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On the practical stability of dependent parameter
perturbed systems
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and MOHAMED ALI HAMMAMI (Sfax)

Abstract. We investigate in this paper the global uniform practical asymptotic
stability for a class of dependent parameter perturbed systems where the associated
linear system is globally exponentially stable and the perturbation term is subject to
two conditions. An example is given to illustrate the result of this paper formulated in
the form of Linear matrix inequalities.

1. Introduction

The analysis of stability of time-varying systems is an important topic in
systems theory ([10], [12], [15]), specially in the case of the uncertain system.
One of the most effective approaches for studying stability of uncertain systems
([2], [4], [8], [9], [20]) is the Lyapunov approach ([5], [7], [13], [16], [17], [18], [19])
where the problem of stability of dependent parameter systems has been subject
to considerable research efforts. Continuous-time linear systems whose dynamic
matrices are affected by bounded uncertain time-varying parameters have been
investigated through sufficient Linear matrix inequalities (LMIs) stability con-
ditions [3] as for instance in ([5], [18]) where the system is written with affine
dependence on the uncertain parameter.

In this paper, we discuss the problem of stability for a class of perturbed sys-
tems which depend on a parameter. This discussion is done through Lyapunov
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functions, LMIs conditions and by imposing some restrictions on the perturba-
tion term. We shall develop an algorithm, when the nonlinearities are bounded,
to ensure the global uniform practical exponential stability of a perturbed system
whose linear system satisfies some LMIs. Moreover, we are motivated to give,
under some works of ([1], [6], [11] and [14]), a numerical example.

2. Problem formulation

Consider the system

ẋ(t) = A(α(t))x(t) + f(t, α(t), x). (1)

The matrix A(α(t)) ∈ Rn×n is defined as

A(α(t)) = α1(t)A1 + α2(t)A2

where αi(t), i = 1, 2 are continuous functions such that αi(t) ≥ 0, α1(t)+

α2(t) = 1, |α̇1(t)| ≤ ρ with ρ ∈ R+ and A1, A2 ∈ Rn×n are constant matrices.
Note that, since α2(t) = 1− α1(t), then the linear system can be written as

A(α(t)) = α1(t)A1 + (1− α1(t))A2. (2)

Moreover, the continuous function f : R+ × R× Rn → Rn is the perturbation of
system (2) and it result in general from modelling errors, aging of parameters or
uncertainties and disturbances.

The main objective of this paper is to study the stability of the system (1)
by imposing some conditions on the term of perturbation f . In fact, we begin
by investigating the global uniform practical exponential stability of perturbed
system and after that, an illustrative numerical example is given to illustrate the
applicability of these results where the stability conditions are given in terms of
LMIs which can be easily checked by LMI Control Toolbox in Matlab.

Notations: The following notations will be used throughout this paper. For
a real square matrix X, the notation X > 0 (respectively X < 0) means that X
is positive definite (respectively negative definite). λmin(X) and λmax(X) denote
the minimum and the maximum eigenvalues of X respectively.
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3. General definitions

Consider the non-autonomous system

ẋ = g(t, x) (3)

where g : [0,∞) ×D → Rn is piecewise continuous in t and locally Lipschitz in
x on [0,∞) × D, and D ⊂ Rn is a domain that contains the origin x = 0. The
origin is an equilibrium point for (3), if

g(t, 0) = 0, ∀ t ≥ 0.

We define x(t0) as the solution of system (3) at t = t0 and x(t) = x(t, t0, x0) for
any solution of system (3).

We give now the definition of uniform stability and uniform attractivity of
system (3) towards a ball Br = {x ∈ Rn/‖x‖ ≤ r}.

Definition 1 (Uniform stability of Br). Br is uniformly stable if for all ε > r,
there exists δ = δ(ε) > 0, such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀ t ≥ t0. (4)

Definition 2 (Uniform attractivity of Br). Br is uniformly attractive, if for
ε > r, t0 > 0 and x(t0) ∈ D, there exists T (ε, x(t0)) > 0, such that

‖x(t)‖ < ε, ∀ t ≥ t0 + T (ε, x(t0)). (5)

Br is globally uniformly attractive if (5) is satisfied for x(t0) ∈ Rn.

