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Asymptotics of the extremal values of certain graph parameters
in trees with bounded degree

By CLEMENS HEUBERGER (Graz) and STEPHAN G. WAGNER (Stellenbosch)

Abstract. In a recent paper, the authors of this note determined the trees of

given maximum degree which maximize the number of independent vertex subsets and

minimize the number of independent edge subsets respectively. It turned out that some

kind of digit representation plays a major role in the characterization of the optimal

trees. In the current paper, we study the asymptotic behavior of the optimal parameter

values. It turns out that they increase exponentially, but with fluctuations which can

be described by means of the aforementioned digit system.

1. Introduction

Characterizing the graphs or trees which maximize or minimize a certain

graph parameter is a problem that has already been the topic of a vast amount

of papers, see for instance [5], [11], [14], [18]. Most typically, the extremal values

of a graph parameter among all trees of a prescribed size are given for the star

and the path respectively. Among others, this is the case for the number of inde-

pendent vertex subsets and the number of independent edge subsets, which will be

discussed in the current work. An exception to this rule is the number of maximal

independent sets (cf. Wilf [18]). If the maximum degree is bounded above, the

path stays extremal, of course, but the star does not for obvious reasons. Howe-

ver, this is a pretty natural restriction not only for theoretical considerations,
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but also for applications: several graph parameters are known to be of interest in

theoretical chemistry, where they are used for predicting the behavior of molecu-

les [2], [3], [4], [8]. Trees with given maximum degree are frequently studied in

mathematical chemistry, see for instance [12], [15], [19], where the graph energy,

largest eigenvalue and Laplacian spectral radius are investigated.

In recent articles of Székely and Wang [16], [17], binary trees maximizing

the number of subtrees are determined and formulæ for the resulting maximal

numbers are given; the more general case of trees with bounded maximum deg-

ree was treated by Kirk and Wang [9]. Similarly, the authors of this paper

investigated the number of independent vertex subsets and edge subsets for trees

with bounded maximum degree, thereby also improving upon work of Lv and Yu

[13]. The results are quite surprising–in particular, the following theorem [7] was

proved:

Theorem 1. Let n be a positive integer and d ≥ 2. Then there is a unique

(up to isomorphism) tree Xn with n vertices and maximum degree ≤ d+ 1 that

maximizes the number of independent vertex subsets; the same tree also minimizes

the number of independent edge subsets. It can be decomposed as,

with Mk,1, . . . , Mk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < ` and either M`,1 = · · · =
M`,d = C`−1 or M`,1 = · · · = M`,d = C` or M`,1, . . . ,M`,d ∈ {C`, C`+1, C`+2},
where at least two of M`,1, . . . ,M`,d equal C`+1. Here, Ch denotes the complete

d-ary tree of height h− 1 (and C0 is the empty graph).

It was also shown that there is a natural connection to digital systems: if

ak denotes the number of Mk,js which are isomorphic to Ck+2, and if ã` is the

number of M`,js which are isomorphic to C`+1, we have

n =

`−1∑

k=0

(1 + (d+ 1)ak)d
k + (1 + ã` + (d+ 1)a`)d

` +
d` − 1

d− 1
. (1)

In the case that M`,1 = · · · = M`,d = C`−1, we set a` = 0 and ã` = −1. It follows

immediately that ak is uniquely determined by the remainder of (d− 1)n modulo
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dk+1. The numbers ak (or 1+(d+1)ak) can thus be interpreted as digits. Indeed,

any positive integer n can be written uniquely in the form (1).

However, nice explicit formulæ (as in the aforementioned papers of Székely

and Wang) for the corresponding extremal values of the two graph parameters

cannot be expected in view of the rather complicated structure. It is possible to

determine the values recursively (as exhibited in Section 3), and these recursions

could theoretically be turned into explicit formulæ involving multiple sums, but

without being very enlightening. In this paper, the asymptotic behavior of the

number of independent vertex subsets and independent edge subsets of Xn is

exhibited. The main result is the following:

Theorem. Let σ(Xn) and Z(Xn) denote the number of independent vertex

subsets and independent edge subsets of Xn respectively. There exist constants

β = β(d) and δ = δ(d), such that

σ(Xn) = ρnβ
(d−1)n and Z(Xn) = τnδ

(d−1)n,

where ρn and τn are bounded above and below by positive constants depending

only on d.

