Publ. Math. Debrecen 77/3-4 (2010), 277–297

A family of temporal logics on finite trees

By ZOLTÁN ÉSIK (Szeged) and SZABOLCS IVÁN (Szeged)

This paper is dedicated to Professor P. Dömösi

Abstract. We associate a temporal logic $XTL(\mathcal{L})$ with each class \mathcal{L} of (regular) tree languages and provide both an algebraic and a game-theoretic characterization of the expressive power of the logic $XTL(\mathcal{L})$.

1. Introduction

A characterization of a logic on trees or words is called effective if it gives rise to an effective procedure to decide whether a property of trees or words is expressible in the logic. The property is usually modeled by a tree or word language and is given by a finite automaton. For example, it is known that a word language is definable in the first-order logic FO(<) or in Linear Temporal Logic (LTL) if and only if its minimal automaton is finite and counter-free, or alternatively, if and only if its syntactic monoid is finite and aperiodic [16], [18]. Since it is decidable (*PSPACE*-complete) whether a finite automaton is counterfree, this characterization of FO(<) (or LTL) is effective.

An algebraic characterization of first-order logic on finite trees using "preclones of finite algebras" has been given in [11]. However, this result does not provide any effective algorithm. In fact, finding an effective characterization of

Mathematics Subject Classification: 03B44,68Q70,91A40.

Key words and phrases: branching time future temporal logics, Ehrenfeucht–Fraïssé games, strict Moore-product.

This research was supported by OTKA grant no. K75249 and the program

TÁMOP-4.2.2/08/1/2008-0008 of the Hungarian National Development Agency.

the expressive power of first-order logic on trees (with both the successor relations and the partial order relation derived from the successor relations) has been a long standing open problem, cf. [14], [17], [23].¹ With a few exceptions, there is no effective characterization known for temporal logics on (finite and/or infinite) trees. Most notably, no effective characterization of the logic CTL [5] is known.

In this paper we consider only finite trees. In [6], a logic $FTL(\mathcal{L})$ was associated with each class \mathcal{L} of regular tree languages. Under the assumption that the next modalities are expressible (and an additional technical condition), a characterization of the languages definable in $FTL(\mathcal{L})$ was obtained using pseudovarieties of finite tree automata and cascade products. It was argued that by selecting particular (finite) language classes \mathcal{L} , most of the familiar temporal logics can be covered. In [8], we removed the extra condition on the next modalities by making use of a modified version of the cascade product, called the Moore-product. The logics $FTL(\mathcal{L})$ contain "built in" atomic formulas describing the label of the root of a tree. This has the disadvantage that some classes of tree languages do not possess a characterization in terms of the logics $FTL(\mathcal{L})$. For example, considering only unary trees, which correspond to words, no nontrivial variety of group languages can be derived from these logics.

In this paper, we introduce a generalization of the logics $\text{FTL}(\mathcal{L})$. We associate yet another logic, called $\text{XTL}(\mathcal{L})$, with each class \mathcal{L} of tree languages. In the first part of the paper we show that, when \mathcal{L} ranges over subclasses of regular tree languages (and satisfies a technical condition), then the classes of languages definable in $\text{XTL}(\mathcal{L})$ are in a one-to-one correspondence with those pseudovarieties of finite tree automata which are closed under a variant of the Moore-product.

In the second part of the paper we provide a game-theoretic characterization of the logics $\text{XTL}(\mathcal{L})$. With each class \mathcal{L} of tree languages, we associate an Ehrenfeucht-Fraïssé-type game, called the $\text{XTL}(\mathcal{L})$ -game, between "Spoiler" and "Duplicator". We obtain that two trees s, t can be separated by an $\text{XTL}(\mathcal{L})$ formula of "depth n" if and only if Spoiler has a winning strategy in the nround $\text{XTL}(\mathcal{L})$ -game on (s, t). We also discuss a modification of the game that characterizes the logics $\text{FTL}(\mathcal{L})$.

The paper is ended by a few examples derived from the main theorems providing game-theoretic characterizations of some familiar logics, including a version of CTL for finite trees, and some of its fragments. This paper is an expanded and improved version of the extended abstract [10].

 $^{^{1}}$ The case when one has only the successor relations has been studied in [3] where an effective characterization has been found.

2. Preliminaries

A rank type is a nonempty finite set R of nonnegative integers containing 0. A ranked alphabet Σ (of rank type R) is a union $\bigcup_{n \in R} \Sigma_n$ of pairwise disjoint, finite nonempty sets of symbols. Elements of Σ_0 are also called *constant symbols*. We assume that each ranked alphabet Σ comes with a fixed lexicographic ordering denoted $<_{\Sigma}$, or just < when Σ is understood.

For the whole paper we now fix an arbitrary rank type R.

Given a ranked alphabet Σ , the set T_{Σ} of Σ -trees is the least set such that whenever $\sigma \in \Sigma_k$, $k \in R$ is a symbol and t_1, \ldots, t_k are Σ -trees, then $\sigma(t_1, \ldots, t_k)$ is also a Σ -tree. When σ is a constant symbol, we often write σ for the tree $\sigma()$. A (Σ) -tree language L is any subset of T_{Σ} .

We can also view a Σ -tree as a map from a tree domain to Σ . In this setting, the domain dom(t) of a tree t is defined inductively as follows. When $t = \sigma \in \Sigma_0$, dom(t) = { ϵ }, the singleton set whose unique element is the empty word. Suppose that $t = \sigma(t_1, \ldots, t_n)$, where n > 0. Then dom(t) = { ϵ } $\cup \bigcup_{i=1}^n \{i \cdot v : v \in \text{dom}(t_i)\}$. Elements of dom(t) are also called *nodes* of t. Then, a Σ -tree $t = \sigma(t_1, \ldots, t_n)$ can be viewed as a mapping $t : \text{dom}(t) \to \Sigma$ defined inductively as follows: $t(\epsilon) = \sigma$, and for any node $i \cdot v \in \text{dom}(t), t(i \cdot v) = t_i(v)$. We define $\text{Root}(t) = t(\epsilon)$. When $t(v) \in \Sigma_n$, we also say that v is a node of rank n. When t is a Σ -tree and s is a Δ -tree such that dom(t) = dom(s), s is called a Δ -relabeling of t.

When t is a Σ -tree and $v \in \operatorname{dom}(t)$ is a node of t, the subtree of t rooted at v is defined as the tree $t|_v$ with $\operatorname{dom}(t|_v) = \{w : v \cdot w \in \operatorname{dom}(t)\}$ and $t|_v(w) = t(v \cdot w)$. We extend the above notions to tuples of trees as follows: when $\underline{t} = (t_1, \ldots, t_n)$ is an n-tuple of trees, let $\operatorname{dom}(\underline{t}) = \bigcup_{i=1}^n \{i \cdot v : v \in \operatorname{dom}(t_i)\}$, and for any node $i \cdot v \in \operatorname{dom}(\underline{t})$, let $\underline{t}(i \cdot v) = t_i(v)$ and $\underline{t}|_{i \cdot v} = t_i|_v$.

Suppose Σ and Δ are ranked alphabets and h is a rank-preserving mapping $\Sigma \to \Delta$, i.e., for any $n \in R$ and $\sigma \in \Sigma_n$, $h(\sigma)$ is contained in Δ_n . Then h determines a *literal tree homomorphism* $T_{\Sigma} \to T_{\Delta}$, also denoted h, defined as follows: for any tree $t \in T_{\Sigma}$, let dom(h(t)) = dom(t), and for any node $v \in \text{dom}(t)$, let h(t)(v) = h(t(v)). Thus, h(t) is a Δ -relabeling of t.

When Σ is a ranked alphabet, let $\Sigma(\bullet)$ denote its enrichment by a new constant symbol \bullet . A Σ -context is a tree $\zeta \in T_{\Sigma(\bullet)}$ in which \bullet occurs exactly once. When ζ is a Σ -context and t is a Σ -tree, $\zeta(t)$ denotes the Σ -tree resulting from ζ by substituting t in place of the "hole" \bullet . When $L \subseteq T_{\Sigma}$ is a tree language and ζ is a Σ -context, the quotient of L with respect to ζ is the tree language $\zeta^{-1}(L) = \{t : \zeta(t) \in L\}.$

Suppose Σ is a ranked alphabet. A Σ -algebra $\mathbb{A} = (A, \Sigma)$ consists of a

nonempty set A of states and for each symbol $\sigma \in \Sigma_n$ an associated elementary operation $\sigma^{\mathbb{A}} : A^n \to A$. Subalgebras, homomorphisms, quotients etc. are defined as usual, cf. [13]. A Σ -tree automaton is a Σ -algebra which contains no proper subalgebra. A tree automaton $\mathbb{A} = (A, \Sigma)$ is called finite if A is finite; if |A| = 1, \mathbb{A} is called trivial.