Definition 3 (Practical stability). System (3) is said uniformly practically
asymptotically stable, if there exists Br ⊂ Rn, such that Br is uniformly stable
and uniformly attractive. It is globally uniformly practically asymptotically stable
if x(t0) ∈ Rn.

Definition 4. System (3) is said uniformly exponentially convergent to Br, if
there exist γ > 0 and k ≥ 0, such that

‖x(t)‖ ≤ k‖x(t0)‖ exp(−γ(t− t0)) + r, ∀ t ≥ t0, ∀x(t0) ∈ D. (6)

If x(t0) ∈ Rn, the system is globally uniformly exponentially convergent to Br.
We say that the system is globally uniformly practically exponentially stable

if for r > 0, it is globally uniformly exponentially convergent to Br.
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Definition 5. System (3) is said uniformly exponentially convergent to zero,
if there exist γ > 0 and k ≥ 0, such that

‖x(t)‖ ≤ k‖x(t0)‖ exp(−γ(t− t0)) + r(t), ∀ t ≥ t0, ∀x(t0) ∈ D (7)

with limt→+∞ r(t) = 0.

Definition 6 (Linear matrix inequality). A linear matrix inequality (LMI) is
any constraint of the form

A(x) := A0 + x1A1 + · · ·+ xNAN < 0 (8)
where

• x = (x1, . . . , xN ) is a vector of unknown scalars (the decision or optimization
variables)

• A0, . . . , AN are given symmetric matrices
• < 0 stands for “negative definite", i.e., the largest eigenvalue of A(x) is neg-
ative.

Note that the constraints A(x) > 0 and A(x) < B(x) are special cases of (8) since
they can be rewritten as −A(x) < 0 and A(x)−B(x) < 0, respectively.

Moreover, in most control applications, LMIs do not naturally arise in the
canonical form (8), but rather in the form

L(X1, . . . , Xn) < R(X1, . . . , Xn)

where L(.) and R(.) are affine functions of some structured matrix variables
X1, . . . , Xn.

4. Global uniform practical exponential stability
via linear matrix inequalities

In this section, our object is to study the global uniform practical exponential
stability of system (1). This study is done through three steps. Firstly, we begin
by the use of two LMIs. Secondly, we treat the case of three LMIs and finally
we study the case of four LMIs. In fact, we give an algorithm that shows the
robustness of this method to obtain other classes of strongly practically stable
perturbed systems by considering a large number of LMIs where the radius of
the ball decreases when the number of LMIs increases.
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Consider the system (1), assume that, there exists M > 0 such that for all
t ≥ 0, x ∈ Rn,

(H1) ‖f(t, α(t), x)‖ ≤ M.

Here, the perturbation term is bounded which implies that the origin could not
be an equilibrum point. Let

V (x, α) = xTP (α)x, P (α) = PT (α) > 0,

a candidate Lyapunov function. The time derivative of V along the trajectories
of perturbed system is given by

V̇ (x, α) = xT [P (α)A(α) +AT (α)P (α) + Ṗ (α)]x+ 2xTP (α)f(t, α(t), x).

We will use Linear matrix inequalities and by imposing some conditions on
the linear part of system (1), we give some classes of perturbed systems which
are globally uniformly practically exponentially stable.

Lemma 1. Let
V (x, α) = xTP (α)x,

a quadratic positive definite function with P (α) is a positive definite matrix that
satisfy

P (α) > λmin(Pi)I

where Pi is a constant matrix.
If one has

v̇(t) ≤ −η1v(t) +Mr (9)

where v(t) =
√
V (x, α), η1 > 0, M > 0, r > 0, then the solutions of system (1)

satisfiy
‖x(t)‖ ≤ η2‖x(t0)‖e−η1(t−t0) +M

r

η1λmin(Pi)
,

∀t ≥ t0 ≥ 0, η1 > 0, η2 > 0, M > 0 and r > 0.

We will start our study by the simplest case: the case of constant matrices.

