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Semiperiodic vectors and the context-freeness
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This paper is dedicated to Professor P. Dömösi

Abstract. It is conjectured in Dömösi et al. LNCS 710, pp. 194–203, that if Q

denotes the set of all primitive words over a given alphabet X containing the letters a

and b, then the languages Qn = Q∩(ab∗)n are context-free for all positive numbers n. In

this paper we classify the elements of Qn, in order to get a new method for constructing

elements of Qn.

1. Introduction

Let Q be the set of all primitive words over a fixed alphabet X. In the

papers [2], [3] and [4] the still unsolved problem was investigated: whether the

whole set Q is context-free or not.(See also: [10].) The simplest idea to show that

Q is not context-free would be to use one of the pumping lemmata for context-free

languages. This approach fails, because Q has seemingly context-free properties

(Dömösi et al. [4]). Another idea would be the investigation of context-freeness

of the intersection of Q with a regular language L: if Q would be context-free

then Q ∩ L would be context-free as well. In papers [4], [15], [17] and [16] we

investigated the context-freeness of languages Qn = Q ∩ (ab∗)n for some natural

numbers n. Our results suggest that Qn is context-free for all natural numbers n.

The sharpest result considering this conjecture was the following:
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Theorem 1 (Kászonyi, Katsura [17]). Let n = pf11 · · · pfkk where p1,

. . . , pk are distinct prime numbers and f1, . . . , fk are positive integers. Assume

that

k∑

i=1

1/pi < 4/5. (1)

Then the language Q ∩ (ab∗)n is context-free.

In order to get new constructions for grammars generating subclasses of Qn

without using the condition in Theorem 1, we develop the small theory of so called

semiperiodic vectors. (See: Section 4.)

2. Definitions

Let X be a fixed alphabet, having at least two letters. A primitive word

(over X) is a nonempty word not of the form wm for any (nonempty) word w

and integer m ≥ 2. The set of all primitive words over X will be denoted by Q.

Let a, b ∈ X, a 6= b, n ∈ {1, 2, . . . }, and W be an arbitrary subset of the language

(ab∗)n. For w ∈ W let w = abe0 · · · aben−1 and denote the set of all vectors of the

form e(w) = (e0, . . . , en−1) by E(W ). The index-set n = {0, . . . , (n− 1)} will be

considered as a “cyclically ordered” set, i.e. the “open intervalls” (i, j) of n are

given by (i, j) = {k|i < k < j} if i < j and by (i, j) = {k|k < j or k > i} if i > j.

We will use the notations [i, j), (i, j] and [i, j] for the “semi closed” and “closed”

intervalls defined in the usual manner: [i, j) = {i} ∪ (i, j), (i, j] = (i, j) ∪ {j} and

[i, j] = {i} ∪ (i, j) ∪ {j}. The addition and multiplication in n are meant as

(mod n)-operations.

We say that the pairs of indices {i, j} and {k, l} are crossing if k ∈ (i, j) and

l ∈ (j, i) or if l ∈ (i, j) and k ∈ (j, i). The subsets R and T of n are said to be

non-crossing sets, if there exist two elements i and j of n such that R ⊆ [i, j) and

T ⊆ [j, i) holds. For the expression “non-crossing” we will use the abbreviation

n.c. If there are given more than two subsets of n, then for the expression pairwise

non-crossing we will use the abbreviation p.n.c.

In general, a language L ⊆ Σ∗, is a bounded language if and only if there

exist non-empty words w0, . . . , wm−1 such that L ⊆ w∗
0 . . . w

∗
m−1. The words

w0, . . . , wm−1 are said to be the corresponding words of language L. Note that

for a word w ∈ Σ∗ we use w∗ as a short-hand notation for {w}∗.
Obviously, Qn = Q∩(ab∗)n is a bounded language. A necessary and sufficient

condition for a bounded language to be context-free was given by Ginsburg:
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Theorem 2 (Ginsburg [5]). Let L be a bounded language over the alpha-

bet Σ. Language L is context-free if and only if set

E(L) = {(e0, . . . , em−1) ∈ INm | we0
0 . . . w

em−1

m−1 ∈ L}, (2)

where the words w0, . . . , wm−1 are the corresponding words of L, is a finite union

of stratified linear sets.