The values ρn and τn depend on the digits ak in representation (1) in a rather

complicated way. It is shown, though, that ρn is Cesàro-convergent for d ≤ 4 and

that τn is Cesàro-convergent for arbitrary d. This surprisingly complicated as-

ymptotic behavior is an indication that simple explicit formulæ are most probably

not available.

2. Notations and preliminaries

Definition 2.1.

(1) Let G be a graph. Then σ(G) is defined to be the number of independent

vertex subsets of G, and Z(G) is the number of independent edge subsets

(matchings) of G.

(2) For a rooted tree T with root v, we also define σ0(T ) to be the number

of independent vertex subsets of T not containing the root v and σ1(T ) to

be the number of independent vertex subsets of T containing the root v.

Analogously, Z0(T ) denotes the number of independent edge subsets of T

not containing an edge incident with the root v, and Z1(T ) the number of

independent edge subsets of T containing an edge incident with the root v.



350 Clemens Heuberger and Stephan G. Wagner

Note that we do not mention the root v in the notations σ0(T ), σ1(T ), Z0(T )

and Z1(T ) since the roots will usually be anonymous.

The empty set is always an independent (vertex or edge) subset of G, even

if G is the empty graph. Therefore, σ(G) and Z(G) are always positive.

v1 v2 vk

v

T1 T2 Tk
. . .

Figure 1. Rooted tree with branches

For a rooted tree T with root v, the connected components T1, . . . , Tk of

T − v are called the branches of v, cf. Figure 1. Taking the neighbor vj of v

contained in Tj as root of Tj , Tj is again a rooted tree.

The following recursive formulæ are essential, but easy to prove (see for

instance [4]), and will be used throughout the paper without specific reference.

Lemma 2.2. Let T be a rooted tree with root v and branches T1, . . . , Tk.

Then

σ0(T ) =

k∏

j=1

σ(Tj), σ1(T ) =

k∏

j=1

σ0(Tj),

Z0(T ) =

k∏

j=1

Z(Tj), Z1(T ) = Z0(T )

k∑

j=1

Z0(Tj)

Z(Tj)
.

Since complete d-ary trees play a major role in the description of the optimal

trees, we will need the asymptotics of σ(Ch) and Z(Ch). The former has been

studied in a paper of Kirschenhofer, Prodinger and Tichy [10] – their result

is the following:

Proposition 2.3. The number of independent vertex subsets of a complete

d-ary tree of height h− 1 is

sh := σ(Ch) = αh · β(d)dh
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for a constant β(d), and the limits

lim
k→∞

α2k = A0(d) > 0 and lim
k→∞

α2k+1 = A1(d) > 0

exist. For d ≤ 4, A0(d) = A1(d) =: A(d).

Remark 2.4. From Lemma 2.2, it is clear that

sh = sdh−1 + sd
2

h−2,

and so the constants A0 = A0(d) and A1 = A1(d) satisfy the equations

A0 = Ad
1 +Ad2

0 and A1 = Ad
0 +Ad2

1 . (2)

From this, it also follows that 0 < A0, A1 < 1. However, we need a refinement of

this result for our purposes, which is given in the following proposition.

Proposition 2.5. With αh and A0, A1 as in Proposition 2.3, we have

α2k = A0 +O(Bk) and α2k+1 = A1 +O(Bk)

for a constant B = B(d) < 1.

Proof. We first introduce the auxiliary quantity φh = αhα
−d
h−1 = shs

−d
h−1.

Then we have

φh = 1 + φ−d
h−1,

thus simplifying our recurrence to a first order recurrence. We will show that

φ2k = p0 +O(Bk) and φ2k+1 = p1 +O(Bk) (3)

for some constants p0, p1 and 0 < B < 1 that depend only on d. This will be

used to derive the original assertions.

