+(−xb−xk−xc+1).

Further we have 2k−c < 2k < k+b < 2b < 2k+b−c (indeed,

b < m = 2k−c) and k+c < 2k < k+b < 2b < 2k+c. Taking

in account that −x2k−c has coefficient −1, these show that

R can be reciprocal only in the following cases:

• if 2k − c = (2k + 2b) − (2k + c) then k = b and we have

F = G∗ which is case A of our lemma.

• if 2k−c = k+c then k = 2c and F (x) = x4c−x3c−x2c+1

and G = x2b−xb−xc+1. Thus we have R(x) = (x4c+2b−
x3c+2b−x2c+2b−x4c+b)−x5c+x3c+b+x2b+x2c+b+2x4c+

(−xb−x2c−xc+1), and 2c < b < 3c. However this means

that 3c+ b > 5c > 4c and 3c+ b > 2b > 2c+ b > 4c, which

contradicts that R is reciprocal.

(c) If m < min(b, c+k) then mt−3 = −xm and n+b = n+a−m,

which leads to a = b+m. We have n = m+ c and since we

are in case II2 we also have n = 2k. Thus m = 2k − c

and a = 2k + b − c. Then F (x) = x2k − x2k−c − xk + 1

and G(x) = x2k+b−c − xb − xc + 1. Thus R(x) = (x4k−c+b −
x4k−2c+b−x3k−c+b−x2k+b)+2x2k+2x2k−c+b+xk+b+xk+c−
x2k+c−xb+(−x2k−c−xk−xc+1). Now since R is reciprocal,

we either have (4k− c+ b)− (k+ c) ∈ {2k, 2k− c+ b, b+ k}
or we have c + k ∈ {2k + c, b, 4k−c+b

2 }. Since k > c we have

3k + b− 2c > 2k + b− c > 2k and 3k + b− 2c > b+ k, thus

we can exclude the first possibility. Further, c + k 6= 2k + c
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and 2(c + k) < 4k − c + b (since c < k and c < b) leaves us

the only possibility that b = k + c. Now using this we get

F (x) = x2k −x2k−c−xk +1 and G(x) = x3k −xk+c−xc+1,

which is case B of our lemma.

(d) If b = m < c+k then mt−3 = −2xb. Thus we have et−3 = −2

which together with e3 = −1 (indeed we are in case II(2)i)

contradicts the fact that R is reciprocal.

(e) If m = c+ k < b then since m = 2k− c we have k = 2c, so it

follows F (x) = x4c−x3c−x2c+1 and G(x) = xa−xb−xc+1.

Thus R(x) = (x4c+a − x3c+a − x2c+a) − x4c+b + x3c+b +

x2c+b − x5c + 2x4c + xa − xb + (−x2c − xc + 1). Now we

clearly have m3 = −x4c+b. Since we are in case II(2)ie we

have b > c + k = 3c and thus b + 4c > 7c > 5c > 4c.

These together with a > b and b + 4c > b + 3c > b + 2c > b

show that we have three possibilities, namely mt−3 = 2x4c,

mt−3 = −xb or b = 4c.

• If mt−3 = 2x4c we get contradiction, since e3 = −1 and

et−3 = 2.

• If mt−3 = −xb then 4c+b = (4c+a)−b, and we get a = 2b.

This leads to R(x) = (x4c+2b − x3c+2b − x2c+2b − x4c+b) +

x3c+b+x2c+b−x5c+2x4c+x2b+(−xb−x2c−xc+1). This

can be reciprocal only if 5c ∈ {3c+ b, 2c+ b, 4c, 2b, 4c+2b
2 }.

Since b > 3c all these possibilities lead to contradiction.

• If b = 4c then we have F (x) = x4c − x3c − x2c + 1 and

G(x) = xa − x4c − xc + 1. Then R(x) = (x4c+a − x3c+a −
x2c+a)−x8c+x7c+x6c−x5c+x4c+xa+(−x2c−xc+1).

Since we are in case II(2)i we have a < n + b < 8c, thus

m3 = −x8c. Now both the casemt−3 = xa andmt−3 = x4c

leads to contradiction with the fact that R is reciprocal.