In any Σ -algebra \mathbb{A} , any tree $t \in T_{\Sigma}$ evaluates to a state $t^{\mathbb{A}} \in A$ defined as usual. Thus, a Σ -algebra $\mathbb{A} = (A, \Sigma)$ is a tree automaton if and only if all of its states are accessible, i.e. for each $a \in A$ there exists some tree $t \in T_{\Sigma}$ with $t^{\mathbb{A}} = a$. The connected part of a Σ -algebra \mathbb{A} is the tree automaton which is the subalgebra of \mathbb{A} determined by the states $t^{\mathbb{A}}$, where t ranges over T_{Σ} .

Suppose that A is a Σ -tree automaton. When also a set $A' \subseteq A$ is given, A recognizes the tree language $L_{\mathbb{A},A'} = \{t : t^{\mathbb{A}} \in A'\}$ with the set A' of final states. When $A' = \{a\}$ is a singleton set, we write just $L_{\mathbb{A},a}$. A tree language Lis recognizable by the tree automaton A if $L = L_{\mathbb{A},A'}$ for some set $A' \subseteq A$ of final states. A tree language is called regular if it is recognizable by some finite tree automaton.

We say that the tree automaton $\mathbb{B} = (B, \Delta)$ is a renaming of the tree automaton $\mathbb{A} = (A, \Sigma)$ if $B \subseteq A$ and each elementary operation of \mathbb{B} is a restriction of an elementary operation of \mathbb{A} . When $\mathbb{A} = (A, \Sigma)$ is a tree automaton, Δ is a ranked alphabet and $h : \Delta \to \Sigma$ is a rank-preserving mapping, then h determines the renaming \mathbb{B} which is the connected part of the algebra $\mathbb{A}' = (A, \Delta)$ where for each $\delta \in \Delta, \ \delta^{\mathbb{A}'} = (h(\delta))^{\mathbb{A}}$.

When $\mathbb{A} = (A, \Sigma)$ and $\mathbb{B} = (B, \Sigma)$ are tree automata, their *direct product* $\mathbb{A} \times \mathbb{B}$ is the connected part of the Σ -algebra $\mathbb{C} = (A \times B, \Sigma)$, where for each $\sigma \in \Sigma_n$ and states $a_1, \ldots, a_n \in A, b_1, \ldots, b_n \in B$,

$$\sigma^{\mathbb{C}}((a_1, b_1), \dots, (a_n, b_n)) = (\sigma^{\mathbb{A}}(a_1, \dots, a_n), \sigma^{\mathbb{B}}(b_1, \dots, b_n)).$$

We call a nonempty class **V** of finite tree automata a *pseudovariety of finite* tree automata if it is closed under renamings, direct products and quotients. A closely related notion is that of literal varieties of tree languages: a nonempty class \mathcal{V} of regular tree languages is a *literal variety of tree languages* if it is closed under the Boolean operations, quotients and inverse literal homomorphisms.

There exists an *Eilenberg correspondence* between the lattice of pseudovarieties of finite tree automata and the lattice of literal varieties of tree languages: the mapping

 $\mathbf{K} \mapsto \mathcal{V}_{\mathbf{K}} = \{L : L \text{ is recognizable by some member of } \mathbf{K}\},\$ restricted to pseudovarieties, establishes an order isomorphism between the two

lattices. For more information on (literal) varieties of tree languages the reader is referred to [19], [20], [21], [6].

3. The logic $XTL(\mathcal{L})$

In this section we introduce an extension of the logics $FTL(\mathcal{L})$ defined in [6] and further investigated in [8], [9].

Each modal operator of the logic CTL corresponds to a regular tree language in a canonical way, cf. [6]. For example, consider the ranked alphabet Bool which contains exactly two symbols, \uparrow_n and \downarrow_n for each $n \in R$. As a shorthand, let $UP = \{\uparrow_n: n \in R\}$ and DOWN = $\{\downarrow_n: n \in R\}$. (For technical reasons, we fix an arbitrary ordering \langle_{Bool} satisfying $\uparrow_n \langle_{Bool}\downarrow_n$ for each $n \in R$.) Then the EF* (nonstrict existential future) modality corresponds to the regular tree language in T_{Bool} consisting of those trees having at least one node labeled in UP. Further examples are given in Examples 1 and 2. Conversely, as argued in [6], each regular tree language can in turn be seen as a modal operator. This allows us to treat various temporal logics on trees in a unified manner. We make these ideas more precise in the following definitions.

Let \mathcal{L} be a class of tree languages and let Σ be a ranked alphabet. The set of $\text{XTL}(\mathcal{L})$ -formulas over Σ is the least set satisfying the following conditions:

- (1) The symbol \downarrow is an XTL(\mathcal{L})-formula (of depth 0).
- (2) For any ranked alphabet Δ , rank-preserving mapping $\pi : \Sigma \to \Delta$ and Δ -tree language $L \in \mathcal{L}$, (L, π) is an (atomic) XTL(\mathcal{L})-formula (of depth 0).
- (3) When φ is an XTL(L)-formula (of depth d), then (¬φ) is also an XTL(L)-formula (of depth d).
- (4) When φ and ψ are XTL(\mathcal{L})-formulas (of maximal depth d), then ($\varphi \lor \psi$) is also an XTL(\mathcal{L})-formula (of depth d).
- (5) When Δ is a ranked alphabet, $L \in \mathcal{L}$ is a Δ -tree language and for each $\delta \in \Delta$, φ_{δ} is an XTL(\mathcal{L})-formula over Σ (of maximal depth d), then $L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ is an XTL(\mathcal{L})-formula (of depth d + 1).

We now turn to the definition of the semantics. We need to define what it means that a Σ -tree *t* satisfies an $\text{XTL}(\mathcal{L})$ -formula φ over Σ , in notation $t \models \varphi$. Since Boolean connectives and the falsity symbol \downarrow are handled as usual, we only concentrate on two types of formulas.

(1) If $\varphi = (L, \pi)$ for some rank-preserving mapping $\pi : \Sigma \to \Delta$ and Δ -tree language $L \in \mathcal{L}$, then $t \models \varphi$ if and only if $\pi(t)$ is contained in L;

(2) If $\varphi = L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ then $t \models \varphi$ if and only if the *characteristic tree* \hat{t} of t determined by the family $(\varphi_{\delta})_{\delta \in \Delta}$ is contained in L.

Here \hat{t} is a Δ -relabeling of t, defined as follows: for every node $v \in \text{dom}(t)$ with $t(v) \in \Sigma_n$, $\hat{t}(v) = \delta$, where δ is either the first symbol in Δ_n with $t|_v \models \varphi_{\delta}$; or there is no such symbol and δ is the last element of Δ_n .

We use the usual shorthands \uparrow for $(\neg \downarrow)$ and $(\varphi \land \psi)$ for $\neg((\neg \varphi) \lor (\neg \psi))$.

An XTL(\mathcal{L})-formula over the ranked alphabet Σ defines the tree language $L_{\varphi} = \{t \in T_{\Sigma} : t \models \varphi\}$. **XTL**(\mathcal{L}) denotes the class of tree languages definable by some XTL(\mathcal{L})-formula. We say that two formulas, φ and ψ are equivalent if $L_{\varphi} = L_{\psi}$.

The logic $\operatorname{FTL}(\mathcal{L})$ [6] differs from the logic $\operatorname{XTL}(\mathcal{L})$ in that the atomic formulas over Σ are \downarrow and the formulas p_{σ} , where $\sigma \in \Sigma$, defining the language of all Σ -trees whose root is labeled σ . We let $\operatorname{FTL}(\mathcal{L})$ denote the class of tree languages definable by the formulas of the logic $\operatorname{FTL}(\mathcal{L})$.

Example 1. Let $R = \{0, 2\}$, $\Sigma_2 = \{f\}$, $\Sigma_0 = \{a, b\}$. Consider the rankpreserving mapping $\pi : \Sigma \to \text{Bool}$ given by $\pi(f) = \downarrow_2$, $\pi(a) = \uparrow_0$ and $\pi(b) = \downarrow_0$. Let L_{even} be the set of all trees in T_{Bool} with an even number of nodes labeled in UP. Then the formula $\psi = \neg(L_{\text{even}}, \pi)$ defines the set of all Σ -trees having an odd number of leaves labeled a. Let φ_{\uparrow_2} be the formula ψ defined above, and let $\varphi_{\delta} = \downarrow$ for all $\delta \in \text{Bool}, \delta \neq \uparrow_2$. Then the formula $L_{\text{even}}(\delta \mapsto \varphi_{\delta})_{\delta \in \text{Bool}}$ defines the set of all Σ -trees with an even number of non-leaf subtrees having an odd number of leaves labeled a.