It has already been shown in [10] that φ2k is increasing, φ2k+1 is decreasing

and φ2k < φ2k+1 for all k. Hence, the two sequences converge to limits p0 and

p1 respectively, where p0 ≤ p1, p0 = 1 + p−d
1 and p1 = 1 + p−d

0 . If Φ(x) :=

1 + (1 + x−d)−d, then φ2k+2 = Φ(φ2k) and φ2k+1 = Φ(φ2k−1), so p0 and p1 are

fixed points of the map x 7→ Φ(x). If we can show that |Φ′(p0)| and |Φ′(p1)|
are both less than 1, then Φ is a contraction in a neighborhood of p0 and p1
respectively, and we have (3). To this end, consider the derivative of Φ(x), which

is given by

Φ′(x) = d2x−d−1(1 + x−d)−d−1.
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We want to show that

d2p−d−1
0 (1 + p−d

0 )−d−1 < 1 and d2p−d−1
1 (1 + p−d

1 )−d−1 < 1.

Note that since p0 = 1 + p−d
1 and p1 = 1 + p−d

0 , the two values are actually

equal. Since we have monotone convergence to the points p0, p1, we know that

the derivative cannot be > 1, so it remains to rule out the case that it is equal

to 1, i.e., to prove that there is no solution to the system

p0 = 1 + p−d
1 , p1 = 1 + p−d

0 and (p0p1)
d+1 = d2. (4)

This can be achieved as follows: from the first two equations, we deduce

(p0p1)
d =

1

(p0 − 1)(p1 − 1)

and thus

d2 = (p0p1)
d+1 =

p0p1
(p0 − 1)(p1 − 1)

.

It follows that p0+p1 = (1−d−2)p0p1+1 = (1−d−2)d2/(d+1)+1, so that p0 and

p1 have to be the solutions of the quadratic equation

u2 −
(
(1− d−2)d2/(d+1) + 1

)
u+ d2/(d+1),

which are given by

1

2

(
(1− d−2)d2/(d+1) + 1±

√(
(1− d−2)d2/(d+1) + 1

)2 − 4d2/(d+1)

)
.

This is only a necessary condition for the solutions to (4). We want to show that

this is not sufficient, in fact, we will derive a contradiction to (4) by asympototic

estimates. (For 2 ≤ d ≤ 4, there are no real solutions, so these cases can be

excluded immediately). Of the two solutions, p0 is the smaller one (it is trivial to

rule out the case p0 = p1 = d1/(d+1)). Now we claim that

√(
(1− d−2)d2/(d+1) + 1

)2 − 4d2/(d+1) ≥ (1− d−2)d2/(d+1) − 1− 2d−1 (5)

for d ≥ 6. To show this, note first that

(
(1− d−2)d2/(d+1) + 1

)2

− 4d2/(d+1) =
(
(1− d−2)d2/(d+1) − 1

)2

− 4d−2d/(d+1).
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Of course, we only have to consider the case that the right hand side in (5) is

positive. Thus, squaring the inequality (5) shows that it is equivalent to

4d−1
(
(1− d−2)d2/(d+1) − 1

)
≥ 4d−2d/(d+1) + 4d−2.

We multiply by d1−2/(d+1)/4 and rearrange the summands to get

1 ≥ d−2/(d+1) + d−1 + d−1−2/(d+1) + d−2 = (1 + d−1)(d−1 + d−2/(d+1)).

This is equivalent to

d2/(d+1) ≥ 1 +
1 + 2d

d2 − d− 1
,

which can be strengthened to

2 log d

d+ 1
≥ 1 + 2d

d2 − d− 1
,

and this is true for d ≥ 6. Now we get

p0 ≤ 1

2

(
(1−d−2)d2/(d+1)+1−(1−d−2)d2/(d+1)+1+2d−1

)
= 1+d−1 ≤ exp(d−1),

and it follows that

1 + p−d
0 ≥ 1 + e−1.

On the other hand,

p1 =
d2/(d+1)

p0
≤ d2/(d+1)

and since d2/(d+1) < 1 + e−1 for d ≥ 18, this yields a contradiction. For the

remaining values d ≤ 17, it can be checked directly that the equation 1+p−d
0 = p1

is not satisfied. Therefore, our estimate for φh is proved.

