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Abstract. It is conjectured in DOMOSI et al. LNCS 710, pp. 194-203, that if Q
denotes the set of all primitive words over a given alphabet X containing the letters a
and b, then the languages @, = QN (ab*)™ are context-free for all positive numbers n. In
this paper we classify the elements of Q,,, in order to get a new method for constructing
elements of Q.

1. Introduction

Let @ be the set of all primitive words over a fixed alphabet X. In the
papers [2], [3] and [4] the still unsolved problem was investigated: whether the
whole set @ is context-free or not.(See also: [10].) The simplest idea to show that
Q is not context-free would be to use one of the pumping lemmata for context-free
languages. This approach fails, because @) has seemingly context-free properties
(DOMOSI et al. [4]). Another idea would be the investigation of context-freeness
of the intersection of ) with a regular language L: if Q would be context-free
then @ N L would be context-free as well. In papers [4], [15], [17] and [16] we
investigated the context-freeness of languages @Q,, = @ N (ab*)™ for some natural
numbers n. Our results suggest that ,, is context-free for all natural numbers n.
The sharpest result considering this conjecture was the following:
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Theorem 1 (KAszonNYl, KATSURA [17]). Let n = p{l pi’“ where p1,
.., pr are distinct prime numbers and f1,..., fr are positive integers. Assume
that
k
> 1/pi < 4/5. (1)
i=1

Then the language Q N (ab*)™ is context-free.

In order to get new constructions for grammars generating subclasses of @,
without using the condition in Theorem 1, we develop the small theory of so called
semiperiodic vectors. (See: Section 4.)

2. Definitions

Let X be a fixed alphabet, having at least two letters. A primitive word
(over X) is a nonempty word not of the form w™ for any (nonempty) word w
and integer m > 2. The set of all primitive words over X will be denoted by Q.
Let a,be X, a#b,ne{l1,2,...}, and W be an arbitrary subset of the language
(ab*)™. For w € W let w = ab® - - - ab®~-* and denote the set of all vectors of the
form e(w) = (eo,...,en—1) by E(W). The index-set n = {0,...,(n — 1)} will be
considered as a “cyclically ordered” set, i.e. the “open intervalls” (i,j) of n are
given by (i,7) = {k|i <k < j}ifi < jandby (i,j) ={k|lk <jork >i}ifi>j.
We will use the notations [i, j), (¢, j] and [z, j] for the “semi closed” and “closed”
intervalls defined in the usual manner: [¢,j) = {i} U (4, 4), (¢, 5] = (4,5) U{j} and
[i,7] = {i} U (i,7) U {j}. The addition and multiplication in n are meant as
(mod n)-operations.

We say that the pairs of indices {i,j} and {k,[} are crossing if k € (4, ) and
l € (j,i)orifl € (i,7) and k € (j,4). The subsets R and T of n are said to be
non-crossing sets, if there exist two elements ¢ and j of n such that R C [i,5) and
T C [4,7) holds. For the expression “non-crossing” we will use the abbreviation
n.c. If there are given more than two subsets of n, then for the expression pairwise
non-crossing we will use the abbreviation p.n.c.

In general, a language L C ¥*, is a bounded language if and only if there

exist non-empty words wo,...,wm—1 such that L C wf...w},_;. The words
wo, - - ., Wm—1 are said to be the corresponding words of language L. Note that

for a word w € ¥* we use w* as a short-hand notation for {w}*.
Obviously, Q,, = @N(ab*)™ is a bounded language. A necessary and sufficient
condition for a bounded language to be context-free was given by Ginsburg:
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Theorem 2 (GINSBURG [5]). Let L be a bounded language over the alpha-
bet ¥. Language L is context-free if and only if set

E(L) ={(eg,...,em-1) € N™ | wg® ...wf,;”_’f € L}, (2)
where the words wy, . .., wmy_1 are the corresponding words of L, is a finite union

of stratified linear sets.

Definition 1. A set FF C IN™ where N = {0,1,...} and m > 1 is called a
stratified linear set if and only if either F' = ) or there exist r > 1 and vg, ..., v, €
IN™ such that

(1) F = {’Uo + Z::l k‘ﬂ]i ‘ k‘i > 0}

and for the vector set P = {v; |1 <i<r}

(2). every v € P has at most two nonzero components, and

(3). there exist no natural numbers 4,7, k, 1, with 0 < i < j <k <l <m—1,
and no vectors u = (ug, ..., Umn—1) and = (zg, ..., Tm—1) from P such that
uTjupe; 7 0.
The vector vg and the vector-set P appearing in (1) are often called preperiod

and the set of periods of F, respectively.