Example 2. In this example let $R = \{0, 1\}$. When Σ is a ranked alphabet (of rank type R), then any Σ -tree determines a word over Σ_1 which is the sequence of node labels from the root to the leaf of the tree not including the leaf label. By extension, each tree language over Σ determines a word language over Σ_1 . Let L'_{even} be the set of all trees in T_{Bool} with an even number of nodes labeled \uparrow_1 , and let $\mathcal{L} = \{L'_{\text{even}}\}$. Then a tree language $K \subseteq T_{\Sigma}$ is definable in $\text{XTL}(\mathcal{L})$ if and only if the word language determined by K is a (regular) group language whose syntactic group is a p-group for p = 2, see [22]. There is no class \mathcal{L}' such that $\text{FTL}(\mathcal{L}')$ would define the same language class.

The operators **FTL** and **XTL** are related by Proposition 1 below. Let us define the Bool-tree language

 $L_{\uparrow} = \{t \in T_{\text{Bool}} : \text{Root}(t) \in \text{UP}\}.$

Proposition 1. For any class \mathcal{L} of tree languages,

 $\mathbf{FTL}(\mathcal{L}) = \mathbf{XTL}(\mathcal{L} \cup \{L_{\uparrow}\}).$

PROOF. Let Σ be a ranked alphabet. It is clear that for each $\sigma \in \Sigma_n$, the formulas p_{σ} and (L_{\uparrow}, π) define the same language, where $\pi : \Sigma \to \text{Bool maps } \sigma$ to \uparrow_n and all other symbols to a symbol in DOWN. It follows by a straightforward induction argument that $\mathbf{FTL}(\mathcal{L}) \subseteq \mathbf{XTL}(\mathcal{L} \cup \{L_{\uparrow}\})$.

Now let ψ be an $\operatorname{XTL}(\mathcal{L} \cup \{L_{\uparrow}\})$ -formula over the ranked alphabet Σ . By induction on the structure of ψ , we construct an $\operatorname{FTL}(\mathcal{L})$ -formula ψ' defining the language L_{ψ} .

- (1) When $\psi = \downarrow$, then $\psi' = \downarrow$.
- (2) Suppose $\psi = (L_{\uparrow}, \pi)$ for some rank-preserving mapping $\pi : \Sigma \to \text{Bool}$. Then we define ψ' as $\bigvee_{\pi(\sigma) \in \text{UP}} p_{\sigma}$.
- (3) Suppose $\psi = (L, \pi)$ for some Δ -tree language $L \in \mathcal{L}$ and rank-preserving mapping $\pi : \Sigma \to \Delta$. Then we define ψ' as $L(\delta \mapsto \psi_{\delta})$, where $\psi_{\delta} = \bigvee_{\pi(\sigma)=\delta} p_{\sigma}$ for each δ .
- (4) When $\psi = (\neg \psi_1)$ or $\psi = (\psi_1 \lor \psi_2)$, we define ψ' as $(\neg \psi'_1)$ and $(\psi'_1 \lor \psi'_2)$, respectively.
- (5) When $\psi = L(\delta \mapsto \psi_{\delta})_{\delta \in \Delta}$ for some Δ -tree language $L \in \mathcal{L}$, we define $\psi' = L(\delta \mapsto \psi'_{\delta})_{\delta \in \Delta}$.
- (6) Finally, when $\psi = L_{\uparrow}(\delta \mapsto \psi_{\delta})_{\delta \in \text{Bool}}$, we define ψ' as $\bigvee_{n \in B} \psi_{\uparrow n}$.

In [6], it has been shown that **FTL** is a closure operator preserving regularity. Thus, when \mathcal{L} is a class of regular tree languages then $\mathbf{FTL}(\mathcal{L})$ only contains regular tree languages. Moreover, $\mathbf{FTL}(\mathcal{L})$ is closed under the Boolean operations and inverse literal homomorphisms, and is closed under quotients if and only if each quotient of any language in \mathcal{L} belongs to $\mathbf{FTL}(\mathcal{L})$. The same facts hold for the operator \mathbf{XTL} , with almost the same proofs.

Theorem 1. (1) The operator **XTL** is a closure operator: for any classes $\mathcal{L}, \mathcal{L}'$ of tree languages,

- (a) $\mathcal{L} \subseteq \mathbf{XTL}(\mathcal{L});$
- (b) $\mathbf{XTL}(\mathbf{XTL}(\mathcal{L})) \subseteq \mathbf{XTL}(\mathcal{L}),$
- (c) if $\mathcal{L} \subseteq \mathcal{L}'$, then $\mathbf{XTL}(\mathcal{L}) \subseteq \mathbf{XTL}(\mathcal{L}')$.
- (2) When \mathcal{L} is a class of regular tree languages, then so is $\mathbf{XTL}(\mathcal{L})$.
- (3) For any class L of tree languages, XTL(L) is closed under the Boolean operations and inverse literal homomorphisms, and is closed under quotients if and only if each quotient of any language in L is in XTL(L).

4. Definability and membership

In this section we recall from [8] the notion of the strict Moore-product of tree automata and that of strict Moore pseudovarieties, and relate the operator **XTL** to strict Moore pseudovarieties.

Suppose $\mathbb{A} = (A, \Sigma)$ and $\mathbb{B} = (B, \Delta)$ are tree automata and $\alpha : A \times R \to \Delta$ is a rank-preserving mapping, i.e., for any $n \in R$ and $a \in A$, $\alpha(a, n)$ is contained in Δ_n . Then the *strict Moore-product of* \mathbb{A} and \mathbb{B} determined by α is the tree automaton $\mathbb{A} \times_{\alpha} \mathbb{B}$ which is the connected part of the algebra $\mathbb{C} = (A \times B, \Sigma)$, where for each $\sigma \in \Sigma_n$ and $a_1, \ldots, a_n \in A, b_1, \ldots, b_n \in B$,

$$\sigma^{\mathbb{C}}((a_1, b_1), \dots, (a_n, b_n)) = (\sigma^{\mathbb{A}}(a_1, \dots, a_n), \delta^{\mathbb{B}}(b_1, \dots, b_n))$$

with $\delta = \alpha(\sigma^{\mathbb{A}}(a_1, \ldots, a_n), n).$

A pseudovariety **V** of finite tree automata is called a *strict Moore pseudovariety* if it is also closed under the strict Moore-product. It is clear that for any class **K** of finite tree automata there exists a least strict Moore pseudovariety $\langle \mathbf{K} \rangle_s$ containing **K**.

Proposition 2. Suppose $\mathbb{A} = (A, \Sigma)$ is a tree automaton and \mathcal{L} is a class of tree languages such that each tree language recognizable by \mathbb{A} is in $\mathbf{XTL}(\mathcal{L})$. Then any tree language recognizable by a renaming or quotient of \mathbb{A} is also in $\mathbf{XTL}(\mathcal{L})$.

PROOF. When $\mathbb{B} = (A, \Delta)$ is the renaming of $\mathbb{A} = (A, \Sigma)$ determined by the rank-preserving mapping $\pi : \Delta \to \Sigma$, then each language L recognizable by \mathbb{B} is of the form $\pi^{-1}(K)$, for some Σ -tree language K recognizable by \mathbb{A} . Since $\mathbf{XTL}(\mathcal{L})$ is closed under inverse literal homomorphisms, the claim is proved for renamings.

When \mathbb{B} is a quotient of \mathbb{A} , each language recognizable by \mathbb{B} is also recognizable by \mathbb{A} , which proves the claim for quotients.

Proposition 3. Suppose $\mathbb{A} = (A, \Sigma)$ and $\mathbb{B} = (B, \Sigma)$ are finite tree automata and \mathcal{L} is a class of tree languages such that each tree language recognizable by either \mathbb{A} or \mathbb{B} is in $\mathbf{XTL}(\mathcal{L})$. Then each tree language recognizable by the direct product $\mathbb{A} \times \mathbb{B}$ is also in $\mathbf{XTL}(\mathcal{L})$.

PROOF. It suffices to show that whenever $a \in A$ and $b \in B$ are states, then the tree language $L_{\mathbb{A}\times\mathbb{B},(a,b)}$ is definable in $\text{XTL}(\mathcal{L})$. But when φ_a defines the tree language $L_{\mathbb{A},a}$ and φ_b defines $L_{\mathbb{B},b}$, then $\varphi_a \wedge \varphi_b$ defines $L_{\mathbb{A}\times\mathbb{B},(a,b)}$.