Proposition 1. Suppose that, for given reals l1 ∈ R∗
+ and l2 ∈ R∗

+, there
exists a symmetric positive definite matrix P ∈ Rn×n, such that

(
AT

1 +
l1
2
I

)
P + P

(
A1 +

l1
2
I

)
< 0 (10)
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(
AT

2 +
l2
2
I

)
P + P

(
A2 +

l2
2
I

)
< 0 (11)

and suppose that the assumption (H1) holds, then any solution x(t) of system
(1) converges exponentially towards the ball B(0, r1) where

r1 =
2Mλ2

max(P )

lλ2
min(P )

with l = inf(l1, l2).

Proof. Let P (α) = P . The time-derivative of V along the trajectories of
perturbed system (1) is given by

V̇ (x, α) = xT [α1(t)(A
T
1 P + PA1) + α2(t)(A

T
2 P + PA2)]x+ 2xTPf(t, α(t), x)

≤ xT [α1(t)(−l1P ) + α2(t)(−l2P )]x+ 2Mλmax(P )‖x‖
≤ −lλmin(P )‖x‖2 + 2Mλmax(P )‖x‖

≤ −lλmin(P )

λmax(P )
V (x, α) + 2M

λmax(P )√
λmin(P )

√
V (x, α).

Let
v(t) =

√
V (x, α),

hence,

v̇(t) ≤ −lλmin(P )

2λmax(P )
v(t) +M

λmax(P )√
λmin(P )

.

A simple computation shows that,

v(t) ≤ v(t0) exp

(−l

2

λmin(P )

λmax(P )
(t− t0)

)
+

2Mλ2
max(P )

l
√
λmin(P )λmin(P )

which implies that

‖x(t)‖ ≤
√
λmax(P )√
λmin(P )

‖x(t0)‖ exp
(−l

2

λmin(P )

λmax(P )
(t− t0)

)
+

2Mλ2
max(P )

lλ2
min(P )

.

Therefore, from Definition 4, any solution x(t) of system (1) converges exponen-
tially towards the ball B(0, r1) whose radius is given by

r1 =
2Mλ2

max(P )

lλ2
min(P )

. ¤
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Less conservative conditions to evaluate the practical stability of time-varying
systems subject to bounded rates of variation are given by the next proposition.

Proposition 2. Assume that, for strict positive reals l1, l2, l3 and a given
parameter ρ ∈ R+, there exist symmetric positive definite matrices P1 ∈ Rn×n,
P2 ∈ Rn×n such that (P1 − P2) is a symmetric positive definite matrix where
λmin(P1) > λmin(P2), and satisfying

(
AT

1 +
l1
2
I

)
P1 + P1

(
A1 +

l1
2
I

)
− l1P2 + ρ(P1 − P2) < 0 (12)

(
AT

2 − l2
2
I

)
P2 + P2

(
A2 − l2

2
I

)
+ l2P1 + ρ(P1 − P2) < 0 (13)

and

(AT
1 − l3I)P2+P2(A1− l3I)+ (AT

2 + l3I)P1+P1(A2+ l3I)+ 2ρ(P1−P2)< 0. (14)

Suppose that (H1) holds, then, any solution x(t) of system (1) converges expo-
nentially towards the ball B(0, r2) where

r2 =
2M(λmax(P1) + λmax(P2))

2

lλmin(P2)λmin(P1 − P2)

with l = inf(l1, l2, l3).

Proof. Let P (α) = α1(t)P1 + α2(t)P2. On the one hand, we have

P (α) ≥ α1(t)λmin(P1)I + α2(t)λmin(P2)I ≥ λmin(P2)I

and
V (x, α) ≤ (λmax(P1) + λmax(P2))‖x‖2.