Definition 1. A set F ⊆ INm where IN = {0, 1, . . . } and m ≥ 1 is called a

stratified linear set if and only if either F = ∅ or there exist r ≥ 1 and v0, . . . , vr ∈
INm such that

(1). F = {v0 +
∑r

i=1 kivi | ki ≥ 0}
and for the vector set P = {vi | 1 ≤ i ≤ r}
(2). every v ∈ P has at most two nonzero components, and

(3). there exist no natural numbers i, j, k, l, with 0 ≤ i < j < k < l ≤ m − 1,

and no vectors u = (u0, . . . , um−1) and x = (x0, . . . , xm−1) from P such that

uixjukxl 6= 0.

The vector v0 and the vector-set P appearing in (1) are often called preperiod

and the set of periods of F , respectively.

Often the set E(L) is Defined by Linear Inequalities, and the problem is to

check stratifiedness. Define the concept of DLI-sets as follows:

Definition 2. The set

E(Θ, δ, ε) =
⋂

I∈Θ

{(e0, . . . , em−1) ∈ INm | ε(I)
∑

i∈I

δiei ≥ 0} (3)

is a DLI-set where

(1). Θ is a system of index-sets, (i.e., of subsets of m). Θ is considered as a

multi-set i.e., elements of Θ may have multiplicity greater then one.

(2). δ = (δ0, . . . , δm−1) is a fixed vector of signs i.e., for i = 0, . . .m− 1 δi ∈
{−1, 0, 1}.

(3). ε is a function from Θ into the set {−1, 1}.
Definition 3. A bounded language L is a DLI-language if the set

E(L) = {(e0, . . . , em−1) ∈ INm | we0
0 , . . . , w

em−1

m−1 ∈ L}

of the corresponding exponent-vectors is a DLI-set. (Here w0, . . . , and wm−1 are

the corresponding words.)
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DLI-languages are often used as examples or counterexamples for context-

free languages. In such cases we have to decide whether or not a given DLI-

language is context-free. The following “Flip-Flop-Theorem” gives a necessary

and sufficient condition for a DLI-set to be stratified semilinear.

Theorem 3 (Flip-Flop theorem, Kászonyi [12]). Let the set E be a DLI-

set with respect to the sign-vector δ = (δ0, . . . , δm−1), index-set-system Θ, and

function ε:

E = E(Θ, δ, ε) =
⋂

I∈Θ

{(e0, . . . , em−1) ∈ INm | ε(I)
∑

i∈I

δiei ≥ 0} (4)

E is stratified semilinear if and only if for every e ∈ E there exists a hypergraphH,

having the following properties:

(i). The vertices of H are the vertices of a convex m-polygon, indexed by the

elements of a cyclically ordered set m according to their cyclical order.

(ii). The edges of H are one- or two-element subsets of the vertex-set V(H) of H.

(iii). If {i, j} is a two-element edge of H, then the signs associated with the end-

points i and j are opposite, i.e., δi = −δj 6=.

(iv). The edge f is forbidden if there exists an index-set I ∈ Θ such that f∩I = {i}
and ε(I) = −δi. Hypergraph H doesn’t contain forbidden edges.

(v). The edges of H are non-crossing.

(vi). The degree of each vertex i is ei.

Using the Flip-Flop Theorem some lemmata may be proved guaranteeing

the stratified semilinearity of a DLI-set in the case that the index set system Θ

possesses some special properties.

(See: [10], [11], [12], [13] and [14]). We will apply the so called Flip-Flop

lemma.

Lemma 1 (Flip-Flop lemma, Holzer–Kászonyi [11]). Let the set E be a

DLI-set with respect to the sign vector δ = (δ0, . . . , δm−1), index set system Θ,

and function ε:

E = E(Θ, δ, ε) =
⋂

I∈Θ

{(e0, . . . , em−1) ∈ INm | ε(I)
∑

i∈I

δiei 6= 0} (5)

If Θ consists of pairwise non-crossing sets then the set E is stratified semilinear.
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3. Boxes and differences

In the sequel we adopt some concepts and results from [17]. (Definitions 4–6,

Lemmata 2–4 and 5.) In this section n denotes an integer with n = pf11 . . . pfkk
where p1, . . . , pk are pairwise distinct prime numbers and f1, . . . , fk are positive

integers.