Proposition 4. Suppose $\mathbb{A} = (A, \Sigma)$ and $\mathbb{B} = (B, \Delta)$ are finite tree automata and \mathcal{L} is a class of tree languages such that each tree language recognizable by either \mathbb{A} or \mathbb{B} is in $\mathbf{XTL}(\mathcal{L})$. Then each tree language recognizable by any strict Moore-product $\mathbb{A} \times_{\alpha} \mathbb{B}$ is also in $\mathbf{XTL}(\mathcal{L})$.

PROOF. It suffices to show that whenever $a \in A$ and $b \in B$, then the tree language $L_{\mathbb{A}\times_{\alpha}\mathbb{B},(a,b)}$ is definable in $\operatorname{XTL}(\mathcal{L})$. By assumption, $L_{\mathbb{B},b}$ is definable in $\operatorname{XTL}(\mathcal{L})$, and for each $a' \in A$, $L_{\mathbb{A},a'}$ is definable by some $\operatorname{XTL}(\mathcal{L})$ -formula $\tau_{a'}$. Then $L_{\mathbb{A}\times_{\alpha}\mathbb{B},(a,b)}$ is definable by the $\operatorname{XTL}(\operatorname{XTL}(\mathcal{L}))$ -formula $\tau_a \wedge L_{\mathbb{B},b}(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$, where for each $\delta \in \Delta_n$,

$$\varphi_{\delta} = \bigvee_{\alpha(a',n)=\delta} \tau_{a'}.$$

Since by Theorem 1, **XTL** is a closure operator, the above formula is equivalent to some $\text{XTL}(\mathcal{L})$ -formula.

Using Propositions 2, 3 and 4 we get:

Proposition 5. Suppose **K** is a class of finite tree automata and \mathcal{L} is a class of tree languages such that each tree language recognizable by some member of **K** is definable in $\text{XTL}(\mathcal{L})$. Then each tree language recognizable by some automaton in $\langle \mathbf{K} \rangle_s$ is also definable in $\text{XTL}(\mathcal{L})$.

The converse also holds:

Proposition 6. Suppose \mathcal{L} is a class of (regular) tree languages and \mathbf{K} is a class of finite tree automata such that each member of \mathcal{L} is recognizable by some automaton in \mathbf{K} . Then every tree language definable in $\text{XTL}(\mathcal{L})$ is recognizable by some automaton in $\langle \mathbf{K} \rangle_s$.

PROOF. We argue by induction on the structure of the $\text{XTL}(\mathcal{L})$ -formula φ over Σ .

- (1) If $\varphi = \downarrow$, L_{φ} is the empty set which is recognizable by any tree automaton in $\langle \mathbf{K} \rangle_s$.
- (2) Suppose $\varphi = (L, \pi)$ for some Δ -tree language $L \in \mathcal{L}$ and rank-preserving mapping $\pi : \Sigma \to \Delta$. By assumption, L is recognizable by some tree automaton $\mathbb{B} = (B, \Delta)$ contained in **K**. Then L_{φ} is recognizable by the renaming of \mathbb{B} determined by π .
- (3) Suppose $\varphi = (\neg \varphi_1)$. By the induction hypothesis, L_{φ_1} is recognizable by some member \mathbb{A} of $\langle \mathbf{K} \rangle_s$. Then L_{φ} is also recognizable by \mathbb{A} .
- (4) Suppose $\varphi = (\varphi_1 \lor \varphi_2)$. By the induction hypothesis, L_{φ_i} is recognizable by some member \mathbb{A}_i of $\langle \mathbf{K} \rangle_s$, i = 1, 2. Then L_{φ} is recognizable by the direct product $\mathbb{A}_1 \times \mathbb{A}_2$.
- (5) Suppose $\varphi = L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ for some Δ -tree language $L \in \mathcal{L}$ and family $(\varphi_{\delta})_{\delta \in \Delta}$ of $\operatorname{XTL}(\mathcal{L})$ -formulas. By the induction hypothesis, each $L_{\varphi_{\delta}}$ is recognizable by some member \mathbb{A}_{δ} of $\langle \mathbf{K} \rangle_s$ with some set $A'_{\delta} \subseteq A_{\delta}$ of final

states. Moreover, by assumption L is recognizable by some $\mathbb{B} = (B, \Delta) \in \mathbf{K}$ with some set B' of final states. Let us define the strict Moore-product $\mathbb{C} = (\prod_{\delta \in \Delta} \mathbb{A}_{\delta}) \times_{\alpha} \mathbb{B}$, where for each state $(a_{\delta})_{\delta \in \Delta}$ of the direct product $(\prod_{\delta \in \Delta} \mathbb{A}_{\delta})$ and integer $n \in R$, $\alpha((a_{\delta})_{\delta \in \Delta}, n) = \overline{\delta} \in \Delta_n$ if one of the following holds:

- (a) either $a_{\overline{\delta}} \in A'_{\delta}$ and $\overline{\delta}$ is the first such element of Δ_n ;
- (b) or $a_{\delta'} \notin A'_{\delta'}$ for each $\delta' \in \Delta_n$ and $\overline{\delta}$ is the last element of Δ_n .

Then L_{φ} is recognized by \mathbb{C} with the set $\{((a_{\delta})_{\delta \in \Delta}, b) : a_{\delta} \in A_{\delta}, b \in B'\}$ of final states. \Box

Propositions 5 and 6 imply the following characterization:

Theorem 2. For any class K of finite tree automata,

 $\mathcal{V}_{\langle \mathbf{K} \rangle_s} = \mathbf{XTL}(\mathcal{V}_{\mathbf{K}}).$

Corollary 1. The mapping $\mathbf{K} \mapsto \mathcal{V}_{\mathbf{K}}$ establishes an order isomorphism between the lattice of strict Moore pseudovarieties of finite tree automata and the lattice of literal varieties of tree languages \mathcal{V} satisfying $\mathbf{XTL}(\mathcal{V}) = \mathcal{V}$.

Observe that Proposition 6 implies also that the operator **XTL** preserves regularity, i.e., when \mathcal{L} is a class of regular tree languages, **XTL**(\mathcal{L}) is also a class of regular tree languages.

5. Ehrenfeucht-Fraïssé-type games

In this section we give a game-theoretic characterization of the logics $XTL(\mathcal{L})$.

Let \mathcal{L} be a class of tree languages, $n \geq 0$ an integer, and let s, t be Σ -trees for some ranked alphabet Σ . The *n*-round $\text{XTL}(\mathcal{L})$ -game on the pair (s, t) of trees is played between two competing players, Spoiler and Duplicator, according to the following rules:

- (1) If there exists an atomic formula (L, π) which is satisfied by exactly one of the trees s and t, then Spoiler wins. Otherwise, Step 2 follows.
- (2) If n = 0, Duplicator wins. Otherwise, Step 3 follows.
- (3) Spoiler chooses a tree language $L \in \mathcal{L}$, over some ranked alphabet Δ , and Δ -relabelings \hat{s} and \hat{t} of s and t, respectively, such that exactly one of \hat{s} and \hat{t} is contained in L. If he cannot do so, Duplicator wins; otherwise, Step 4 follows.

287

(4) Duplicator chooses two nodes of the pair (s,t), x and y, of the same rank, such that (ŝ,t̂)(x) ≠ (ŝ,t̂)(y). (For the notation see the 5th paragraph of Section 2.) If he cannot do so, Spoiler wins. Otherwise, an (n − 1)-round XTL(L)-game is played on the pair ((s,t)|x, (s,t)|y). The player winning the subgame also wins the whole game.

Clearly, for any class \mathcal{L} of tree languages, integer $n \geq 0$ and pair (s, t) of Σ -trees, one of the players has a winning strategy in the *n*-round $\operatorname{XTL}(\mathcal{L})$ -game played on (s,t). Let $s \sim_{\mathcal{L}}^{n} t$ denote that Duplicator has a winning strategy in the *n*-round $\operatorname{XTL}(\mathcal{L})$ -game on the pair (s,t). Also, when *s* and *t* are Σ -trees for some ranked alphabet Σ , \mathcal{L} is a class of tree languages and $n \geq 0$ is an integer, let $s \equiv_{\mathcal{L}}^{n} t$ denote that *s* and *t* satisfy the same set of $\operatorname{XTL}(\mathcal{L})$ -formulas (over Σ) having depth at most *n*.