Often the set E(L) is Defined by Linear Inequalities, and the problem is to
check stratifiedness. Define the concept of DLI-sets as follows:

Definition 2. The set
E(©,d,¢) = ﬂ {(egy...yem—1) € N | (1) Z(Siei > 0} (3)
Ico icl

is a DLI-set where

(1). © is a system of index-sets, (i.e., of subsets of m). © is considered as a
multi-set i.e., elements of © may have multiplicity greater then one.

(2). § = (6oy.--,0m—1) is a fixed vector of signs i.e., for i = 0,...m—19; €
{-1,0,1}.
(3). €is a function from O into the set {—1,1}.

Definition 3. A bounded language L is a DLI-language if the set
E(L)={(eo,-- - em-1) € N |w§,..., w7 € L}

of the corresponding exponent-vectors is a DLI-set. (Here wo,..., and w,,_1 are
the corresponding words.)
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DLI-languages are often used as examples or counterexamples for context-
free languages. In such cases we have to decide whether or not a given DLI-
language is context-free. The following “Flip-Flop-Theorem” gives a necessary
and sufficient condition for a DLI-set to be stratified semilinear.

Theorem 3 (Flip-Flop theorem, KAszoNY1 [12]). Let the set E be a DLI-
set with respect to the sign-vector 6 = (dg,...,0m—1), index-set-system O, and
function e€:

E(©,6,€) = ({(e0,- - em—1) EINT [ (1)) bie; > 0} (4)

1€®© i€l

E is stratified semilinear if and only if for every e € E there exists a hypergraph H,
having the following properties:

(i). The vertices of H are the vertices of a convex m-polygon, indexed by the
elements of a cyclically ordered set m according to their cyclical order.

(ii). The edges of H are one- or two-element subsets of the vertex-set V(H) of H.

(iii). If {i,7} is a two-element edge of H, then the signs associated with the end-
points i and j are opposite, i.e., 6; = —0; #.

(iv). The edge f is forbidden if there exists an index-set I € © such that fNI = {i}
and e(I) = —0;. Hypergraph H doesn’t contain forbidden edges.

(v). The edges of H are non-crossing.

(vi). The degree of each vertex i is e;.

Using the Flip-Flop Theorem some lemmata may be proved guaranteeing
the stratified semilinearity of a DLI-set in the case that the index set system ©
possesses some special properties.

(See: [10], [11], [12], [13] and [14]). We will apply the so called Flip-Flop
lemma.

Lemma 1 (Flip-Flop lemma, HOLZER-KASZONYI [11]). Let the set E be a
DLI-set with respect to the sign vector 6 = (do,...,0m—1), index set system O,
and function e€:

@56 ﬂ{60,...,6m,1)€]Nm|6(I>Z(5i€i7é0} (5)

I1€® i€l

If © consists of pairwise non-crossing sets then the set E is stratified semilinear.
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3. Boxes and differences

In the sequel we adopt some concepts and results from [17]. (Definitions 4-6,

Lemmata 2-4 and 5.) In this section n denotes an integer with n = p{l e pi’“
where p1,...,pg are pairwise distinct prime numbers and f1,..., fx are positive

integers.

Definition 4. Let @ = {q1,...,¢,} be a nonempty subset of {p1,...,pr}. A
m-scale is a set {t1/q1,...,t,/q-} where t; is an integer relatively prime to p; for
each i =1,...,r. For a w-scale S = {t1/q1,...,t-/qr}, & € n, we define a 7-box
by:

B = B(9) :{5+P|P:thin/%ﬂi €{0,1}} (6)
i=1
Definition 5. For a vector e = (eq,...,en—1) € N™, the corresponding diffe-
rence is:
A(B) = Ac§;8) = Y () reg, (7)
§+p€EB

In other words, a difference defined for a vector e and a box B is a signed sum
of such components of e whose indices belong to B, and if the index-pair (3, j) is
an “edge” of box B then the corresponding members e; and e; of the sum have
opposite signs.

Definition 6. For a m-scale S and e € N™, consider the subset Q.(S) of n
defined by the rule Q.(S) = {{ € n| Ac(&S) # 0}.