Definition 4. Let π = {q1, . . . , qr} be a nonempty subset of {p1, . . . , pk}. A

π-scale is a set {t1/q1, . . . , tr/qr} where ti is an integer relatively prime to pi for

each i = 1, . . . , r. For a π-scale S = {t1/q1, . . . , tr/qr}, ξ ∈ n, we define a π-box

by:

B = B(ξ;S) = {ξ + ρ|ρ =

r∑

i=1

ρitin/qi, ρi ∈ {0, 1}} (6)

Definition 5. For a vector e = (e0, . . . , en−1) ∈ Nn, the corresponding diffe-

rence is:

∆e(B) = ∆e(ξ;S) =
∑

ξ+ρ∈B

(−1)ρ1+···+ρreξ+ρ (7)

In other words, a difference defined for a vector e and a box B is a signed sum

of such components of e whose indices belong to B, and if the index-pair (i, j) is

an “edge” of box B then the corresponding members ei and ej of the sum have

opposite signs.

Definition 6. For a π-scale S and e ∈ Nn, consider the subset Ωe(S) of n

defined by the rule Ωe(S) = {ξ ∈ n | ∆e(ξ;S) 6= ∅}.
In the sequel we will investigate the question, whether or not Ωe(S) is the

empty set. The following lemma says that the answer to this question is indepen-

dent of the choice of the scale S.

Lemma 2. For π-scales S and S′, Ωe(S) 6= ∅ if and only if Ωe(S
′) 6= ∅.

Proof. Let S = {t1/q1, . . . , tr/qr} and S′ = {t′1/q1, . . . , t′r/qr}. For any i,

there exists an si such that sit
′
i ≡ ti (mod qi). Hence

∆e(ξ; t1/q1, . . . , tr/qr)

=

s1−1∑

j1=0

· · ·
sr−1∑

jr=0

∆e(ξ + j1t
′
1n/q1 + · · ·+ jrt

′
rn/qr; t

′
1n/q1, . . . , t

′
rn/qr).

Thus Ωe(S
′) = ∅ implies Ωe(S) = ∅. ¤

We will say that Ωe(π) 6= ∅ if Ωe(S) 6= ∅ for some (and thus any) π-scale S.
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The following lemma asserts that for subsets π of the set {p1, . . . , pk} the

property Ωe(π) 6= ∅ is “hereditary”.

Lemma 3. Let ∅ 6= π′ ⊆ π ⊆ {p1, . . . , pk}. If Ωe(π
′) = ∅ then Ωe(π) = ∅.

Proof. Let π′ = {q′1, . . . , q′r′} and π = {q′1, . . . , q′r′ , q1, . . . , qr}. Then

∆e(ξ; 1/q
′
1, . . . , 1/q

′
r′ , 1/q1, . . . , 1/qr)

=

1∑
ρ1=0

· · ·
1∑

ρr=0

(−1)ρ1+···+ρr∆e(ξ + ρ1n/q1 + · · ·+ ρrn/qr;n/q
′
1, . . . , n/q

′
r′). ¤

Lemma 4. For a π-scale S and q ∈ {p1, . . . , pk} \π, the following conditions

are equivalent:

(1) Ωe(π ∪ {q}) = ∅.
(2) If ξ ≡ ξ′ (mod n/q) then ∆e(ξ;S) = ∆e(ξ

′;S).

Proof. Note that S ∪ {1/q} is a (π ∪ {q})-scale, and ∆e(ξ;S ∪ {1/q}) =

∆e(ξ;S)−∆e(ξ + n/q;S) holds for any ξ. It follows that Ωe(π ∪ {q}) = ∅ if and

only if ∆e(ξ;S) = ∆e(ξ + n/q;S) holds for any ξ. ¤

Lemma 5. For a π-scale S and {q1, . . . , qr} ⊆ {p1, . . . , pk} \ π, the following

conditions are equivalent:

(1) Ωe(π ∪ {qi}) = ∅ for any i = 1, . . . , r.

(2) If ξ ≡ ξ′ (mod n/q1 . . . qr) then ∆e(ξ;S) = ∆e(ξ
′;S).

Proof. The equivalence of (1) and (2) follows from Lemma 4. ¤

Lemma 6. Let π = {q1, . . . , qr} and S = {t1/q1, . . . , tr/qr} be any π-scale.

Then for any ξ ∈ n and s =
∑r

i=1 tin/qi

eξ − eξ+s =
∑

S′⊆S,S′ 6=∅
(−1)|S‘|−1∆e(ξ;S

′) (8)

holds.