(f) If b = c+ k ≤ m then we have F (x) = x2k − x2k−c − xk + 1

and G(x) = xa − xc+k − xc +1, and we get R(x) = (x2k+a −
x2k−c+a −xk+a)−x3k+c +x3k +2x2k −x2k−c +xa +(−xk −
xc+1). Now m3 = −x3k+c, and either mt−3 = xa or mt−3 =

−x2k−c. The first case contradicts the fact that R is recip-

rocal, since we would have e3 = − 1 and et−3 =1. Thus we

must have mt−3 = −x2k−c, which leads to 2k−c = (2k+a)−
(3k+c), i.e. a = 3k. Thus we have F (x) = x2k−x2k−c−xk+1
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and G(x) = x3k − xc+k − xc + 1, and this is again case B of

our lemma.

Similarly, in case II(2)ii), i.e. when n+b < a+k, k < b, n+b < a (more preci-

sely in a subcase of it) we get case (C) of our lemma, and subcases of case III (i.e.

when n+b > a+k) lead to case (D) and case (E) of our lemma. However, since the

computation is lengthy, we omit it. The interested reader will find the full version

of the proof at the url http://www.math.klte.hu/∼berczesa/papers/p21full.pdf.

Clearly, in the case c > k we get the same results, just the polynomials F

and G are interchanged. ¤
Lemma 3.4. Let F (x) := xn − 2xm + 1 and G(x) := xa − 2xb + 1 be

polynomials such that F (x)G(x) is a reciprocal polynomial. Suppose that 1 is

neither a multiple zero of F nor of G. Then we have F = G∗.

Proof. Clearly we have

F (x)G(x) = xa+n − 2xa+m − 2xn+b + 4xm+b + xn + xa − 2xm − 2xb + 1.

Put R := FG. Then by assumption R is reciprocal. Denote by d := n + a

the degree of R. Clearly, m0 = xa+n and mt = 1.

We may suppose without loss of generality that b ≤ m.

If b = m then we get

R(x) = xa+n − 2xa+m − 2xn+m + 4x2m + xn + xa − 4xm + 1.

Since R is reciprocal we must have a + m = n + m and a + n = (a + m) + m,

which leads to n = 2m. This contradicts the fact that 1 is a simple root of F .

Thus we may suppose that b < m. This means that mt−1 = −2xb. We have

to distinguish between three cases

(I) If a + m = n + b then m1 = −4xa+m which together with mt−1 = −2xb

contradicts the fact that R is reciprocal.

(II) If a + m < n + b then m1 = −2xn+b and since R is reciprocal we get

n+ b = (n+ a)− b. This means that a = 2b which contradicts the fact that

1 is a simple root of G.

(III) If a + m > n + b then m1 = −2xa+m and since R is reciprocal we get

a+m = (n+ a)− b. Thus we get b = n−m and

R(x) = xa+n − 2xa+m − 2x2n−m + 5xn + xa − 2xm − 2xn−m + 1.

Since R is reciprocal and 2n − m > n > m we clearly can have neither

a ≥ 2n −m nor a ≤ m. Thus we have m2 = −2x2n−m and mt−2 = −2xm,

showing that a + n = 2n − m + m, which is a = n. Now we have F (x) =

xn − 2xm + 1 and G(x) = xn − 2xn−m + 1, which means that F = G∗. ¤
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Lemma 3.5. Let F (x) := xn − 2xm + 1 and G(x) := xa − xb − xc + 1 be

polynomials. Suppose that 1 is neither a multiple zero of F nor of G. Then we

have that F (x)G(x) cannot be a reciprocal polynomial.

Proof. Clearly we have

F (x)G(x) = xa+n − 2xa+m − xn+b + 2xm+b − xn+c + xn + xa

+ 2xm+b + 2xm+c − xb − 2xm − xc + 1.

Put R := FG. Then by assumption R is reciprocal. Denote by d := n + a

the degree of R. Clearly, m0 = xa+n and mt = 1.

Now we have the following possibilities:

(I) if m < c then we have mt−1 = −2xm. Since R is reciprocal we must have

a + m > n + b, and thus m1 = −2xa+m. These together lead to a + m =

(a+ n)−m, which is n = 2m. However, this contradicts the fact that 1 is a

simple root of F .