In the sequel we will investigate the question, whether or not .(S) is the
empty set. The following lemma says that the answer to this question is indepen-
dent of the choice of the scale S.

Lemma 2. For w-scales S and S’, Q.(S) # 0 if and only if Q.(S") # 0.
Proor. Let S = {t:1/q1,...,t+/q-} and S" = {t}/q1,...,t./q.}. For any i,

there exists an s; such that s;t; =t; (mod ¢;). Hence

Ae(€§t1/Q1, cee at’r/qT‘)

81—1 Sm—l
=3 YA+ ptin/g -+ et/ g tin/a, . tn/g).
j1=0 =0
Thus 2.(S') = 0 implies Q(S) = 0. =

We will say that Q. () # 0 if Q.(S) # 0 for some (and thus any) m-scale S.
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The following lemma asserts that for subsets 7 of the set {p1,...,pi} the
property Q.(m) # 0 is “hereditary”.

Lemma 3. Let 0 # 7' C 7 C {p1,...,pr} If Qe(7') =0 then Q.(7) = 0.

PrOOF. Let ' = {¢},...,¢..}and 7 = {¢},.... ¢, q1,...,¢-}. Then

Ae(f71/q117a]-/q;H]-/qlva]-/QT)
1

1
Y ()P A(E H pinfay + -+ pen/anin/ ), - 0/, D
p1=0 pr=0

Lemma 4. For a w-scale S and q € {p1,...,pr} \ 7, the following conditions
are equivalent:

(1) Qe(rU{q}) = 0.
(2) If¢=¢ (mod n/q) then A.(&;S) = A(E5S).
Proor. Note that S U {1/q} is a (7 U {q})-scale, and A.(&;SU{1/q}) =

A (& S) — Ac(E+n/q; S) holds for any €. It follows that Q.(m U {¢q}) = 0 if and
only if Ac(&;5) = Ac(€+n/g; S) holds for any &. O

Lemma 5. For a m-scale S and {q1,...,q4-} C {p1,...,px} \ 7, the following
conditions are equivalent:
(1) Qe(rU{g;}) =0 foranyi=1,...,r.
(2) If €=¢ (mod n/q ...q ) then A.(&;5) = A(E5;S).

PROOF. The equivalence of (1) and (2) follows from Lemma 4. O

Lemma 6. Let m = {q1,...,¢.} and S = {t1/q1,...,t./q.} be any m-scale.
Then for any £ €nand s =Y ,_, tin/q;

e — egrs = §j (—D)I¥I1AL (€ 87 (8)
S’CS,S’#0
holds.

PRrROOF. The proof is by mathematical induction on the number of elements
in S. For |S| = 1 equality (8) is trivially true. Assume that |S| = r > 2 and
that (8) holds for any S with |S| < r. Let S = {t1/q1,---str—1/@—1,tr/qr },
Sr—1 =S\ {tr—1/¢-—1} and S, = S\ {¢./q,}, consider

e — €gts = (€¢ — €cnto/p,) T (€cnt,/p, — €ets)- 9)
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Here

6£+nt,‘/pr — €¢ts = Z (71)|S/|71Ae(£ + ntr/pr; S/) (10)
S’CS,.,S'#0

holds by our hypothesis. It is easy to show that

Ac(&8" ULt /pr}) = De(&8") — Ac(€ 4 nty /pr; S7), (11)
thus
Ac(€+ ntr/pr§ S/) = Ac(&; S/) - Ae(& S'u {tr/pr})' (12)
Substituting (12) into (10) we have
Ceinto sy, —Cers = (DIITHALGS) — A& S Ut /) (13)
S'CS,,S'#0

and

(66 - e§+ntr/pr) + (e§+ntr/pr - e€+8) = Ae(f? {tr/pr}) + (€£+ntr/pr - e€+8)

= > (DFTA(gS)+ > (DI 1LAL (g 9

S'CS,tr/preS’ S'CS,t,/prgS’ S #0

> =)FITALG ). (14)

S/CS,5'#0

(]

In the sequel we develop some kind of “Discrete Fourier Analysis”, i.e., we will

show that for any vector e € IN" ¢ is a sum of some periodic vectors, associated

with 7-scales in a special manner. (As before, n = p{l . pi’“)