Now note that

log sh = d log sh−1 + log φh

from which we deduce, by iteration,

log sh = dh log s0 +

h∑

k=1

dh−k log φk = dh
∞∑

k=1

d−k log φk −
∞∑

k=h+1

dh−k log φk,

and finally

β = exp

( ∞∑

k=1

d−k log φk

)
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and

αh = exp

(
−

∞∑

k=1

d−k log φh+k

)

= exp

(
−

∞∑

k=1

d−2k+1
(
log p1 +O(Bh/2+k)

)−
∞∑

k=1

d−2k
(
log p0 +O(Bh/2+k)

)
)

= exp

(
− d

d2 − 1
log p1 − 1

d2 − 1
log p0 +O(Bh/2)

)

= (pd1p0)
−1/(d2−1) +O(Bh/2) = A0 +O(Bh/2)

for even h and analogously

αh = (pd0p1)
−1/(d2−1) +O(Bh/2) = A1 +O(Bh/2)

for odd h, which proves our claim. ¤

To the best of our knowledge, the asymptotic behavior of Z(Ch) does not

appear in the literature, so we give a short proof for it (the treatment is even

easier than in the case of independent vertex subsets).

Proposition 2.6. The number of independent edge subsets of a complete

d-ary tree of height h− 1 is

zh := Z(Ch) ∼ γ(d) · δ(d)dh

for constants γ(d), δ(d), where

γ(d) =

(
1 +

√
4d+ 1

2

)−1/(d−1)

.

Proof. Lemma 2.2 readily yields the recursion

zh = zdh−1 + dzd−1
h−1z

d
h−2

with initial values z0 = z1 = 1. Now, write yh = zhz
−d
h−1. Then the recurrence

formula transforms to

yh = 1 +
d

yh−1
,

and straightforward induction (note that y1 = 1) yields

yh =
uh+1 − vh+1

uh − vh
,
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where u := 1+
√
4d+1
2 and v := 1−√

4d+1
2 , so yh tends to u = 1+

√
4d+1
2 . Iterating

zh = zdh−1yh = zd
2

h−2y
d
h−1yh = . . . gives

zh =

h∏

k=1

yd
h−k

k .

Now we take logarithms again, the usual method in the analysis of polynomial

recurrences (see [1]):

log zh = dh
h∑

k=1

d−k log yk = dh
∞∑

k=1

d−k log yk − dh
∞∑

k=h+1

d−k log yk

= dhC(d)− dh
∞∑

k=h+1

d−k log yk.

C(d) is a constant depending only on d – the sum converges since yk tends to a

limit and is thus bounded. Now

yk =
uk+1 − vk+1

uk − vk
= u+ (u− v) · vk

uk − vk
= u+O

(∣∣∣ v
u

∣∣∣
k
)

and thus

dh
∞∑

k=h+1

d−k log yk = dh
∞∑

k=h+1

(
d−k log u+O

(∣∣∣ v
ud

∣∣∣
k
))

=
log u

d− 1
+O

(∣∣∣ v
u

∣∣∣
h
)
.

Therefore,

zh = exp

(
C(d) · dh − log u

d− 1
+O

(∣∣∣ v
u

∣∣∣
h
))

,

and the proposition follows. ¤

3. Asymptotics for the optimal tree

Now, in order to obtain the asymptotic number of independent (vertex or

edge) subsets of the tree described in Theorem 1, we first consider a slightly

simpler tree defined as follows:

Definition 3.1. Let T (a0, a1, . . . , a`) (0 ≤ ak < d) be the tree that can be

decomposed as,
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with Mk,1, . . . ,Mk,ak
= Ck+2 and Mk,ak+1, . . . ,Mk,d−1 = Ck.

Then we have, by Lemma 2.2,

σ(T (a0, . . . , a`)) = σ(C`)
d−1−a`σ(C`+2)

a`σ(T (a0, . . . , a`−1))

+σ(C`−1)
d−1−a`−1σ(C`+1)

a`−1σ0(C`)
d−1−a`σ0(C`+2)

a`σ(T (a0, . . . , a`−2)) (6)

and

Z(T (a0, . . . , a`)) = Z(C`)
d−1−a`Z(C`+2)

a`

×
(
1 +

(d− 1− a`)Z0(C`)

Z(C`)
+

a`Z0(C`+2)

Z(C`+2)

)
Z(T (a0, . . . , a`−1))

+ Z(C`−1)
d−1−a`−1Z(C`+1)

a`−1Z(C`)
d−1−a`Z(C`+2)

a`Z(T (a0, . . . , a`−2)).