Proof. The proof is by mathematical induction on the number of elements

in S. For |S| = 1 equality (8) is trivially true. Assume that |S| = r ≥ 2 and

that (8) holds for any S with |S| < r. Let S = {t1/q1, . . . , tr−1/qr−1, tr/qr},
Sr−1 = S \ {tr−1/qr−1} and Sr = S \ {tr/qr}, consider

eξ − eξ+s = (eξ − eξ+ntr/pr
) + (eξ+ntr/pr

− eξ+s). (9)
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Here

eξ+ntr/pr
− eξ+s =

∑

S′⊆Sr,S′ 6=∅
(−1)|S

′|−1∆e(ξ + ntr/pr;S
′) (10)

holds by our hypothesis. It is easy to show that

∆e(ξ;S
′ ∪ {tr/pr}) = ∆e(ξ;S

′)−∆e(ξ + ntr/pr;S
′), (11)

thus

∆e(ξ + ntr/pr;S
′) = ∆e(ξ;S

′)−∆e(ξ;S
′ ∪ {tr/pr}). (12)

Substituting (12) into (10) we have

eξ+ntr/pr
− eξ+s =

∑

S′⊆Sr,S′ 6=∅
(−1)|S‘|−1(∆e(ξ;S

′)−∆e(ξ;S
′ ∪ {tr/pr}) (13)

and

(eξ − eξ+ntr/pr
) + (eξ+ntr/pr

− eξ+s) = ∆e(ξ; {tr/pr}) + (eξ+ntr/pr
− eξ+s)

=
∑

S′⊆S,tr/pr∈S′
(−1)|S‘|−1∆e(ξ;S

′) +
∑

S′⊆S,tr/pr /∈S′,S′ 6=∅
(−1)|S‘|−1∆e(ξ;S

′)

=
∑

S′⊆S,S′ 6=∅
(−1)|S‘|−1∆e(ξ;S

′). (14)

¤

In the sequel we develop some kind of “Discrete Fourier Analysis”, i.e., we will

show that for any vector e ∈ INn e is a sum of some periodic vectors, associated

with π-scales in a special manner. (As before, n = pf11 · · · pfkk .)

Definition 7. Let n = pf11 · · · pfkk , and e ∈ INn. Consider the {p1, . . . , pk}-
scale S = {t1/p1, . . . , tk/pk}, let θ = pf1−1

1 · · · pfk−1
k . For any vector e ∈ INn and

S′ ⊆ S, (S′ 6= ∅), we define the vector φ(S′, e) = (φ0(S
′, e), . . . , φn−1(S

′, e)) as

follows:

(1). For 0 ≤ r ≤ θ − 1 let φr(S
′, e) = dr(S

′), such that dr(S
′) ∈ Z and

∑

S′⊆S, (S′ 6=∅)
dr(S

′) = er. (15)

(2). Assume that for any 0 ≤ i ≤ n− 1− θ φi(S
′, e) is already defined. Then let

φi+θ(S
′, e) = φi(S

′, e) + (−1)|S
′|∆e(i;S

′). (16)
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Lemma 7. For any vector e ∈ INn and S′ ⊆ S, (S′ 6= ∅), let the vec-

tor φ(S′, e) ∈ INn, φ(S′, e) = (φ0(S
′, e), . . . , φn−1(S

′, e)) be the vector given in

Definition 7. Then

e =
∑

S′⊆S,S′ 6=∅
φ(S′, e). (17)

Proof. Let us choose the scale S = {t1/p1, . . . , tk/pk} such that

nt1/p1+, . . . ,+ntk/pk = θ. (18)

Then

ei+θ = ei − (ei − ei+θ) = ei −
∑

S′⊆S,S′ 6=∅
(−1)|S

′|−1∆e(i;S
′) (19)

holds by (8). ¤

Lemma 8. Let S′ ⊆ S, (S′ 6= ∅, S′ 6= S), where S′ and S are π′ resp. π-

scales. For e ∈ INn the vector φ(S′, e) given in Definition 7 is a c-periodic function

where

c = n/
∏

q∈π\π′
q. (20)

Proof. Let

e =
∑

S′⊆S,S′ 6=∅
φ(S′, e) (21)

and define the vector e′ as follows:

e′ =
∑

S0⊆S′, S0 6=∅
φ(S0, e) (22)

It is easy to see that if q ∈ π \ π′ then Ωe′(π
′ ∪ q) = ∅. (Here π′ corresponds to

S′.) It follows by Lemma 5, that if ξ ≡ ξ′ (mod n/
∏

q∈π\π′ q) then ∆e′(ξ;S) =

∆e′(ξ
′;S). It means by the definition of φ(S′, e) that it is a c-periodic vector. ¤

4. Semiperiodic vectors

In this section we examine some properties of so-called semiperiodic vectors

playing a central rule in our investigations concerning the context-freeness of Qn.