Definition 7. Let n = p{l ---p{:"', and e € IN". Consider the {pi,...,px}-
scale S = {t1/p1,...,tx/Dr}, let 6 = p{l_l . -pi’“_l. For any vector e € IN" and
S’ C S, (S # 0), we define the vector ¢(S’,e) = (¢o(S',€),...,0n_1(5,€)) as
follows:

(1). For0<r <6—11et ¢.(5,e) =d,.(5"), such that d,.(S") € Z and

Y d(S) =e (15)

S'CS, (S'#0)

(2). Assume that for any 0 <i<n—1—0 ¢;(5,e) is already defined. Then let

biro(S €)= di(S',e) + (—1)IF 1A (i;8). (16)
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Lemma 7. For any vector e € IN* and S’ C S, (S" # 0), let the vec-
tor ¢(S’,e) € N, ¢(S5",e) = (do(5,€),...,0n_1(5",¢€)) be the vector given in
Definition 7. Then

e= > ¢e) (17)

S'CS,S'#£0

PROOF. Let us choose the scale S = {t1/p1,...,tx/pr} such that

nty1/pi+, ..., +nti/pr = 0. (18)
Then
civo=ci—(ei—eipg) =e;i— » (DA (19)
S/CS,S"#0
holds by (8). U

Lemma 8. Let S" C S, (S # 0,5 # S), where S’ and S are 7’ resp. m-
scales. For e € IN" the vector ¢(S’, e) given in Definition 7 is a c-periodic function
where

c=n/ H q. (20)
gem\ 7’
PROOF. Let

e= Y S (21)

S’CS,S’'#£0
and define the vector e’ as follows:

€= > ¢(Soe) (22)

SoCS’, So#d

It is easy to see that if ¢ € m \ 7’ then Q. (7' Uq) = 0. (Here #’ corresponds to
S5".) It follows by Lemma 5, that if £ = & (mod n/[[ ¢\ ) then Ae(&.5) =
A (€5 S). Tt means by the definition of ¢(S’; e) that it is a c-periodic vector. O

4. Semiperiodic vectors

In this section we examine some properties of so-called semiperiodic vectors
playing a central rule in our investigations concerning the context-freeness of @,,.
We will make use of the so-called Chinese Reminder Theorem. (See e.g.: [20].)
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Theorem 4 (Chinese Reminder Theorem). Let my,..., my be pair-wise
relatively prime numbers and ay,...,a; be integers. Then for i = 1,...,k the
congruences

x=a; (modmy) (23)

have a common solution. If x1 and x4 are any two solutions of the system (23),
then

21 =x9  (mod my ---my) (24)

holds.
Definition 8. The vector (eg,...,e,—1) € IN" is (r, s)-semiperiodic if for any

(€N
€6 — Eetr = Cets — Ceirs (25)

holds.

We get an interesting subclass of (r, s)-semiperiodic vectors in the case of
n=rsrs#1and ged(r,s) = 1. The following lemma gives the motivation of
the notion ’(r, s)-semiperiodic vector’.

Lemma 9. Let n = rs, r,s # 1 and ged(r,s) = 1. The vector e € IN" is
an (r, s)-semiperiodic if and only if e may be written as the sum of an r-periodic
and an s-periodic vector, i.e.,

e=f+g, (26)
where for f = (fo,..., fn-1); 9= (go,---,9gn-1), and for any & € n,

fe = fetr (27)
and

9¢ = Gé+s (28)
holds. If

e=f+d, (29)

is any other decomposition of e into an r-periodic and an s-periodic vector, then
f'=f+candg = g— c holds for some constant vector c.

PROOF. Let i be any element of n. By the Chinese Reminder Theorem, there
are integers @ (0 < a<s—1)and 8 (0 < 8 <r—1) such that

i=ar+ Bs. (30)
Let f and g defined by

fi=—eo+c+eps (31)

gi = —C+ ear (32)
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where c is a fixed integer. Here

i+r=(a+1)r+p8s (33)
and

i+s=oar+(8+1)s, (34)
thus

fivr = fi=—eo+c+ess (35)

Jits = gi = —C+ €ar- (36)