(II) if m = c then by the reciprocal property of R we must also have a+m = n+b

and this leads again to the relation n = 2m, which is a contradiction again.

(III) if m > c then mt−1 = −xc and we clearly must have a+m < n+b, in order to

guarantee the reciprocal property of R. This means that n+ b = (a+n)− c,

which shows that a = b + c and this contradicts the fact that 1 is a simple

root of G. ¤

Lemma 3.6. Let F (x) be one of the polynomials x3r −xr −1, x3r +x2r−1,

x3r+xr+1 and x3r+x2r+1. Let G(x) := xa−2xb+1 and suppose that 1 is not

a multiple root of G. Then F (x)G(x) cannot be an anti-reciprocal polynomial.

Proof. First we consider the case F (x) = x3r − xr − 1. Suppose indirectly

that F (x)G(x) is an anti-reciprocal polynomial. Clearly, we have

R(x) := F (x)G(x) = xa+3r − xa+r − 2xb+3r + 2xb+r − xa + x3r + 2xb − xr − 1.

Now m0 = xa+3r and mt = −1, and we have the following cases

(I) If r < b then mt−1 = −xr. In this case a + r ≥ b + 3r is not possible

since (a+ r)+ r < a+3r would be a contradiction to the fact that R is anti-

reciprocal. Further, if a+r < b+3r then e1 = −2 also leads to contradiction.

(II) If r = b then we have mt−1 = xr, and a + r ≥ b + 3r leads again to the

contradiction (a + r) + r < a + 3r. Further, b + 3r > a + r leads to m1 =

−2xb+3r and this is a contradiction, as well.
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(III) if r > b then mt−1 = 2xb and again a + r > b + 3r leads to m1 = −xa+r

and a + r = b + 3r leads to m1 = −3xb+3r, respectively, and these both

contradict the assumption that R is anti-reciprocal. So the only remaining

case is b+3r > a+r, which leads to m1 = −2xb+3r and (b+3r)+ b = a+3r,

i.e. a = 2b, which is a contradiction to the assumption that 1 is not a multiple

root of G.

The cases F (x) = x3r + xr + 1 and F (x) = x3r + x2r + 1 are trivial, and the

case F (x) = x3r+x2r−1 can be easily deduced from the case F (x) = x3r−xr−1,

since −(x3r + x2r − 1)∗ = x3r − xr − 1. ¤

Lemma 3.7. Let F (x) be one of the polynomials x3r −xr −1, x3r +x2r−1,

x3r + xr + 1 and x3r + x2r + 1. Let G(x) := xa − xb − xc + 1 and suppose that 1

is not a multiple root of G. Then F (x)G(x) can be an anti-reciprocal polynomial

only in one of the following cases

(A) F (x) = x3r − xr − 1 and G(x) = x4r − x2r − xr + 1

(B) F (x) = x3r − xr − 1 and G(x) = x9r − x4r − xr + 1

(C) F (x) = x3r − xr − 1 and G(x) = x6r − x3r − xr + 1

(D) F (x) = x3r + x2r − 1 and G(x) = x4r − x3r − x2r + 1

(E) F (x) = x3r + x2r − 1 and G(x) = x9r − x8r − x5r + 1

(F) F (x) = x3r + x2r − 1 and G(x) = x6r − x5r − x3r + 1.

Proof. First we consider the case F (x) = x3r − xr − 1. Suppose that

F (x)G(x) is an anti-reciprocal polynomial. Clearly, we have

R(x) := F (x)G(x) = xa+3r − xa+r − xb+3r + xb+r − x3r+c

+ xr+c − xa + x3r + xb + xc − xr − 1.

Now m0 = xa+3r and mt = −1, and we have the following cases

(I) if r < c then we have mt−1 = −xr. Since r + (a + r) < a + 3r in order to

guarantee the anti-reciprocal property of R we must have b+3r > a+ r, but

then e1 = −1 and et−1 = −1 contradict the anti-reciprocal property of R.