Proposition 7. For any class \mathcal{L} of tree languages, integer $n \geq 0$, ranked alphabet Σ , and pair s, t of Σ -trees, if $s \sim_{\mathcal{L}}^{n} t$ then $s \equiv_{\mathcal{L}}^{n} t$.

PROOF. We argue by induction on n, and by contraposition. Suppose $s \not\equiv_{\mathcal{L}}^{n} t$.

When n = 0, there exists an XTL(\mathcal{L})-formula (L, π) for some Δ -tree language $L \in \mathcal{L}$ and rank-preserving mapping $\pi : \Sigma \to \Delta$ separating s and t. Then exactly one of the Δ -trees $\pi(s)$ and $\pi(t)$ is contained in L, thus Spoiler indeed wins the 0-round XTL(\mathcal{L})-game on (s, t).

Let n > 0 and suppose that we have proved the claim for n-1. From $s \not\equiv_{\mathcal{L}}^{n} t$ we get that either $s \not\equiv_{\mathcal{L}}^{n-1} t$, or there exists an $\operatorname{XTL}(\mathcal{L})$ -formula $L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ of depth n separating s and t.

When $s \not\equiv_{\mathcal{L}}^{n-1} t$ then by the induction hypothesis $s \not\sim_{\mathcal{L}}^{n-1} t$, and thus $s \not\sim_{\mathcal{L}}^{n} t$.

Assume now that s and t are separated by the $\operatorname{XTL}(\mathcal{L})$ -formula $\varphi = L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ of depth n, say $s \models \varphi$ and $t \not\models \varphi$. Without loss of generality we may assume that the family $(\varphi_{\delta})_{\delta \in \Delta}$ is *deterministic*, i.e. for any tree $t \in T_{\Sigma}$ there exists exactly one $\delta \in \Delta_k$ with $t \models \varphi_{\delta}$, where k is the arity of the root symbol of t. To see this, consider any family $(\psi_{\delta})_{\delta \in \Delta}$ of $\operatorname{XTL}(\mathcal{L})$ -formulas. Then the family $(\psi'_{\delta})_{\delta \in \Delta}$ defined as

$$\psi_{\delta}' = \begin{cases} \psi_{\delta} \land \neg \bigvee_{\delta' \in \Delta_k, \delta' < \delta} \psi_{\delta'} & \text{if } \delta \in \Delta_k \text{ is not the maximal element of } \Delta_k; \\ \neg \bigvee_{\delta' \in \Delta_k, \delta' < \delta} \psi_{\delta'} & \text{otherwise,} \end{cases}$$

is a deterministic family of formulas equivalent to $(\psi_{\delta})_{\delta \in \Delta}$, i.e., for any tree t, the respective characteristic trees coincide.

A winning strategy for Spoiler is given as follows: let Spoiler choose the Δ -tree language $L \in \mathcal{L}$ and the characteristic trees \hat{s} and \hat{t} of s and t, respectively,

determined by the family $(\varphi_{\delta})_{\delta \in \Delta}$. From the semantics of $\operatorname{XTL}(\mathcal{L})$ we get that $\hat{s} \in L$ and $\hat{t} \notin L$, thus this is a valid move. Now assume Duplicator responds by choosing some nodes x, y of (s, t) of the same rank such that $(\hat{s}, \hat{t})(x) \neq (\hat{s}, \hat{t})(y)$. Let $\overline{\delta} = (\hat{s}, \hat{t})(x)$. Since the family $(\varphi_{\delta})_{\delta \in \Delta}$ is deterministic, $\varphi_{\overline{\delta}}$ separates $(s, t)|_x$ and $(s, t)|_y$. Since $\varphi_{\overline{\delta}}$ is of depth at most n-1, applying the induction hypothesis we get that Spoiler wins the (n-1)-round $\operatorname{XTL}(\mathcal{L})$ -game on $((s, t)|_x, (s, t)|_y)$, and thus wins the whole game.

Proposition 8. For any class \mathcal{L} of tree languages, integer $n \geq 0$, ranked alphabet Σ and trees $s, t \in T_{\Sigma}$, if $s \equiv_{\mathcal{L}}^{n} t$ then $s \sim_{\mathcal{L}}^{n} t$.

PROOF. We again argue by induction on n and by contraposition. Let s, t be Σ -trees with $s \not\sim_{\mathcal{L}}^{n} t$.

If n = 0, then for some ranked alphabet Δ , rank-preserving mapping $\pi : \Sigma \to \Delta$ and Δ -tree language $L \in \mathcal{L}$, exactly one of the trees $\pi(s)$ and $\pi(t)$ is contained in L. Thus, the XTL(\mathcal{L})-formula (L, π) of depth 0 separates s and t.

Suppose that n > 0 and we have proved the claim for n - 1. We consider two cases. If Spoiler has a winning strategy in the (n - 1)-round $\operatorname{XTL}(\mathcal{L})$ -game, then by the induction hypothesis we have $s \not\equiv_{\mathcal{L}}^{n-1} t$, which clearly implies $s \not\equiv_{\mathcal{L}}^{n} t$. Otherwise, suppose that Spoiler chooses a Δ -tree language $L \in \mathcal{L}$ and two relabelings of the trees s and t in the first step following his winning strategy in the n-round game. Let the two relabelings be $\hat{s} \in L$ and $\hat{t} \notin L$. Then for any pair x, y of nodes of (s, t) of the same rank with $(\hat{s}, \hat{t})(x) \neq (\hat{s}, \hat{t})(y)$, Spoiler has a winning strategy in the (n - 1)-round $\operatorname{XTL}(\mathcal{L})$ -game on $((s, t)|_x, (s, t)|_y)$. Applying the induction hypothesis, we get that for any such pair (x, y) there exists an $\operatorname{XTL}(\mathcal{L})$ -formula $\varphi_{x,y}$ of depth at most n - 1 with $(s, t)|_x \models \varphi_{x,y}$ and $(s, t)|_y \not\models \varphi_{x,y}$.

For each $\delta \in \Delta_k$, let us define the formula

$$\varphi_{\delta} = \bigvee_{(\hat{s},\hat{t})(x)=\delta} \bigwedge_{(\hat{s},\hat{t})(y)\neq\delta} \varphi_{x,y},$$

where x and y range over the nodes of (s, t) of rank k. Observe that

$$(\hat{s}, \hat{t})(z) = \delta \Rightarrow (s, t)|_{z} \models \varphi_{\delta} \tag{1}$$

for any node z of (s, t) and symbol $\delta \in \Delta$. Also, if z is a k-ary node of (s, t), then

$$(s,t)|_{z} \models \varphi_{\delta} \Rightarrow (\hat{s},\hat{t})(z) = \delta.$$
⁽²⁾

Indeed, suppose that z is a k-ary node, $(\hat{s}, \hat{t})(z) \neq \delta$ and $(s, t)|_z \models \varphi_{\delta}$. Then there exists a node x with $(\hat{s}, \hat{t})(x) = \delta$ such that $(s, t)|_z \models \bigwedge_{(\hat{s}, \hat{t})(y) \neq \delta} \varphi_{x,y}$, where y

ranges over all nodes of (s,t) of rank k. Then $(s,t)|_z \models \varphi_{x,z}$, which contradicts the definition of the formula $\varphi_{x,z}$.

From (1) and (2) we get that \hat{s} and \hat{t} are the characteristic trees of s and t, respectively, determined by the family $(\varphi_{\delta})_{\delta \in \Delta}$. Now since $\hat{s} \in L$ and $\hat{t} \notin L$, we conclude that the $\text{XTL}(\mathcal{L})$ -formula $L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ of depth n separates s and t, completing the proof.

Theorem 3. For any class \mathcal{L} of tree languages and any $n \ge 0$, the relations $\sim_{\mathcal{L}}^{n}$ and $\equiv_{\mathcal{L}}^{n}$ coincide.

Corollary 2. The following are equivalent for any finite class \mathcal{L} of tree languages and any tree language L:

- i) $L \in \mathbf{XTL}(\mathcal{L});$
- ii) there exists an integer $n \ge 0$ such that for all $s \in L$ and $t \notin L$, Spoiler has a winning strategy in the n-round $\text{XTL}(\mathcal{L})$ -game on (s, t).

PROOF. Suppose \mathcal{L} is a finite class of tree languages, L is a tree language and $n \geq 0$ is an integer such that Spoiler wins the *n*-round $\text{XTL}(\mathcal{L})$ -game on any pair (s, t) of trees with $s \in L$ and $t \notin L$.

Then for any such pair (s,t) of trees there exists an $\text{XTL}(\mathcal{L})$ -formula $\varphi_{s,t}$ such that $s \models \varphi_{s,t}$ and $t \not\models \varphi_{s,t}$. Each of these formulas is of depth at most n.