We have to prove that e = f + ¢g. The proof is by mathematical induction on the
number a 4+ 8. If 5 =0 then

fitgi=(—eo+c+e))+(—c+ea)=c¢; (37)
Similarly follows that f; + ¢g; = e; whenever & = 0. Let a > 0 and g > 0, assume
that for j = o/r + f's f; + g; = e; holds when o + ' < a4+ . Vector e is
semiperiodic hence
€ar+ps — €(a—1)r+Bs = Car4+(B—1)s — €(a—1)r+(B—1)s (38)
thus
Car+Bs = €(a—1)r+8s + Car4+(B—1)s — E(a=1)r+(B—1)s (39)
Here
€la—1)r+8s = f(a—l)r+ﬁs + 9(a—1)r+8s
Car+(B-1)s = far+(6—1)s + Joar+(B—-1)s
ela—1)r+(B-1)s = J(a—1)r+(8—1)s T J(a—1)r+(8—1)s (40)
by our hypothesis. Vector f is r-periodic, thus
f(w’+,38 = f(a—l)r-‘rﬁs + fcw‘-i—(ﬁ—l)s - f(a—l)r+(5—1)s~ (41)
Similarly, g is s-periodic, thus
Jar+Bs = Y(a—1)r+8s + Jar+(B—1)s — Y(a—1)r+(B—1)s (42)
It follows by 39, 40, 41 and 42 that
€art+ps = Jar+ps + Gar+ps (43)

Let e = f'+ ¢’ any decomposition of e into an r-periodic and an s-periodic vector.
It is easy to check that if fj = fo then f' = f and ¢’ = g.
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Let us assume that vector e is of the form e = f + g, where f and g are r,
resp. s-periodic functions. It follows that

e¢ — €eqr = fe + 9e — ferr — Getr- (44)

Vector f is r-periodic, thus fe = feq,. Here

€ — Cetr = ¢ — Je+r = g¢ — Getr + fers = fers
= ge+s = Yetrts T Jers — ferris = €cvs — €cprs, (45)
it means that vector e is (r, s)-semiperiodic. O

In the sequel we define the general concept of semiperiodic vectors and in-
vestigate some of their properties.

Definition 9. Let n = n10, where n; = p{l . -p'}:’“, consequently, 6 = pll_l e
pik_l. Vector e € IN" is called semiperiodic, if for any decomposition n = rs6

of n where r, s # ny and ged(r, s) = 1, vector e is (r, sf)-periodic.
For the sake of simplicity, in the following lemma we assume that n is square-

free.

Lemma 10. Let n = py---px and ® = {p1,...,px}. The vector e € IN" is
semiperiodic if and only if e is of the form

e= Z e?) (46)
pe™

where for p € m e®) is a p-periodic vector.

PRrROOF. Step 1, sufficiency. Let e be of the form 46, n = rs, r,s # 1. We
have to prove that e is (r, s)-semiperiodic. Let us denote the set of prime divisors
of r by 7., and by 7, that of s. Consider the following decomposition of vector e:

e=¢el" 4, (47)
where
e = Z el (48)
qEm,
and

(8 = Z (@) (49)

qETs

It is easy to show that e(™) is an r-periodic and e®) is an s-periodic vector, thus
vector e is (7, s)-semiperiodic by Lemma 9.
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Step 2, necessity. Assume now that the vector e € IN" is semiperiodic. We
have to prove that e = e®) + ... 4 ) where for i = 1,...,k e®) is a p;-
periodic vector. Especially, for any p € {p1,...,pr} e is (p,n/p)-semiperiodic,
thus in Definition 17 for any i € n, A.(4;S") = 0 holds if |S’| > 2. Let

e= > H(Se)= D> S+ D #(Se). (50)
5/CS, S'#0 5/C8,|8|=1 5/C8,|8"|>2
Here
Y. éshe=C (51)
5/C8,|87|>2

holds for some constant C' € Z, and every summand in the sum

> 69 e). (52)
5/C8,|8"|=1

is p-periodic for S" = {p}. (See: Lemma 8) O

Theorem 5. Let n = pi* pik and © = {p1,...,pk}. The vector e € IN"
is semiperiodic if and only if e is of the form

e= Ze(p) (53)
peT

Simlo )
1

where for p € m and § = p pkrl e(P) is a ph-periodic vector.