(II) if r = c then

R(x) = xa+3r − xa+r − xb+3r + xb+r − xa − x4r + x3r + x2r + xb − 1.

We have 3r > 2r = c+ r, which means that we have the following 3 possibi-

lities with respect to mt−1
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(1) if b > 2r then mt−1 = x2r. Thus by the anti-reciprocal property of R we

must have d1 = a+r, i.e. a+r > b+3r, which means that m1 = −xa+r.

Now we have the following possibilities for m2

(i) if a > b + 3r then m2 = −xa and this shows that mt−2 must be

x3r, and since a > b this proves b > 3r and we get

R(x) = (xa+3r − xa+r − xa)− xb+3r + xb+r − x4r

+ xb + (x3r + x2r − 1).

Now since b > 3r we have m3 = −xb+3r, and since b + r >

max(b, 4r) there are 3 possibilities

• if b = 4r, then we must have (b+ 3r) + (b+ r) = a+ 3r, i.e.

a = 9r. Then FG is indeed reciprocal and we have G(x) =

x9r − x4r − xr + 1, which is case (B) of our lemma.

• if b < 4r then we have mt−3 = xb and b+ (b+ 3r) = a+ 3r,

i.e. a = 2b. Then we either must have (b+ r) + 4r = a+ 3r,

i.e. b = 2r, thus a = 4r which contradicts a > b + 3r, or

we have b + r = 4r, i.e. b = 3r, which contradicts again

a > b+ 3r.

• if b > 4r we get contradiction by mt−3 = −x4r.

(ii) if a < b+ 3r then m2 = −xb+3r and we again have 3 subcases for

mt−2

(a) if b < 3r then mt−2 = xb, and b + (b + 3r) = a + 3r, i.e.

a = 2b and we have

R(x) = (xa+3r − xa+r − xb+3r) + xb+r − x4r − xa

+ x3r + (xb + x2r − 1).

Since b < 3r we have b+ r < 4r and by b > 2r and a = 2b we

have a > 4r. So m3 = −xa and mt−3 = x3r. Since 4r 6= b+r

we must have 4r + (b + r) = a + 3r, which leads to b = 2r

which is a contradiction to b > 2r.

(b) if b = 3r then mt−2 = 2x3r which is a contradiction.

(c) if b > 3r then mt−2 = x3r and (b + 3r) + 3r = a + 3r, i.e.

a = 3r, which contradicts the condition b > 3r.
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(iii) if a = b+3r thenm2 = −2xb+3r and the only way to make possible

the anti-reciprocal property of R is to put b = 3r, thus we have

m2 = 2x3r and we see that 3r+ (b+ 3r) = a+ 3r is also fulfilled.

In this case we have a = 6r and we get G(x) = x6r −x3r −xr +1,

which is case (C) of our lemma.

(2) if b = 2r, then we have mt−1 = 2xb, so we must have a+ r = b+3r, i.e.

a = 4r. Thus we have

R(x) = x7r − 2x5r − 2x4r + 2x3r + 2x2r − 1.

In this case we have F (x) = x3r −xr − 1 and G(x) = x4r −x2r −xr +1,

which is case (A) of our lemma.

(3) if b < 2r then mt−1 = xb and we have 3 possibilities for m1

(i) if a + r > 3r + b then m1 = −xa+r, and by (a + r) + b = a + 3r

we get the contradiction b = 2r

(ii) if a+ r = 3r + b then m1 = −2xa+r which is a contradiction

(iii) if a+ r < 3r+ b then m1 = −x3r+b, and (3r+ b)+ b = 3r+ a, i.e.

a = 2b. In this case have

R(x) = (x2b+3r − xb+3r)− x2b+r + xb+r − x4r − x2b

+ x3r + x2r + (xb − 1).

Now since b < 2r and b > c = r we have b + r > 2r, and 4r >

3r > 2r, so we have mt−2 = x2r and

(a) if 2b+ r > 4r, then m2 = −x2b+r. Now 4r > 2b > 3r > b+ r

shows that m3 = −x4r and mt−3 = xb+r. Thus (b+r)+4r =

2b+ 3r leads to b = 2r, which is a contradiction to b < 2r.