Since \mathcal{L} is finite, by standard arguments from finite model theory, it follows that, up to equivalence, there exist only a finite number of formulas of depth at most n.

Thus, for any tree $s \in L$, the "infinitary conjunction" $\bigwedge_{t \notin L} \varphi_{s,t}$ is equivalent to some $\operatorname{XTL}(\mathcal{L})$ -formula φ_s of depth at most n. Also the "infinitary disjunction" $\bigvee_{s \in L} \varphi_s$ is equivalent to some $\operatorname{XTL}(\mathcal{L})$ -formula φ ; it is straightforward to see that $L_{\varphi} = L$ indeed holds, proving ii) \rightarrow i). The other direction is a direct consequence of Theorem 3.

6. Modified games

We have argued that the logics $\mathrm{FTL}(\mathcal{L})$ may be seen as special cases of the logics $\mathrm{XTL}(\mathcal{L})$. We may thus modify the game introduced in the previous section to obtain a game-theoretic characterization of the logics $\mathrm{FTL}(\mathcal{L})$. In this section, we introduce for each $n \geq 0$ and class \mathcal{L} of tree languages the *n*round $\mathrm{FTL}(\mathcal{L})$ -game characterizing the expressive power of $\mathrm{FTL}(\mathcal{L})$. Second, we introduce a modified *n*-round $\mathrm{XTL}(\mathcal{L})$ -game, applicable to certain classes \mathcal{L} of tree languages. This game resembles the original Ehrenfeucht–Fraïssé game more

than the *n*-round XTL(\mathcal{L})-game of the previous section. A combination of the two modifications is also introduced. By selecting special language classes \mathcal{L} , in the last section we derive games for some familiar temporal logics on finite trees related to CTL, cf. [1], [24].

Let \mathcal{L} be a class of tree languages, $n \geq 0$, and let s, t be Σ -trees. The *n*-round $\text{FTL}(\mathcal{L})$ -game on the pair (s, t) is played between Spoiler and Duplicator according to the same rules as the *n*-round $\text{XTL}(\mathcal{L})$ -game, except for the first step which gets replaced by:

1'. If $\operatorname{Root}(s) \neq \operatorname{Root}(t)$, Spoiler wins. Otherwise, Step 2 follows.

(We may also modify step 4 by dropping the requirement that x and y have the same rank.) The following characterization theorem holds:

Theorem 4. For any class \mathcal{L} of tree languages, integer $n \geq 0$ and trees $s, t \in T_{\Sigma}$, Duplicator has a winning strategy in the *n*-round $\text{FTL}(\mathcal{L})$ -game if and only if s and t satisfy the same set of $\text{FTL}(\mathcal{L})$ -formulas of depth at most n. Consequently, if \mathcal{L} is finite, then for any tree language $L, L \in \text{FTL}(\mathcal{L})$ if and only if there exists an $n \geq 0$ such that Spoiler has a winning strategy in the *n*-round $\text{FTL}(\mathcal{L})$ -game on any pair (s, t) of trees with $s \in L$ and $t \notin L$.

Now we turn to the modified *n*-round $\text{XTL}(\mathcal{L})$ -game. Recall that each ranked alphabet Σ comes with a fixed lexicographic ordering $<_{\Sigma}$. We define the following partial order \preceq_{Σ} on Σ -trees: when $s, t \in T_{\Sigma}$, let $s \preceq_{\Sigma} t$ if and only if dom(s) =dom(t) and for any node $v \in \text{dom}(s)$, either s(v) = t(v) or t(v) is the last element of the corresponding Σ_n with respect to $<_{\Sigma}$. If in addition $s \neq t$ holds, then we write $s \prec_{\Sigma} t$.

Let \mathcal{L} be a class of tree languages, let $n \geq 0$, and let s, t be Σ -trees. The modified n-round $\text{XTL}(\mathcal{L})$ -game on the pair (s, t) is played between Spoiler and Duplicator according to the following rules:

- (1-2) These steps are the same as in the *n*-round $\text{XTL}(\mathcal{L})$ -game.
 - (3) Spoiler chooses one of the two trees, say s, some Δ -tree language $L \in \mathcal{L}$ and a relabeling \hat{s} of s such that $\hat{s} \in L$ and for any $s' \in T_{\Delta}$, if $\hat{s} \prec_{\Delta} s'$ then $s' \notin L$. (That is, \hat{s} is a *maximal* relabeling of s in L). If he cannot do so, Duplicator wins, otherwise Step 4 follows.
 - (4) Duplicator chooses a maximal relabeling \hat{t} of t in the language L. If he cannot do so (i.e., t has no relabeling in L), then Spoiler wins, otherwise Step 5 follows.
 - (5) Spoiler chooses a node y of t such that $\delta = \hat{t}(y)$ is not the last element of

the respective Δ_k . If he cannot do so, Duplicator wins, otherwise Step 6 follows.

(6) Duplicator chooses a node x of s with ŝ(x) = δ. If he cannot do so, Spoiler wins. Otherwise, a modified (n - 1)-round XTL(L)-game is played on the pair (s|x,t|y). The player winning the subgame also wins the whole game.

It is clear that for any class \mathcal{L} of tree languages, $n \geq 0$, ranked alphabet Σ and Σ -trees s, t, one of the players has a winning strategy in the modified *n*-round $\text{XTL}(\mathcal{L})$ -game on (s, t). Let $s \approx_{\mathcal{L}}^{n} t$ denote that Duplicator possesses such a strategy.

When Σ is a ranked alphabet, we also define the following partial ordering \leq_{Σ} on Σ -trees: let $s \leq_{\Sigma} t$ if and only if dom(s) = dom(t), and for any node $x \in \text{dom}(s), s(x) \leq_{\Sigma} t(x)$. We omit the subscript when it is clear from the context.

We say that a tree language $L \subseteq T_{\Sigma}$ is downwards closed if whenever s and t are Σ -trees with $s \leq_{\Sigma} t$ and $t \in L$, then also $s \in L$.

Proposition 9. For any class \mathcal{L} of downwards closed tree languages, integer $n \geq 0$, ranked alphabet Σ and trees $s, t \in T_{\Sigma}$, if $s \approx_{\mathcal{L}}^{n} t$ then $s \equiv_{\mathcal{L}}^{n} t$.

PROOF. The proof of this statement is similar to that of Proposition 7: only the case when s and t are separated by some $\text{XTL}(\mathcal{L})$ -formula $\varphi = L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$ of depth n > 0 needs to be elaborated. Again, we can assume that $s \models \varphi, t \not\models \varphi$ and that the family $(\varphi_{\delta})_{\delta \in \Delta}$ is deterministic.

We give a winning strategy for Spoiler as follows. Let s' be the characteristic tree of s determined by the family $(\varphi_{\delta})_{\delta \in \Delta}$. Let Spoiler choose the tree s, the tree language L over the alphabet Δ and an arbitrary maximal relabeling \hat{s} of sin L satisfying $s' \preceq_{\Delta} \hat{s}$. Since $s' \in L$, such a tree is guaranteed to exist. Note that for any node x of s, if $\hat{s}(x) = \delta$ is not the maximal element of the respective Δ_k , then $s|_x \models \varphi_{\delta}$.

Suppose Duplicator responds by choosing a maximal relabeling \hat{t} of t in L. We claim that there exists a node y of t such that $\overline{\delta} = \hat{t}(y)$ is not the last element of the respective Δ_k , moreover, $t|_y \not\models \varphi_{\overline{\delta}}$. Indeed, suppose this is not the case. Then (since the family $(\varphi_{\delta})_{\delta \in \Delta}$ is deterministic) the characteristic tree t' of tdetermined by $(\varphi_{\delta})_{\delta \in \Delta}$ satisfies $t' \preceq_{\Delta} \hat{t}$, and hence also $t' \leq_{\Delta} \hat{t}$, so that $t' \in L$ since L is downwards closed. This contradicts the assumption that $t \not\models \varphi$. Let Spoiler choose such a node y of t in Step 5 and let $\overline{\delta} \in \Delta_k$ be the label $\hat{t}(y)$.

Assume Duplicator responds by choosing a node x of s with $\hat{s}(x) = \overline{\delta}$. Since $\overline{\delta}$ is not the maximal element of Δ_k , $s|_x \models \varphi_{\overline{\delta}}$. Hence, the formula $\varphi_{\overline{\delta}}$ of depth at

most n-1 separates $s|_x$ and $t|_y$. Applying the induction hypothesis we get that $s|_x \not\approx_{\mathcal{L}}^{n-1} t|_y$, thus $s \not\approx_{\mathcal{L}}^n t$, proving the statement.