On the other hand, multiplying the time derivative of P (α) by (α1(t) + α2(t))
2

which equal to 1, the time derivative of V along the trajectories of system (1) is
given by

V̇ (x, α) = xT
(
α2
1(t)(A

T
1 P1 + P1A1 + α̇1(t)(P1 − P2))

+ α2
2(t)(A

T
2 P2 + P2A2 + α̇1(t)(P1 − P2))

+ α1(t)α2(t)(A
T
1 P2 + P2A1 +AT

2 P1 + P1A2 + 2α̇1(t)(P1 − P2)))x

+ 2xT (α1(t)P1 + α2(t)P2)f(t, α(t), x).
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Since |α̇1(t)| ≤ ρ, we get

V̇ (x, α) ≤ xT (−l(P1 − P2)(α
2
1(t) + α2

2(t) + 2α1(t)α2(t)))x+ 2M(λmax(P1)

+ λmax(P2))‖x‖ ≤ −lλmin(P1 − P2)‖x‖2 + 2M(λmax(P1) + λmax(P2)) ‖x‖

≤ −lλmin(P1 − P2)

λmax(P1) + λmax(P2)
V (x, α) +

2M(λmax(P1) + λmax(P2))√
λmin(P2)

√
V (x, α).

Let
v(t) =

√
V (x, α)

hence,

v̇(t) ≤ −lλmin(P1 − P2)

2(λmax(P1) + λmax(P2))
v(t) +

M(λmax(P1) + λmax(P2))√
λmin(P2)

.

An integration between t0 and t shows that

v(t) ≤ v(t0) exp

(−l

2

λmin(P1 − P2)

λmax(P1) + λmax(P2)
(t− t0)

)

+
2M(λmax(P1) + λmax(P2))

2

l
√
λmin(P2)λmin(P1 − P2)

and consequently,

‖x(t)‖ ≤
√
λmax(P1) + λmax(P2)√

λmin(P2)
‖x(t0)‖ · exp

(−lλmin(P1 − P2)(t− t0)

2(λmax(P1) + λmax(P2))

)

+
2M(λmax(P1) + λmax(P2))

2

lλmin(P2)λmin(P1 − P2)

Therefore, any solution x(t) of system (1) converges exponentially towards the
ball B(0, r2) whose radius is given by

r2 =
2M(λmax(P1) + λmax(P2))

2

lλmin(P2)λmin(P1 − P2)
. ¤

Now, in order to obtain the less conservative result and following the ideas
used in the previous propositions, a new sufficient condition based on quadrati-
cally parameter dependent Lyapunov functions is studied in the next theorem.
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Theorem 1. Suppose that, for strict positive reals l1, l2, l3, l4 and a given
parameter ρ ∈ R+, there exist symmetric positive definite matrices P1 ∈ Rn×n,
P2 ∈ Rn×n, P3 ∈ Rn×n such that (P1 − P2), (2P1 − P3), (P3 − 2P2) and (P1 +

P2−P3) are also symmetric positive definite matrices where λmin(P1) > λmin(P2),
λmin(P3) > 2λmin(P2), and satisfying
(
AT

1 +
l1
2
I
)
P1 + P1

(
A1 +

l1
2
I
)
+ l1(P2 − P3) + ρ(2P1 − P3) < 0 (15)

(
AT

1 − 3

2
l2I

)
P3 + P3

(
A1 − 3

2
l2I

)
+
(
AT

2 +
3

2
l2I

)
P1 + P1

(
A2 +

3

2
l2I

)

+ 3l2P2 + ρ(4P1 − P3 − 2P2) < 0 (16)
(
AT

1 +
3

2
l3I

)
P2 + P2

(
A1 +

3

2
l3I

)
+
(
AT

2 − 3

2
l3I

)
P3 + P3

(
A2 − 3

2
l3I

)

+ 3l3P1 + ρ(2P1 + P3 − 4P2) < 0 (17)

and (
AT

2 +
l4
2
I
)
P2 + P2(A2 +

l4
2
I) + l4(P1 − P3) + ρ(P3 − 2P2) < 0 (18)

Suppose that (H1) holds, then any solution x(t) of system (1) converges expo-
nentially towards the ball B(0, r3) where

r3 =
2M(λmax(P1) + λmax(P2) + λmax(P3))

2

lλmin(P2)λmin(P1 + P2 − P3)

with l = inf(l1, l2, l3, l4).