(b) if 4r > 2b + r then m2 = −x4r and 4r + 2r = 2b + 3r leads

to 2b = 3r, which contradicts 4r > 2b+ r.

(c) if 4r = 2b+ r then m2 = −2x4r is a contradiction to

mt−2 = x2r, since R is supposed to be anti-reciprocal.

(III) if c < r then mt−1 = xc and we have 3 possibilities for m1

(1) if a + r < b + 3r then m1 = −xb+3r and c + (b + 3r) = a + 3r, i.e.

a = b+ c, which is a contradiction to the fact that 1 is a simple root

of G.

(2) if a+ r = b+ 3r then m1 = −2xb+3r is a contradiction
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(3) if a+ r > b+3r then m1 = −xa+r, and (a+ r)+ c = a+3r, i.e. c = 2r,

which is a contradiction to c < r.

Clearly, if F = x3r + x2r − 1 = −(x3r − xr − 1)∗, then we get cases (D), (E)

and (F), and if F is one of the polynomials x3r + xr + 1 and x3r + x2r + 1 then

F (x)G(x) cannot be anti-reciprocal. ¤

Lemma 3.8. The polynomials x3r − xr − 1, x3r + x2r − 1, x3r + xr + 1 and

x3r + x2r + 1 are irreducible for each natural number r.

Proof. Tverberg in [6] proves that any polynomial xn±xm± 1 is irredu-

cible (over the field of rational numbers) whenever none of its zeros is a root of

unity. Since no zero of the polynomials x3 − x − 1, x3 + x2 − 1, x3 + x + 1 and

x3 + x2 + 1 is a root of unity, this proves our lemma. ¤

4. Proof of the theorems

Proof of Theorem 2.1. Clearly, x = 1 is a simple root of F , since other-

wise we would get F ′(1) = 0, thus n = m+ k and F = (xm − 1)(xk − 1) and each

root of F would be a root of unity, which cannot happen by the assumption of

our Theorem. Similarly, x = 1 is a simple root of H.

By Lemma 3.2 both F and H may have at most one irreducible factor which

has a zero being not a root of unity. Further, by our assumption such a factor

exists, and it is the same factor in the case of F and H. So we have F (x) =

A1(x)B(x) and H(x) = A2(x)B(x), where A1 and A2 are polynomials with all

their zeros being roots of unity, and B is an irreducible polynomial such that none

of its zeros is a root of unity. Now, since 1 is exactly double zero of F (x)H∗(x),
clearly F (x)H∗(x) = A1(x)A

∗
2(x)B(x)B∗(x) is a reciprocal polynomial. Since all

the assumption of Lemma 3.3 are fulfilled we get all the possibilities for F and

H∗ and the Theorem follows easily. ¤

Proof of Theorem 2.2. Suppose that F andH have a common zero which

is not a root of unity. Denote it by α. Then clearly, x = 1 is a simple root of F ,

since otherwise we would get F ′(1) = 0, thus n = 2m and F = (xm− 1)2, so each

zero of F would be a root of unity, which cannot happen by the assumption of

our theorem. Similarly, x = 1 is a simple zero of H.

Now if F and H are not of the type x7r − 2x5r + 1 (r ∈ Z) or x7r − 2x2r + 1

(r ∈ Z), then by Lemma 3.1 we have F (x) = A1(x)B(x) and H(x) = A2(x)B(x),

where A1 and A2 are polynomials with all their zeros being roots of unity, and B is

an irreducible polynomial such that none of its zeros is a root of unity. Now, since 1
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is exactly double zero of F (x)H∗(x), clearly F (x)H∗(x) = A1(x)A
∗
2(x)B(x)B∗(x)

is a reciprocal polynomial, which cannot happen by Lemma 3.4.