Proor. For j = 0,...,0 —1 and ny = p;---pi let us define the vectors
f] = (fg7 . ~,f7JL1,1) as fOHOWS:

f,z:ej+k9 k=0,....,n1—1 (54)

It is easy to show that e is semiperiodic if and only if for any j = 0,...,0 — 1
vector f7 is semiperiodic as well.

fi= Zf(j’p)’ (55)

peT

where fUP) is p-periodic. Let e®) = (e(()p), ce e%p)) defined as
e =fI" j=0,..,0-1k=0,...,n1 1 (56)

Vector fUP) is p-periodic, thus e® is pf-periodic. O
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5. The classification of E(Q,)
In the sequel we will define a classification of E(Q,,). It is conjectured that

each class of this classification is a stratified semilinear DLI-set.

Definition 10. For a =1,...,k — 1 let E, defined by
E,={eeIN" | Qc(m) #0, if |7| = o, Qe(7') =0, if |7'| =a+ 1}, (57)
and for a = k by
Ep={e e N|Qec(m) #0, || =k, }, (58)

Proving the context-freeness of (Qg, Katsura Masashi introduced two special
types of DLI-sets. Here we generalize this constructions.

Theorem 6. Let E,, given in Definition 10. Then ExNE(Q,,) and E1NE(Qy)
are stratified semilinear sets.

PrROOF. E; N E(Q,) is a stratified semilinear set by the Flip-Flop lemma.
Let e € F1 N E(Qy). Let 1 = {p1,...,px}, assume that p; < --- < pg. By
Lemma 5, vector e is (pf, n/p)-semiperiodic for any p € . It means that

€¢ — €etn/p = €E4po — Cetn/ptph- (59>

Case 1, k > 3. e € E(Q,), thus there is a £ € n, for which e — ec1p/p, 7# 0
holds. We may assume that £ =n — 1 — n/py, thus

€n—1—n/p, — €n—-1 7 0. (60)
Similarly, there is a £&; € n such that
e, — € 4n/p, 7 0 (61)
Using( 59) we can choose an m; such that
&' =& +mupi6 € [0,p10), (62)
and
€e; = €¢itn/py = €& ~ Cergn/py 7 0- (63)

In the same way, let & € [£],&] + p20) such that

€ey = €gptn/py 7 0- (64)

In general, let us assume that & is already given (7 € {1,...,k —2}). We define
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&ir1 € [0,pi10) such that

€, — €l +n/pisa 7 0- (65)

We show that the set system

©={{&&+n/pitli=1,...,k} (66)

consists of pair-wise non-crossing elements. It is enough to prove that for i =
Looon =2 {€,€ 4 n/pi} and {€41,€Lp, +n/pisa} further 1€, +n/pi} and
{&,,&, + n/pr} are non-crossing sets. Indeed, di = (& +n/p;) — (& +n/pit1) =
n/p; — n/piy1 is divisible by pg8, thus p;0 < pif < di, it means that {£}, & +
n/pi} and {£,1,& + n/piy1} are really non-crossing sets. Similarly, dy =
(n—n/pr) — (n/p1) is divisible by p2f, thus p16 < p26 < da, hence {&1,& +n/p1}
and {}., &), + n/pi} are non-crossing sets.

Case 2.1, k = 2, py = 2, po = 3 Vector e belogns to E(Q,), thus there are
& € n, & € n such that

€¢y — €e14n)2 7£ 0 (67)
and
€&, — C&o4n/3 # 0. (68)

It is easy to shaw that for any j € n

€¢,jn/3 — €& tn/24jn/3 7 0 (69)

thus there is a jy such that one of the following relations is valid:

&1+ jon/3 € [§2,62 - 0) (70)
or
§1+ jon/3 € [§2,82 +0). (71)
&1+ n/2+ jon/3 € [§2, 6 — 0). (72)
&1+ n/2+ jon/3 € [§2, &2 +0). (73)

Without loss of generality we may assume that (70) holds. If

n ==& +jon/3 € (&2,& — 0) (74)
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(i.e., n # &,) then
ey = €ptns2 7 0 (75)
and
e — Ceyinss 7 0. (76)

Here the index sets {n,n + n/2} and {&,& + n/3} are non-crossing sets, thus
vector e is contained in the stratified semilinear DLI-set

{¢| 6;7 - 6;7+n/2 # 0, elgg - 6/52+n/3 #0.} (77)
If n =& + jon/3 = & then let us consider the DLI-set

Dy = {¢| e;]_e;7+n/2 #0, (6;7_6;7+n/2)+(e:7+n/2+n/3_e,(n+n/3)+n/3) #0.} (78)
Assume that e € Dy but e ¢ E(Q,). It means that e is either a quadrat or a
cube. e¢, — €¢,44,n/2 7 0, thus e may not be a quadrat. If e is a cube, then

€n = Epin/3 = (€n = Enins2) + (Enin/2 = €ntny3)
= (en — enynys2) + (€ntn/21n/3 — €ntn/34ns3) =0
holds for any n € n, a contradiction by (78) .