Proof. Let P (α) = α2
1(t)P1 + α2

2(t)P2 + α1(t)α2(t)P3. It satisfies

P (α) ≥ α2
1(t)λmin(P1)I + α2

2(t)λmin(P2)I + α1(t)α2(t)λmin(P3)I

≥ α2
1(t)λmin(P1)I + (1− 2α1(t)α2(t)− α2

1(t))λmin(P2)I

+ α1(t)α2(t)λmin(P3)Iα
2
1(t)(λmin(P1)− λmin(P2))I

+ α1(t)α2(t)(λmin(P3)− 2λmin(P2))I + λmin(P2)I ≥ λmin(P2)I

and

Ṗ (α) = 2α1(t)α̇1(t)P1 + α̇1(t)α2(t)P3 − α1(t)α̇1(t)P3 − 2α2(t)α̇1(t)P2.

Multiplying last equality by (α1(t) + α2(t))
2 which equal to 1, one has

Ṗ (α) = α3
1(t)(α̇1(t)(2P1 − P3)) + α2

1(t)α2(t)(α̇1(t)(4P1 − P3 − 2P2))

+ α1(t)α
2
2(t)(α̇1(t)(2P1 + P3 − 4P2)) + α3

2(t)(α̇1(t)(P3 − 2P2)).
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The time-derivative of V (x, α) along the trajectories of system (1) is given by

V̇ (x, α) = xT
(
α3
1(t)(A

T
1 P1 + P1A1 + α̇1(t)(2P1 − P3)) + α2

1(t)α2(t)(A
T
1 P3

+ P3A1 +AT
2 P1 + P1A2 + α̇1(t)(4P1 − P3 − 2P2))

+ α2
2(t)α1(t)(A

T
1 P2 + P2A1 +AT

2 P3 + P3A2 + α̇1(t)(2P1 + P3 − 4P2))

+ α3
2(t)(A

T
2 P2 + P2A2 + α̇1(t)(P3 − 2P2))

)
x

+ 2xT (α2
1(t)P1 + α2

2(t)P2 + α1(t)α2(t)P3)f(t, α(t), x).

Since |α̇1(t)| ≤ ρ, we have

V̇ (x, α) ≤ xT
(− l1α

3
1(t)(P1 + P2 − P3)− 3l2α

2
1(t)α2(t)(P1 + P2 − P3)

− 3l3α1(t)α
2
2(t)(P1 + P2 − P3)− l4α

3
2(t)(P1 + P2 − P3)

)
x

+ 2M (λmax(P1) + λmax(P2) + λmax(P3)) ‖x‖ ≤ −lλmin(P1 + P2 − P3)‖x‖2
+ 2M (λmax(P1) + λmax(P2) + λmax(P3)) ‖x‖

≤ −lλmin(P1 + P2 − P3)

λmax(P1) + λmax(P2) + λmax(P3)
V (x, α)

+
2M (λmax(P1) + λmax(P2) + λmax(P3))√

λmin(P2)

√
V (x, α).

Let
v(t) =

√
V (x, α)

hence,

v̇(t) ≤ −lλmin(P1 + P2 − P3)

2(λmax(P1) + λmax(P2) + λmax(P3))
v(t)

+
M (λmax(P1) + λmax(P2) + λmax(P3))√

λmin(P2)
.

Integrating between t0 and t, one obtains

v(t) ≤ v(t0) exp

(−l

2

λmin(P1 + P2 − P3)

λmax(P1) + λmax(P2) + λmax(P3)
(t− t0)

)
+ µ1

where

µ1 =
2M(λmax(P1) + λmax(P2) + λmax(P3))

2

l
√
λmin(P2)λmin(P1 + P2 − P3)

,

which implies that,

‖x(t)‖ ≤ µ2‖x(t0)‖ exp
(−l

2

λmin(P1 + P2 − P3)

λmax(P1) + λmax(P2) + λmax(P3)
(t− t0)

)



On the practical stability of dependent parameter perturbed systems 341

+
2M(λmax(P1) + λmax(P2) + λmax(P3))

2

lλmin(P2)λmin(P1 + P2 − P3)

with

µ2 =

√
λmax(P1) + λmax(P2) + λmax(P3)

λmin(P2)
.