We will make use of the so-called Chinese Reminder Theorem. (See e.g.: [20].)
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Theorem 4 (Chinese Reminder Theorem). Let m1, . . . ,mk be pair-wise

relatively prime numbers and a1, . . . , ak be integers. Then for i = 1, . . . , k the

congruences

x ≡ ai (mod mi) (23)

have a common solution. If x1 and x2 are any two solutions of the system (23),

then

x1 ≡ x2 (mod m1 · · ·mk) (24)

holds.

Definition 8. The vector (e0, . . . , en−1) ∈ INn is (r, s)-semiperiodic if for any

ξ ∈ n

eξ − eξ+r = eξ+s − eξ+r+s (25)

holds.

We get an interesting subclass of (r, s)-semiperiodic vectors in the case of

n = rs r, s 6= 1 and gcd(r, s) = 1. The following lemma gives the motivation of

the notion ’(r, s)-semiperiodic vector’.

Lemma 9. Let n = rs, r, s 6= 1 and gcd(r, s) = 1. The vector e ∈ INn is

an (r, s)-semiperiodic if and only if e may be written as the sum of an r-periodic

and an s-periodic vector, i.e.,

e = f + g, (26)

where for f = (f0, . . . , fn−1), g = (g0, . . . , gn−1), and for any ξ ∈ n,

fξ = fξ+r (27)

and
gξ = gξ+s (28)

holds. If

e = f ′ + g′, (29)

is any other decomposition of e into an r-periodic and an s-periodic vector, then

f ′ = f + c and g′ = g − c holds for some constant vector c.

Proof. Let i be any element of n. By the Chinese Reminder Theorem, there

are integers α (0 ≤ α ≤ s− 1) and β (0 ≤ β ≤ r − 1) such that

i = αr + βs. (30)

Let f and g defined by

fi = −e0 + c+ eβs (31)

gi = −c+ eαr (32)
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where c is a fixed integer. Here

i+ r = (α+ 1)r + βs (33)

and

i+ s = αr + (β + 1)s, (34)

thus

fi+r = fi = −e0 + c+ eβs (35)

gi+s = gi = −c+ eαr. (36)

We have to prove that e = f + g. The proof is by mathematical induction on the

number α+ β. If β = 0 then

fi + gi = (−e0 + c+ e0) + (−c+ eαr) = ei (37)

Similarly follows that fi + gi = ei whenever α = 0. Let α > 0 and β > 0, assume

that for j = α′r + β′s fj + gj = ej holds when α′ + β′ < α + β. Vector e is

semiperiodic hence

eαr+βs − e(α−1)r+βs = eαr+(β−1)s − e(α−1)r+(β−1)s (38)

thus

eαr+βs = e(α−1)r+βs + eαr+(β−1)s − e(α−1)r+(β−1)s (39)

Here

e(α−1)r+βs = f(α−1)r+βs + g(α−1)r+βs

eαr+(β−1)s = fαr+(β−1)s + gαr+(β−1)s

e(α−1)r+(β−1)s = f(α−1)r+(β−1)s + g(α−1)r+(β−1)s (40)

by our hypothesis. Vector f is r-periodic, thus

fαr+βs = f(α−1)r+βs + fαr+(β−1)s − f(α−1)r+(β−1)s. (41)

Similarly, g is s-periodic, thus

gαr+βs = g(α−1)r+βs + gαr+(β−1)s − g(α−1)r+(β−1)s (42)

It follows by 39, 40, 41 and 42 that

eαr+βs = fαr+βs + gαr+βs (43)

Let e = f ′+g′ any decomposition of e into an r-periodic and an s-periodic vector.

It is easy to check that if f ′
0 = f0 then f ′ = f and g′ = g.
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Let us assume that vector e is of the form e = f + g, where f and g are r,

resp. s-periodic functions. It follows that

eξ − eξ+r = fξ + gξ − fξ+r − gξ+r. (44)

Vector f is r-periodic, thus fξ = fξ+r. Here

eξ − eξ+r = gξ − gξ+r = gξ − gξ+r + fξ+s − fξ+s

= gξ+s − gξ+r+s + fξ+s − fξ+r+s = eξ+s − eξ+r+s, (45)

it means that vector e is (r, s)-semiperiodic. ¤

In the sequel we define the general concept of semiperiodic vectors and in-

vestigate some of their properties.

Definition 9. Let n = n1θ, where n1 = pf11 · · · pfkk , consequently, θ = pf1−1
1 · · ·

pfk−1
k . Vector e ∈ INn is called semiperiodic, if for any decomposition n = rsθ

of n where r, s 6= n1 and gcd(r, s) = 1, vector e is (r, sθ)-periodic.