If F is of the form x7r−2x5r+1 (r ∈ Z) or x7r−2x2r+1 (r ∈ Z), and H is not

of this form, then α is a zero of one of the polynomials x3r +x2r +1, x3r +xr +1,

x3r + x2r − 1 or x3r − xr − 1, call it F0. Since by Lemma 3.8 F0(x) is irreducible,

and α is a zero of both F0 and H we get by Lemma 3.1 that H can be written

in the form H(x) = A2(x)F0(x), where A2 is a polynomial with all its zeros

being roots of unity. Now 1 is a simple root of F0(x)H
∗(x) = A∗

2(x)F0(x)F
∗
0 (x),

thus F0(x)H
∗(x) is an anti-reciprocal polynomial. But this is not possible by

Lemma 3.6.

If both F and H are of the form x3r + x2r + 1, x3r + xr + 1, x3r + x2r − 1

or x3r − xr − 1, then since all these polynomials are irreducible, they can have a

common root only if they coincide. ¤

Proof of Theorem 2.3. Suppose that F andH have a common zero which

is not a root of unity. Denote it by α. Then clearly, x = 1 is a simple zero of F ,

since otherwise we would get F ′(1) = 0, thus n = 2m and F = (xm − 1)2 and

each zero of F would be a root of unity, which cannot happen by the assumption

of our Theorem. Similarly, x = 1 is a simple root of H.

Now if F is not of the type x7r − 2x5r + 1 (r ∈ Z) or x7r − 2x2r + 1 (r ∈ Z),
then by Lemmas 3.1 and 3.2 we have F (x) = A1(x)B(x) and H(x) = A2(x)B(x),

where A1 and A2 are polynomials with all their zeros being roots of unity, and B is

an irreducible polynomial such that none of its zeros is a root of unity. Now, since 1

is exactly double zero of F (x)H∗(x), clearly F (x)H∗(x) = A1(x)A
∗
2(x)B(x)B∗(x)

is a reciprocal polynomial, which cannot happen by Lemma 3.4.

If F is of the form x7r−2x5r+1 (r ∈ Z) or x7r−2x2r+1 (r ∈ Z), then α is a

zero of one of the polynomials x3r+x2r+1, x3r+xr+1, x3r+x2r−1 or x3r−xr−1,

call it F0. Since by Lemma 3.8 F0(x) is irreducible, and α is a zero of both F0 and

H we get by Lemma 3.2 that H can be written in the form H(x) = A2(x)F0(x),

where A2 is a polynomial with all its zeros being roots of unity. Now 1 is a simple

zero of F0(x)H
∗(x) = A∗

2(x)F0(x)F
∗
0 (x), thus F0(x)H

∗(x) is an anti-reciprocal

polynomial. But this leads by Lemma 3.7 to the cases listed in our theorem. ¤

Proof of the Main Theorem. Put I := {(i, j) | i, j ∈ Z, 0 ≤ i ≤ j ≤ n}
and Î := {(i, j) | i, j ∈ Z, 0 ≤ i < j ≤ n}. Clearly, we have

A+A = {qi + qj | (i, j) ∈ I}
and

A+̂A = {qi + qj | (i, j) ∈ Î}
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If none of the sums qi + qj and qk + ql coincide for (i, j) 6= (k, l), (i, j), (k, l) ∈ I

((i, j), (k, l) ∈ Î, respectively) then we clearly have |A + A| = n(n+1)
2 (|A+̂A| =

n(n−1)
2 ).

If we have qi + qj = qk + ql for some pairs (i, j) 6= (k, l), (i, j), (k, l) ∈ I

((i, j), (k, l) ∈ Î, respectively), then if we suppose without loss of generality that

i = max{i, j, k, l} then we have j = min{i, j, k, l}, since q 6= 1 is a positive real

number. Suppose again without loss of generality that k ≥ l and put a := i− j,

b := k − j, c := l − j. We see that q is a zero of the polynomial xa − xb − xc + 1

(xa − 2xb + 1, respectively). However, if q is a zero of such a polynomial, then

along with the coincidence qa + 1 = qb + qc (qa + 1 = 2qb, respectively) we also

have the equalities qa+h + qh = qb+h + qc+h (qa+h + qh = 2qb+h, respectively) for

0 ≤ h ≤ n−a. Now Theorems 2.1, 2.2 and 2.3 cover all cases when q is a common

root of more than one such polynomial, and the proof of our Main Theorem is

concluded by counting the coincidences qi + qj = qk + ql in these cases. ¤
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