Thus, any solution x(t) converges exponentially towards the ball B(0, r3) whose
radius is given by

r3 =
2M(λmax(P1) + λmax(P2) + λmax(P3))

2

lλmin(P2)λmin(P1 + P2 − P3)
. ¤

Now, as a generalization to the previous work, we give a general algorithm,
with the aim of getting the radius of the ball as small as possible, by usingN linear
matrix inequalities. In fact, we begin by taking a Lyapunov function candidate
in the form

V (x, α) = xTP (α)x

where P (α) =
∑η

h=1 βh(t)Ph is a symmetric positive definite matrix such that
βh(t) are positive continuous functions that verify βh(t) ≤ 1 and Ph are constant
symmetric positive definite matrices.

In the case of constant matrices, i.e., P (α) = P, we use two LMIs to prove
the practical stability of system (1). These 2 LMIs are

AT
i P + PAi + liP < 0, i = 1, 2

where li are strict positive reals.
Otherwise, for the general case, i.e., P (α) =

∑η
h=1 βh(t)Ph, we have two

steps to follow:

Step 1: For available values of the strict positive reals lk, k = 1, . . . , N , sup-
pose that there exist symmetric positive definite matrices Ph, h = 1, . . . , η, such
that some combinations of these matrices are also symmetric positive definite,
and that satisfy this system of N − LMIs:

AT
i Pi + PiAi + ρ

η∑

h=1

chiPh + lk

η∑

h=1

dhiPh < 0

for i = 1, 2, chi, dhi are constant coefficients in R and
∑η

h=1 chiPh and
∑η

h=1 dhiPh

are combinations of η matrices.

AT
1 Pj + PjA1 +AT

2 Pr + PrA2 + ρ

η∑

h=1

chjPh + lk

η∑

h=1

dhjPh < 0
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for j, r ∈ {1, . . . , η}, j 6= 1, r 6= 2 and chj , dhj are constant coefficients in R.
Step 2: Take the following value of the radius of the attractive ball

r =
2M

l

(
∑η

h=1 λmax(Ph))
2

λmin(Ps) λmin (
∑η

h=1 dhjPh)

where l = infk=1,...,N lk and Ps, s ∈ {1, . . . , η} is the symmetric positive definite
matrix that satisfies P (α) ≥ λmin(Ps)I.

Remark 1. Note that, if we replace M by M(t) with limt→+∞ M(t) = 0,
then the system (1) is uniformly exponentially convergent to zero.

Example 1. Let the system

ẋ(t) = (α1(t)A1 + α2(t)A2)x(t) + f(t, α(t), x)

where x = (x1, x2) ∈ R2, the matrices A1, A2 are given by

A1 =

(
1 −9

11 −3

)
, A2 =

(
−6.6 8.5

3.4 −6

)

and f(t, α(t), x) = frac
√
2.10−51 + t2(α1(t) sin

2 x1, α2(t) cos
2 x2).

It is clear that f satisfies

‖f(t, α(t), x)‖2 ≤ 2.10−5.

When we take the conditions of Proposition 1 for l1 = 0.3 and l2 = 0.001, there
exists a symmetric positive definite matrix

P =

(
0.0454 −0.0081

−0.0081 0.0399

)

which satisfies the LMIs given in (10)-(11).
We get also λmin(P ) = 0.0341, λmax(P ) = 0.0512, which implies that the

solutions x(t) converge exponentially towards the ball B(0, r1) where

r1 = 9.02× 10−2

If we take into account the conditions of Proposition 2, it results that, for ρ = 10,
l1 = 3.8, l2 = 0.5 and l3 = 3.7, there exist symmetric positive definite matrices
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P1, P2 and (P1−P2) which satisfy the LMIs (12)–(13)–(14). These solutions are
given by

P1 =

(
3.5403 −0.6367

−0.6367 3.1370

)
, P2 =

(
3.2327 −0.3958

−0.3958 2.8180

)

and

P1 − P2 =

(
0.3076 −0.2409

−0.2409 0.3190

)
.