For the sake of simplicity, in the following lemma we assume that n is square-

free.

Lemma 10. Let n = p1 · · · pk and π = {p1, . . . , pk}. The vector e ∈ INn is

semiperiodic if and only if e is of the form

e =
∑
p∈π

e(p) (46)

where for p ∈ π e(p) is a p-periodic vector.

Proof. Step 1, sufficiency. Let e be of the form 46, n = rs, r, s 6= 1. We

have to prove that e is (r, s)-semiperiodic. Let us denote the set of prime divisors

of r by πr, and by πs that of s. Consider the following decomposition of vector e:

e = e(r) + e(s), (47)

where

e(r) =
∑
q∈πr

e(q) (48)

and

e(s) =
∑
q∈πs

e(q). (49)

It is easy to show that e(r) is an r-periodic and e(s) is an s-periodic vector, thus

vector e is (r, s)-semiperiodic by Lemma 9.
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Step 2, necessity. Assume now that the vector e ∈ INn is semiperiodic. We

have to prove that e = e(p1) + · · · + e(pk), where for i = 1, . . . , k e(pi) is a pi-

periodic vector. Especially, for any p ∈ {p1, . . . , pk} e is (p, n/p)-semiperiodic,

thus in Definition 17 for any i ∈ n, ∆e(i;S
′) = 0 holds if |S′| ≥ 2. Let

e =
∑

S′⊆S, S′ 6=∅
φ(S′, e) =

∑

S′⊆S,|S′|=1

φ(S′, e) +
∑

S′⊆S,|S′|≥2

φ(S′, e). (50)

Here

∑

S′⊆S,|S′|≥2

φ(S′, e) = C (51)

holds for some constant C ∈ Z, and every summand in the sum

∑

S′⊆S,|S′|=1

φ(S′, e). (52)

is p-periodic for S′ = {p}. (See: Lemma 8) ¤

Theorem 5. Let n = pf11 · · · pfkk and π = {p1, . . . , pk}. The vector e ∈ INn

is semiperiodic if and only if e is of the form

e =
∑
p∈π

e(p) (53)

where for p ∈ π and θ = pf1−1
1 · · · pfk−1

k e(p) is a pθ-periodic vector.

Proof. For j = 0, . . . , θ − 1 and n1 = p1 · · · pk let us define the vectors

f j = (f j
0 , . . . , f

j
n1−1) as follows:

f j
k = ej+kθ k = 0, . . . , n1 − 1 (54)

It is easy to show that e is semiperiodic if and only if for any j = 0, . . . , θ − 1

vector f j is semiperiodic as well.

f j =
∑
p∈π

f (j,p), (55)

where f (j,p) is p-periodic. Let e(p) = (e
(p)
0 , . . . , e

(p)
n ) defined as

e
(p)
j+kθ = f

(j,p)
k j = 0, . . . , θ − 1 k = 0, . . . , n1 − 1 (56)

Vector f (j,p) is p-periodic, thus e(p) is pθ-periodic. ¤
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5. The classification of E(Qn)

In the sequel we will define a classification of E(Qn). It is conjectured that

each class of this classification is a stratified semilinear DLI-set.

Definition 10. For α = 1, . . . , k − 1 let Eα defined by

Eα = {e ∈ INn | Ωe(π) 6= ∅, if |π| = α, Ωe(π
′) = ∅, if |π′| = α+ 1}, (57)

and for α = k by

Ek = {e ∈ IN | Ωe(π) 6= ∅, |π| = k, }, (58)

Proving the context-freeness of Q6, Katsura Masashi introduced two special

types of DLI-sets. Here we generalize this constructions.

Theorem 6. Let Eα given in Definition 10. Then Ek∩E(Qn) and E1∩E(Qn)

are stratified semilinear sets.

Proof. Ek ∩ E(Qn) is a stratified semilinear set by the Flip-Flop lemma.