Furthermore, denote the tree that maximizes σ and minimizes Z by Xn as in

Theorem 1, and take ak and ã` as in (1). We have the following formula for the

number of independent vertex subsets of Xn:

σ(Xn) = σ(C`)
d−a`−ã`σ(C`+1)

ã`σ(C`+2)
a`σ(T (a0, . . . , a`−1))

+ σ(C`−1)
d−1−a`−1σ(C`+1)

a`−1σ0(C`)
d−a`−ã`

× σ0(C`+1)
ã`σ0(C`+2)

a`σ(T (a0, . . . , a`−2)) (7)

in the case that ã` 6= −1 and

σ(Xn) = σ(C`−1)
dσ(T (a0, . . . , a`−1))

+ σ0(C`−1)
dσ(C`−1)

d−1−a`−1σ(C`+1)
a`−1σ(T (a0, . . . , a`−2))

otherwise. On the other hand, the number of independent edge subsets of Xn is

given by

Z(Xn) =

(
1 +

(d− a` − ã`)Z0(C`)

Z(C`)
+

ã`Z0(C`+1)

Z(C`+1)
+

a`Z0(C`+2)

Z(C`+2)

)

× Z(C`)
d−a`−ã`Z(C`+1)

ã`Z(C`+2)
a`Z(T (a0, . . . , a`−1))

+ Z(C`−1)
d−1−a`−1Z(C`+1)

a`−1

× Z(C`)
d−a`−ã`Z(C`+1)

ã`Z(C`+2)
a`Z(T (a0, . . . , a`−2))
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for ã` 6= −1 and

Z(Xn) =
(
Z(C`−1)

d + dZ0(C`−1)Z(C`−1)
d−1

)
Z(T (a0, . . . , a`−1))

+ Z(C`−1)
d−1−a`−1Z(C`+1)

a`−1Z(C`−1)
dZ(T (a0, . . . , a`−2))

otherwise. The first step in the derivation of the desired asymptotics is the follo-

wing proposition:

Proposition 3.2. Define λ(a0, . . . , a`) by

σ(T (a0, a1, . . . , a`)) = λ(a0, . . . , a`) · β(d−1)
∑`

k=0(1+(d+1)ak)d
k

with β = β(d) as in Proposition 2.3. Then λ(a0, . . . , a`) is uniformly bounded

above and below by positive constants. Furthermore, for d ≤ 4, one can write

λ(a0, . . . , am) =

m∑

k=0

µ(a0, . . . , ak),

where

|µ(a0, . . . , ak)| ≤ CσD
k
σ

holds for absolute constants Cσ = Cσ(d) > 0 and 0 < Dσ = Dσ(d) < 1 depending

only on d. Similarly,

Z(T (a0, a1, . . . , a`)) = ζ(a0, . . . , a`) · δ(d−1)
∑`

k=0(1+(d+1)ak)d
k

with δ = δ(d) as in Proposition 2.6, and the decomposition

ζ(a0, . . . , am) =

m∑

k=0

ξ(a0, . . . , ak),

holds for arbitrary d, where

|ξ(a0, . . . , ak)| ≤ CZD
k
Z

holds for absolute constants CZ = CZ(d) > 0 and 0 < DZ = DZ(d) < 1 depend-

ing only on d.

Proof. We only give a proof for λ(a0, a1, . . . , a`), since the second part

can be proved along the same lines (and is even easier). Noting that σ0(Ck) =

σ(Ck−1)
d, Proposition 2.3, together with formula (3), shows that

λ(a0, . . . , a`) · β(d−1)
∑`

k=0(1+(d+1)ak)d
k

= αd−1−a`

` β(d−1−a`)d
`

αa`

`+2β
a`d

`+2

λ(a0, . . . , a`−1)β
(d−1)

∑`−1
k=0(1+(d+1)ak)d

k

+ α
d−1−a`−1

`−1 β(d−1−a`−1)d
`−1

α
a`−1

`+1 βa`−1d
`+1

α
d(d−1−a`)
`−1 β(d−1−a`)d

`

αda`

`+1β
a`d

`+2

× λ(a0, . . . , a`−2) · β(d−1)
∑`−2

k=0(1+(d+1)ak)d
k
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or

λ(a0, . . . , a`) = αd−1−a`

` αa`

`+2λ(a0, . . . , a`−1)