We get also λmin(P1) = 2.6708 > λmin(P2) = 2.5786, λmin(P1 − P2) = 0.0723,
λmax(P1) = 4.0066 and λmax(P2) = 3.4722 which implies that any solution x(t)

of system (1) converges exponentially towards the ball B(0, r2) where

r2 = 2.4× 10−2

Finally, when we use conditions of Theorem 1 for ρ = 21, l1 = 165, l2 = 880,
l3 = 255 and l4 = 200, it results that, there exist symmetric positive definite
matrices P1, P2, P3 such that (P1−P2), (2P1−P3), (P3−2P2) and (P1+P2−P3)

are also symmetric positive definite matrices that satisfy the LMIs (15)–(16)–
(17)–(18). These matrices are given by

P1 =

(
4.6708 −0.8744

−0.8744 4.3851

)
, P2 =

(
4.4169 −0.6539

−0.6539 4.1170

)

and

P3 =

(
9.0703 −1.5117

−1.5117 8.4836

)

which allows us to conclude that the solutions x(t) of system (1) converge expo-
nentially towards the ball B(0, r3) where

r3 = 1.92× 10−2

Therefore, we have r1 > r2 > r3.

Now, in the same context of studying the global uniform practical exponential
stability and by using the same LMIs, we will impose the following condition on
the perturbation term, instead of (H1).

(H2) There exists a continous function ρ(t, α(t)), such that

‖f(t, α(t), x)‖ ≤ ρ(t, α(t))

with ∫ +∞

0

ρ(s, α(s))ds ≤ M ′ < ∞, M ′ > 0.
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Proposition 3. Assume that, for l1 ∈ R∗
+, l2 ∈ R∗

+, there exists a symmetric
positive definite matrix P ∈ Rn×n which satisfies the LMIs given in (10)–(11)
and suppose that the assumption (H2) holds, then any solution x(t) of system
(1) converges exponentially towards the ball B(0, r4) where

r4 =
λmax(P )

λmin(P )
M ′.

Proof. Let P (α) = P . We have

V̇ (x, α) ≤ −lλmin(P )‖x‖2 + 2λmax(P )ρ(t, α(t)) ‖x‖

≤ −lλmin(P )

λmax(P )
V (x, α) +

2λmax(P )ρ(t, α(t))√
λmin(P )

√
V (x, α).

Let
υ(t) =

√
V (x, α)

So,

υ̇(t) ≤ −lλmin(P )

2λmax(P )
υ(t) +

λmax(P )√
λmin(P )

ρ(t, α(t))

and consequently, we get

υ(t) ≤ υ(t0) exp

(
− lλmin(P )

2λmax(P )
(t− t0)

)
+

λmax(P )√
λmin(P )

∫ t

t0

ρ(s, α(s))

× exp

(
− lλmin(P )

2λmax(P )
(t− s)

)
ds

≤ υ(t0) exp

(
− lλmin(P )

2λmax(P )
(t− t0)

)
+

λmax(P )√
λmin(P )

∫ t

t0

ρ(s, α(s))ds

≤ υ(t0) exp

(
− lλmin(P )

2λmax(P )
(t− t0)

)
+

λmax(P )√
λmin(P )

M ′.

Thus,

‖x(t)‖ ≤
√

λmax(P )

λmin(P )
‖x(t0)‖ exp

(
− l

2

λmin(P )

λmax(P )
(t− t0)

)
+

λmax(P )

λmin(P )
M ′,

which implies that the solutions x(t) of system (1) converge exponentially towards
the ball B(0, r4) whose radius is given by

r4 =
λmax(P )

λmin(P )
M ′. ¤
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Remark 2. In this case, we can use the same process described with assump-
tion (H1) in order to obtain less conservative results. In fact, we take the same
Step 1 described before in the case where the nonlinearity is bounded, and for
Step 2, we take the following value of the radius of the attractif ball

r =

∑η
h=1 λmax(Ph)

λmin(Ps)
M ′.

where Ps, s ∈ {1, . . . , η} verifies P (α) ≥ λmin(Ps)I.

5. Conclusion

Based on Lyapunov stability and LMI technique, new criteria are derived to
ensure the practical stability of perturbed systems with parameter dependence.
The effectiveness of the proposed criterion is verified in a numerical example.
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