Let e ∈ E1 ∩ E(Qn). Let π = {p1, . . . , pk}, assume that p1 < · · · < pk. By

Lemma 5, vector e is (pθ, n/p)-semiperiodic for any p ∈ π. It means that

eξ − eξ+n/p = eξ+pθ − eξ+n/p+pθ. (59)

Case 1, k ≥ 3. e ∈ E(Qn), thus there is a ξ ∈ n, for which eξ − eξ+n/pk
6= 0

holds. We may assume that ξ = n− 1− n/pk, thus

en−1−n/pk
− en−1 6= 0. (60)

Similarly, there is a ξ1 ∈ n such that

eξ1 − eξ1+n/p1
6= 0. (61)

Using( 59) we can choose an m1 such that

ξ1
′ = ξ1 +m1p1θ ∈ [0, p1θ), (62)

and

eξ′1 − eξ′1+n/p1
= eξ1 − eξ1+n/p1

6= 0. (63)

In the same way, let ξ′2 ∈ [ξ′1, ξ
′
1 + p2θ) such that

eξ′2 − eξ′2+n/p2
6= 0. (64)

In general, let us assume that ξ′i is already given ( i ∈ {1, . . . , k − 2}). We define
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ξ′i+1 ∈ [0, pi+1θ) such that

eξ′i+1
− eξ′i+1+n/pi+1

6= 0. (65)

We show that the set system

Θ = {{ξ′i, ξ′i + n/pi} | i = 1, . . . , k} (66)

consists of pair-wise non-crossing elements. It is enough to prove that for i =

1, . . . , n− 2 {ξ′i, ξ′i + n/pi} and {ξ′i+1, ξ
′
i+1 + n/pi+1} further {ξ′1, ξ′1 + n/p1} and

{ξ′k, ξ′k + n/pk} are non-crossing sets. Indeed, d1 = (ξi + n/pi)− (ξi + n/pi+1) =

n/pi − n/pi+1 is divisible by pkθ, thus piθ < pkθ < d1, it means that {ξ′i, ξ′i +
n/pi} and {ξ′i+1, ξ

′
i+1 + n/pi+1} are really non-crossing sets. Similarly, d2 =

(n−n/pk)− (n/p1) is divisible by p2θ, thus p1θ < p2θ < d2, hence {ξ′1, ξ′1+n/p1}
and {ξ′k, ξ′k + n/pk} are non-crossing sets.

Case 2.1, k = 2, p1 = 2, p2 = 3 Vector e belogns to E(Qn), thus there are

ξ1 ∈ n, ξ2 ∈ n such that

eξ1 − eξ1+n/2 6= 0 (67)

and

eξ2 − eξ2+n/3 6= 0. (68)

It is easy to shaw that for any j ∈ n

eξ1+jn/3 − eξ1+n/2+jn/3 6= 0 (69)

thus there is a j0 such that one of the following relations is valid:

ξ1 + j0n/3 ∈ [ξ2, ξ2 − θ) (70)

or

ξ1 + j0n/3 ∈ [ξ2, ξ2 + θ). (71)

ξ1 + n/2 + j0n/3 ∈ [ξ2, ξ2 − θ). (72)

ξ1 + n/2 + j0n/3 ∈ [ξ2, ξ2 + θ). (73)

Without loss of generality we may assume that (70) holds. If

η = ξ1 + j0n/3 ∈ (ξ2, ξ2 − θ) (74)
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(i.e., η 6= ξ2,) then

eη − eη+n/2 6= 0 (75)

and

eξ2 − eξ2+n/3 6= 0. (76)

Here the index sets {η, η + n/2} and {ξ2, ξ2 + n/3} are non-crossing sets, thus

vector e is contained in the stratified semilinear DLI-set

{e′ | e′η − e′η+n/2 6= 0, e′ξ2 − e′ξ2+n/3 6= 0.} (77)

If η = ξ1 + j0n/3 = ξ2 then let us consider the DLI-set

D1 = {e′ | e′η−e′η+n/2 6= 0, (e′η−e′η+n/2)+(e′η+n/2+n/3−e′(η+n/3)+n/3) 6= 0.} (78)

Assume that e ∈ D1 but e /∈ E(Qn). It means that e is either a quadrat or a

cube. eξ2 − eξ2+t1n/2 6= 0, thus e may not be a quadrat. If e is a cube, then

eη − eη+n/3 = (eη − eη+n/2) + (eη+n/2 − eη+n/3)

= (eη − eη+n/2) + (eη+n/2+n/3 − eη+n/3+n/3) = 0

holds for any η ∈ n, a contradiction by (78) .