Proposition 10. For any class \mathcal{L} of downwards closed tree languages, integer $n \geq 0$, ranked alphabet Σ and trees $s, t \in T_{\Sigma}$, if $s \equiv_{\mathcal{L}}^{n} t$ then $s \approx_{\mathcal{L}}^{n} t$.

PROOF. The proof of this statement is similar to that of Proposition 8. We only elaborate the case when $s \not\approx_{\mathcal{L}}^{n} t$ and $s \approx_{\mathcal{L}}^{n-1} t$ hold for n > 0.

Suppose that Spoiler chooses the maximal relabeling \hat{s} of s in L for some Δ -tree language $L \in \mathcal{L}$ according to his winning strategy. Then, for any maximal relabeling \hat{t} of t in L, Spoiler can pick a node $y_{\hat{t}}$ of t (and of \hat{t}) such that $\hat{t}(y_{\hat{t}}) = \delta_{\hat{t}}$ is not the maximal element of the respective Δ_k , moreover, Spoiler wins the (n-1)-round game on any pair $(s|_x, t|_{y_{\hat{t}}})$ with $\hat{s}(x) = \delta_{\hat{t}}$. Applying the induction hypothesis we get that for any maximal relabeling \hat{t} and node x of s with $\hat{s}(x) = \delta_{\hat{t}}$, there exists an XTL(\mathcal{L})-formula $\varphi_{\hat{t},x}$ of depth at most n-1 separating $s|_x$ and $t|_{y_{\hat{t}}}$, say $s|_x \models \varphi_{\hat{t},x}$ and $t|_{y_{\hat{t}}} \not\models \varphi_{\hat{t},x}$.

Now let us define the formula

$$\varphi_{\delta} = \bigwedge_{\delta_{\hat{t}} = \delta} \bigvee_{\hat{s}(x) = \delta} \varphi_{\hat{t}, x}$$

for each $\delta \in \Delta$ that is not the maximal element of the respective Δ_k , where \hat{t} ranges over the maximal relabelings of t in L and x ranges over the nodes of s. Moreover, whenever δ is the maximal element of the respective Δ_k , let φ_{δ} be the formula \uparrow . Finally, let φ stand for the $\text{XTL}(\mathcal{L})$ -formula $L(\delta \mapsto \varphi_{\delta})_{\delta \in \Delta}$.

We claim that $t \not\models \varphi$. Indeed,

- $$\begin{split} t \models \varphi \Leftrightarrow \text{the characteristic tree } t' \text{ of } t \text{ determined by } (\varphi_{\delta})_{\delta \in \Delta} \text{ is in } L \\ \Leftrightarrow \text{ for some relabeling } \hat{t} \in L \text{ of } t \text{ we have } t|_{y} \models \varphi_{\hat{t}(y)} \\ \text{ for all nodes } y \text{ of } t \text{ such that } \hat{t}(y) \text{ is not the maximal element} \end{split}$$
 - of the respective Δ_k (since L is downwards closed)
 - \Leftrightarrow for some maximal relabeling $\hat{t} \in L$ of t we have $t|_y \models \varphi_{\hat{t}(y)}$ for all nodes y of t such that $\hat{t}(y)$ is not the maximal element of the respective Δ_k .

However, the latter is clearly not possible. Indeed, suppose that $t|_{y_{\hat{t}}} \models \varphi_{\delta_{\hat{t}}}$. Then, $t|_{y_{\hat{t}}} \models \bigvee_{\hat{s}(x)=\delta_{\hat{t}}} \varphi_{\hat{t},x}$, and thus $t|_{y_{\hat{t}}} \models \varphi_{\hat{t},x}$ for some node x of s with $\hat{s}(x) = \delta_{\hat{t}}$, contradicting the definition of the formulas $\varphi_{\hat{t},x}$.

We also claim that $s \models \varphi$. Since *L* is downwards closed and \hat{s} is in *L*, it suffices to show that $s' \leq_{\Delta} \hat{s}$, where s' is the characteristic tree of *s* determined by the family $(\varphi_{\delta})_{\delta \in \Delta}$. Thus, it suffices to show that for any node *z* of *s* for

which $\hat{s}(z) = \delta$ is not the maximal element of the respective Δ_k , we have $s|_z \models \varphi_\delta$ (implying $s'(z) \leq \Delta \hat{s}(z)$). This is clear, since for any relabeling \hat{t} with $\delta_{\hat{t}} = \delta$ we have $s|_z \models \varphi_{\hat{t},z}$ by the definition of the formulas $\varphi_{\hat{t},z}$.

Hence the XTL(\mathcal{L})-formula φ of depth at most n separates s and t, thus $s \not\equiv_{\mathcal{L}}^{n} t$ and the statement is proved.

Propositions 9 and 10 imply the following characterization:

Theorem 5. Suppose \mathcal{L} is a class of downwards closed tree languages. Then for any $n \geq 0$ and trees $s, t \in T_{\Sigma}$, Duplicator has a winning strategy on (s, t) in the modified *n*-round XTL(\mathcal{L})-game if and only if *s* and *t* satisfy the same set of XTL(\mathcal{L})-formulas of depth at most *n*. Consequently, if \mathcal{L} is finite, then for any tree language $L, L \in \mathbf{XTL}(\mathcal{L})$ if and only if there exists some $n \geq 0$ such that Spoiler has a winning strategy in the modified *n*-round XTL(\mathcal{L})-game on any pair (s,t) of trees with $s \in L$ and $t \notin L$.

It is possible to combine the $\text{FTL}(\mathcal{L})$ -game and the modified $\text{XTL}(\mathcal{L})$ -game. We call the resulting game the *modified n-round* $\text{FTL}(\mathcal{L})$ -game. A characterization theorem similar to the previous ones again holds:

Theorem 6. Suppose \mathcal{L} is a class of downwards closed tree languages. Then for any $n \geq 0$ and trees $s, t \in T_{\Sigma}$, Duplicator has a winning strategy on (s, t) in the modified *n*-round $\operatorname{FTL}(\mathcal{L})$ -game if and only if *s* and *t* satisfy the same set of $\operatorname{FTL}(\mathcal{L})$ -formulas of depth at most *n*. Consequently, if \mathcal{L} is finite, then for any tree language $L, L \in \operatorname{FTL}(\mathcal{L})$ if and only if there exists some $n \geq 0$ such that Spoiler has a winning strategy in the modified *n*-round $\operatorname{FTL}(\mathcal{L})$ -game on any pair (s,t) of trees with $s \in L$ and $t \notin L$.

7. Examples

Recall the definition of the ranked alphabet Bool from Sec. 3, paragraph 2.

Example 3. Let $L_{\rm EF^+}$ and $L_{\rm EF^*}$ denote the Bool-tree languages of those trees having a non-root node labeled in UP, and any node labeled in UP, respectively. Then the logics ${\rm FTL}(\{L_{\rm EF^+}\})$ and ${\rm FTL}(\{L_{\rm EF^*}\})$ are related to the fragments of ${\rm CTL}^2$ determined by the strict and non-strict existential future modalities. The modified n-round ${\rm FTL}(\{L_{\rm EF^+}\})$ -game and ${\rm FTL}(\{L_{\rm EF^*}\})$ -game have the same rules as the corresponding games described in [24]. (Observe that $L_{\rm EF^+}$ and $L_{\rm EF^+}$

 $^{^{2}}$ CTL was originally introduced in [5] as a logic on Kripke structures, or infinite (unranked) trees. Regarding the definition of CTL on finite trees as used here, cf. [6].

are downwards closed.) It is shown in the papers [4], [9], [24] (using in part different arguments), that it is decidable for a regular tree language whether it is definable in these logics. For fragments of CTL involving the next modality and the strict or non-strict existential future modality, we refer to [4], [7].

Example 4. Let $L_{\text{EG}} \subseteq T_{\text{Bool}}$ consist of the Bool-trees having a maximal path p such that each node of p is labeled in UP. Then the logic $\text{FTL}(\{L_{\text{EG}}\})$ corresponds to the (non-strict) EG fragment of CTL. The modified *n*-round $\text{FTL}(\{L_{\text{EG}}\})$ -game characterizing this logic has the following rules, when played on the pair of trees (s, t):

- (1) If $\operatorname{Root}(s) \neq \operatorname{Root}(t)$, Spoiler wins. Otherwise Step 2 follows.
- (2) If n = 0, Duplicator wins. Otherwise Step 3 follows.
- (3) Spoiler chooses one of the trees, say s, and a leaf node x of s (and thus selects a maximal path of s).
- (4) Duplicator chooses a leaf node y of t.
- (5) Spoiler chooses a (not necessarily strict) ancestor y' of y.
- (6) Duplicator chooses a (not necessarily strict) ancestor x' of x.
- (7) An (n-1)-round FTL($\{L_{EG}\}$)-game is played on $(s|_{x'}, t|_{y'})$. The player winning the subgame also wins the whole game.