Case 2.2, k = 2, r = 1, p1po > 6 Let us assume that p; < ps and that
t;1 =ty = 1. If the index sets I; = {&1,61 +n/p1} and I = {£2,& + n/p2} are
non-crossing sets then vector e is contained in the stratified semilinear vector set

{6/ | 6/51 - €l§1+n/;01 7& O’ 6/52 - elﬁz+n/p2 7& O} (79)

Assume that I; and I3 are crossing sets, i.e., & € [£2,82 +n/p2] or & +n/p1 €
[€2, &2+ n/p2]. Without loss of generality may be assumed that &; € [£2, &2 +n/p2]
Vector e is semiperiodic thus

07 €g, — €y 1n/py = €gytn/py — €€1+n/prtn/ps- (80)

We will show that the index sets I} = {& + n/p2, &1 +n/p1 +n/pa} and I =
{&2,&2 + n/p2} are non-crossing sets. We have to prove that

n/p1 + 2n/ps < n, (81)
i.e., that
1/p1 +2/p2 < 1. (82)
Indeed, ps > 5 and p; > 2 thus
0<p2—4=2(p2—2) —p2 <pi(p2 —2) — p2 = p1p2 — 2p1 — p2, (83)
and(82) holds.( Note that p;ps > 6.) O
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Tt is conjectured that E, N E(Q,,) is stratified semilinear for any «(2 < « <
k —1). In Lemma 11 we investigate the structure of E, in this case.

Lemma 11. For a (2 < a < k — 1), let E,, given in Definition 10. Let us
consider the vector e € IN™, which may be written in the form

e= > ¢(5e). (84)
5'CS, 5'#0
(See: Lemma 7) Vector e belongs to E,, if and only if
(i) In case of |S'| > a, ¢(5’, e) is a O-periodic vector.
(ii) For any o' < « there is an S’, such that |S’| = o/, and vector ¢(S’, e) is not
0-periodic, but it is a c-periodic function where

c=mn/ H q. (85)
gem\n’

PRrOOF. By the definition of E,, A.(£,5") = 0 holds for any e € E, and
¢ € n whenever |S’| > a. Further A.(&,S’) # 0 holds for some &, € n if |S’| < a.
It means that for ¢(S’,e) = (do(S5,€),...,In_1(5,€))

de+0(S',€) = 9e(S',€) + (~1)IV1A(E S) = (S ) (86)

holds if |S’] > « and ¢(5’,e) is c-periodic by Lemma 8, whenever |S'| < a.
Conversely, assume that for e € IN",( 86) and

Derr0(S,€) = 0o (5, €) + (=1)/¥ 1 Ac (0 5') # 02 (5 €). (87)

holds. Then in case(i) Ac(&,S") = 0 holds for any £ € n and in case(ii) there is a

&o € n with A.(&p;S") # 0. Tt follows that e € E,. O
6. Examples

Theorem 17 allows us to construct semiperiodic vectors.

Example 1. Let n =15 = 3 - 5, further define vectors f, g and e as follows:

i=012345678 91011 121314
f=132132132-13 2— 13 2
g=00112—-0011 2—00 11 2
e=133252143 33 2 24 4
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Here f is a 3-periodic and g is a 5-periodic vector and row e is the sum of
the previous two. For the components of e holds:

€)— €5 =3 — €8 = €5 — €] = €9 — €14 = €12 — €2 = —1,

€] —€g =€4 —€g =€y —€la =€]g — € = €13 — €3 = 2,
further
g —€7=e€5— €10 = €3 — €13 =€1] — €] = €14 — €4 = —1,

thus vector e is (3, 5)-semiperiodic.
The following example shows, how to construct elements of E,,, using
Lemma 11.

Ezxample 2. Let n=2-3-5 and o = 2 and

el =010101010101010101010101010101
e =001120011200112001120011200112
es =132132132132132132132132132132
es4 =100000000010000000001000000000

e=243353153443254234263244342345.

Here vector e = e + e3 + e3 + e4 given above belongs to Fs.
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