Case 2.2, k = 2, r = 1, p1p2 > 6 Let us assume that p1 < p2 and that

t1 = t2 = 1. If the index sets I1 = {ξ1, ξ1 + n/p1} and I2 = {ξ2, ξ2 + n/p2} are

non-crossing sets then vector e is contained in the stratified semilinear vector set

{e′ | e′ξ1 − e′ξ1+n/p1
6= 0, e′ξ2 − e′ξ2+n/p2

6= 0}. (79)

Assume that I1 and I2 are crossing sets, i.e., ξ1 ∈ [ξ2, ξ2 + n/p2] or ξ1 + n/p1 ∈
[ξ2, ξ2+n/p2]. Without loss of generality may be assumed that ξ1 ∈ [ξ2, ξ2+n/p2]

Vector e is semiperiodic thus

0 6= eξ1 − eξ1+n/p1
= eξ1+n/p2

− eξ1+n/p1+n/p2
. (80)

We will show that the index sets I ′1 = {ξ1 + n/p2, ξ1 + n/p1 + n/p2} and I2 =

{ξ2, ξ2 + n/p2} are non-crossing sets. We have to prove that

n/p1 + 2n/p2 < n, (81)

i.e., that

1/p1 + 2/p2 < 1. (82)

Indeed, p2 ≥ 5 and p1 ≥ 2 thus

0 < p2 − 4 = 2(p2 − 2)− p2 ≤ p1(p2 − 2)− p2 = p1p2 − 2p1 − p2, (83)

and(82) holds.( Note that p1p2 > 6.) ¤
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It is conjectured that Eα ∩E(Qn) is stratified semilinear for any α(2 ≤ α ≤
k − 1). In Lemma 11 we investigate the structure of Eα in this case.

Lemma 11. For α (2 ≤ α ≤ k − 1), let Eα given in Definition 10. Let us

consider the vector e ∈ INn, which may be written in the form

e =
∑

S′⊆S, S′ 6=∅
φ(S′, e). (84)

(See: Lemma 7) Vector e belongs to Eα if and only if

(i) In case of |S′| > α, φ(S′, e) is a θ-periodic vector.

(ii) For any α′ ≤ α there is an S′, such that |S′| = α′, and vector φ(S′, e) is not
θ-periodic, but it is a c-periodic function where

c = n/
∏

q∈π\π′
q. (85)

Proof. By the definition of Eα, ∆e(ξ, S
′) = 0 holds for any e ∈ Eα and

ξ ∈ n whenever |S′| > α. Further ∆e(ξ0, S
′) 6= 0 holds for some ξ0 ∈ n if |S′| ≤ α.

It means that for φ(S′, e) = (φ0(S
′, e), . . . , φn−1(S

′, e))

φξ+θ(S
′, e) = φξ(S

′, e) + (−1)|S
′|∆e(ξ;S

′) = φξ(S
′, e) (86)

holds if |S′| > α and φ(S′, e) is c-periodic by Lemma 8, whenever |S′| ≤ α.

Conversely, assume that for e ∈ INn,( 86) and

φξ0+θ(S
′, e) = φξ0(S

′, e) + (−1)|S
′|∆e(ξ0;S

′) 6= φξ0(S
′, e). (87)

holds. Then in case(i) ∆e(ξ, S
′) = 0 holds for any ξ ∈ n and in case(ii) there is a

ξ0 ∈ n with ∆e(ξ0;S
′) 6= 0. It follows that e ∈ Eα. ¤

6. Examples

Theorem 17 allows us to construct semiperiodic vectors.

Example 1. Let n = 15 = 3 · 5, further define vectors f , g and e as follows:

i= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f= 1 3 2—1 3 2—1 3 2—1 3 2— 13 2

g= 0 0 1 1 2— 00 1 1 2— 0 0 1 1 2

e= 1 3 3 2 5 2 1 4 3 3 3 2 2 4 4
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Here f is a 3-periodic and g is a 5-periodic vector and row e is the sum of

the previous two. For the components of e holds:

e0 − e5 = e3 − e8 = e6 − e11 = e9 − e14 = e12 − e2 = −1,

e1 − e6 = e4 − e9 = e7 − e12 = e10 − e0 = e13 − e3 = 2,

further

e2 − e7 = e5 − e10 = e8 − e13 = e11 − e1 = e14 − e4 = −1,

thus vector e is (3, 5)-semiperiodic.

The following example shows, how to construct elements of Eα, using

Lemma 11.

Example 2. Let n = 2 · 3 · 5 and α = 2 and

e1 =0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

e2 =0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2

e3 =1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2

e4 =1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

————————————————————————————————

e=2 4 3 3 5 3 1 5 3 4 4 3 2 5 4 2 3 4 2 6 3 2 4 4 3 4 2 3 4 5.

Here vector e = e1 + e2 + e3 + e4 given above belongs to E2.
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