Example 5. Recall from Example 1 the definition of L_{even} . This language is not downwards closed. Let $\mathcal{L} = \{L_{\text{even}}\}$. The *n*-round $\text{FTL}(\mathcal{L})$ -game characterizes the modular temporal logic $\text{FTL}(\mathcal{L})$. The rules of this game on the pair (s, t) of trees are formulated as follows:

- (1) If $\operatorname{Root}(s) \neq \operatorname{Root}(t)$, Spoiler wins. Otherwise Step 2 follows.
- (2) If n = 0, Duplicator wins. Otherwise Step 3 follows.
- (3) Spoiler marks an even number of nodes of one tree, and an odd number of nodes of the other tree. After that, Step 4 follows.
- (4) Duplicator chooses a marked node x and an unmarked node y, either in the same tree or in different trees, and an (n-1)-round $FTL(\mathcal{L})$ -game is played on the subtrees rooted in x and y. If he cannot do so, Spoiler wins. The player winning the subgame also wins the game.

The question whether $\mathbf{FTL}(\mathcal{L})$ is decidable when the rank type R contains an integer greater than 1 is open. For the classical case $R = \{0, 1\}$, see [2], [22]. Suppose Step 1 above gets replaced by the following:

(1') If for some $\sigma \in \Sigma$ exactly one of the trees contains an even number of nodes labeled σ , Spoiler wins. Otherwise Step 2 follows.

The resulting game characterizes the (weaker) modular logic $\text{XTL}(\mathcal{L})$, where the root node is not distinguished from the other nodes.

Example 6. Consider the following *n*-round game on the pair of trees (s, t):

- (1) If $\operatorname{Root}(s) \neq \operatorname{Root}(t)$, Spoiler wins. Otherwise Step 2 follows.
- (2) If n = 0, Duplicator wins. Otherwise Step 3 follows.
- (3) Spoiler chooses either to make an EX-move, in which case Step 4 follows, or an EU-move, in which case Step 5 follows.
- (4) (EX-move.) Spoiler chooses one of the trees, say s, and a node x of s of depth one. If he cannot do so, Duplicator wins. Otherwise, Duplicator chooses a node y of t of depth one (if he cannot, he immediately loses), and an (n-1)-round game is played on the trees $(s|_x, t|_y)$. The player winning the subgame also wins the whole game.
- (5) (EU-move.) Spoiler chooses one of the trees, say s, and a node x of s. After that, Duplicator chooses a node y of t. Then, Spoiler again can make a decision to continue the game either with the pair of trees $(s|_x, t|_y)$, or with $(s|_{x'}, t|_{y'})$, where x' is a strict ancestor of x and y' is a strict ancestor of y.
- (6) In the first case, an (n-1)-round game is played on $(s|_x, t|_y)$ and the winner of the subgame wins the game.
- (7) In the second case, Spoiler chooses a strict ancestor y' of y, after which Duplicator chooses a strict ancestor x' of x. (If someone cannot choose such a node, the other player wins.) Then, an (n-1)-round game is played on $(s|_{x'},t|_{y'})$. The winner of the subgame also wins the whole game.

This game (resulting from Theorem 6) characterizes the temporal logic CTL: a tree language L is definable in CTL if and only if there exists an integer $n \ge 0$ such that Spoiler wins the *n*-round game on any pair (s,t) of trees with $s \in L$ and $t \notin L$.

When $R = \{0, 1\}$, our game is similar to the one described in [12] for words. (See also [15] for a similar game for Mazurkiewicz traces). It is also closely related to the game developed for full CTL (over Kripke structures) in [1].

References

- M. ADLER and N. IMMERMAN, An n! lower bound on formula size, ACM Trans. Comput. Log. 4 (2003), 296–314.
- [2] A. BAZIRAMWABO, P. MCKENZIE and D. THÉRIEN, Modular Temporal Logic, In: 14th Symposium on Logic in Computer Science (Trento, 1999), 344–351, *IEEE Computer Soc.*, Los Alamitos, CA, 1999.

- [3] M. BENEDIKT and L. SEGOUFIN, Regular Tree Languages Definable in FO, STACS 2005, Lecture Notes in Comput. Sci., 3404, Springer, Berlin, 2005.
- [4] M. BOJAŃCZYK and I. WALUKIEWICZ, Characterizing EF and EX tree logics, *Theoret. Comput. Sci.* 358, no. 2–3 (2006), 255–272.
- [5] E. A. EMERSON and E. M. CLARKE, Using branching time temporal logic to synthesize synchronization skeletons, *Sci. Comput. Programming* 2, no. 3 (1982), 241–266.
- [6] Z. ÉSIK, Characterizing CTL-like logics on finite trees, Theoret. Comput. Sci. 356, no. 1–2 (2006), 136–152.
- Z. ÉSIK, An Algebraic Characterization of Temporal Logics on Finite Trees, Parts 1, 2, 3, In: 1st International Conference on Algebraic Informatics, Thessaloniki, Aristotle University of Thessaloniki, 2005.
- [8] Z. ÉSIK and Sz. IVÁN, Products of tree automata with an application to temporal logic, Fund. Inform. 82, no. 1–2 (2008), 61–78.
- [9] Z. ÉSIK and SZ. IVÁN, Some varieties of finite tree automata related to restricted temporal logics, Fund. Inform. 82, no. 1–2 (2008), 79–103.
- [10] Z. ÉSIK and Sz. IVÁN, Games for Temporal Logics on Trees, In: CIAA 2008, proceedings, Lecture Notes in Comput. Sci. 5148, Springer, 2008.
- [11] Z. ÉSIK and P. WEIL, Algebraic characterization of logically defined tree languages, Int. J. Algebra and Computation, (An extended abstract appeared as: Z. Ésik and P. Weil. On logically defined recognizable tree languages, in FST TCS 2003 Lecture Notes in Comput. Sci. 2914, 195–207, Springer, 2003) (to appear).
- [12] K. ETESSAMI and TH. WILKE, An Until Hierarchy for Temporal Logic, In: 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, *IEEE Computer Society Press*, 1996.
- [13] G. GRÄTZER, Universal Algebra, 2nd. ed., Springer, 1979.
- [14] U. HEUTER, First-order properties of trees, star-free expressions, and aperiodicity, In: STACS 88, Bordeaux, Lecture Notes in Comput. Sci. 294, Springer, 1988.
- [15] J. G. HENRIKSEN, An expressive extension of TLC, Internat. J. Found. Comput. Sci. 13, no. 3 (2002), 341–360.
- [16] R. MCNAUGHTON and S. PAPERT, Counter-Free Automata, MIT Press, 1971.
- [17] A. POTTHOFF, Modulo-counting quantifiers over finite trees, *Theoret. Comput. Sci.* 126, no. 1 (1994), 97–112.
- [18] M. P. SCHÜTZENBERGER, On finite monoids having only trivial subgroups, Information and Control 8 (1965), 190–194.
- [19] M. STEINBY, Syntactic Algebras and Varieties of Recognizable Sets, In: Les arbres en algèbre et en programmation (4éme Colloq., 1979), Lille, Univ. Lille I, 1979.
- [20] M. STEINBY, General varieties of tree languages, Theoret. Comput. Sci. 205, no. 1–2 (1998), 1–43.
- [21] S. SALEHI and M. STEINBY, Tree algebras and varieties of tree languages, *Theoret. Comput. Sci.* 377, no. 1–3 (2007), 1–24.
- [22] H. STRAUBING, Finite Automata, Formal Logic, and Circuit Complexity, Birkhauser, 1994.
- [23] W. THOMAS, Logical aspects in the study of tree languages, In: Ninth colloquium on trees in algebra and programming, Bordeaux, Cambridge University Press, Cambridge, 1984.

[24] Z. Wu, A note on the characterization of TL(EF), Inform. Process. Lett. ${\bf 102}$ (2007), 48–54.

ZOLTÁN ÉSIK DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF SZEGED HUNGARY *E-mail:* ze@inf.u-szeged.hu

SZABOLCS IVÁN DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF SZEGED HUNGARY

E-mail: szabivan@inf.u-szeged.hu

(Received August 30, 2009; revised January 31, 2010)