+ α
d−1−a`−1+d(d−1−a`)
`−1 α

a`−1+da`

`+1 λ(a0, . . . , a`−2). (8)

Next we show that λ(a0, a1, . . . , a`−1) is bounded above and below by positive

constants. Let us assume that a0, a1, . . . is a given infinite sequence; using the

abbreviations xm = λ(a0, a1, . . . , a2m−1), ym = λ(a0, a1, . . . , a2m) and

r1,m = α
d−1−a2m−1

2m−1 α
a2m−1

2m+1 ,

r2,m = α
d−1−a2m−2+d(d−1−a2m−1)
2m−2 α

a2m−2+da2m−1

2m ,

r3,m = αd−1−a2m
2m αa2m

2m+2,

r4,m = α
d−1−a2m−1+d(d−1−a2m)
2m−1 α

a2m−1+da2m

2m+1 ,

one obtains

xm = r1,mym−1 + r2,mxm−1 and ym = r3,mxm + r4,mym−1.

Hence, if Rm is the matrix

Rm :=

(
r2,m r1,m

r2,mr3,m r1,mr3,m + r4,m

)
,

and xm = (xm, ym)T , we have

xm = Rmxm−1.

From Proposition 2.3, it follows that

r1,m = Ad−1
1 +O(Bm),

r2,m = Ad2−1
0 +O(Bm),

r3,m = Ad−1
0 +O(Bm),

r4,m = Ad2−1
1 +O(Bm),

where the implied constants are independent of a0, a1, . . . . It follows that

Rm =

(
Ad2−1

0 Ad−1
1

Ad2+d−2
0 (A0A1)

d−1 +Ad2−1
1

)
+O(Bm).
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The limit matrix R = limm→∞ Rm has characteristic polynomial

t2 − ((A0A1)
d−1 +Ad2−1

0 +Ad2−1
1 )t+ (A0A1)

d2−1.

Multiplying the equations for A0 and A1 in (2), we obtain

A0A1(1−Ad2−1
0 )(1−Ad2−1

1 ) = (A0A1)
d

or

1− ((A0A1)
d−1 +Ad2−1

0 +Ad2−1
1 ) + (A0A1)

d2−1 = 0,

which shows that 1 is an eigenvalue of R. The other eigenvalue is (A0A1)
d2−1,

which lies between 0 and 1. Furthermore, note that R and all Rm have only

positive entries. Therefore, there is a real number ε > 0 such that the inequality

|R−Rm| < εBm ·R

holds componentwise. Choosem0 large enough such that 1−εBm > 0 form > m0.

Then we have

(1− εBm)R ≤ Rm ≤ (1 + εBm)R

for m > m0 and therefore

(
m∏

k=m0+1

(1− εBk)

)
Rm−m0Rm0Rm0−1 . . . R1x0 ≤ RmRm−1 . . . R1x0 = xm

≤
(

m∏

k=m0+1

(1 + εBk)

)
Rm−m0Rm0Rm0−1 . . . R1x0,

where the inequalities hold in both components again. Since the products are

bounded and Rm−m0 converges to a positive limit matrix in view of its eigenva-

lues, this shows that the components of xm can be bounded above and below by

absolute positive constants independent of a0, a1, . . . (and depending only on d).

For d ≤ 4, this can be refined as follows: we set wm = λ(a0, a1, . . . , am) and

have

wm = t1,mwm−1 + t2,mwm−2,

where

t1,m = αd−1−am
m αam

m+2

and

t2,m = α
d−1−am−1+d(d−1−am)
m−1 α

am−1+dam

m+1 .
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From Proposition 2.3, we know that t1,m = Ad−1+O(Bm/2) and t2,m = Ad2−1+

O(Bm/2). Therefore,

wm −Ad−1wm−1 −Ad2−1wm−2 = ηm, (9)

where ηm = (t1,m − Ad−1)wm−1 + (t2,m − Ad2−1)wm−2 = O(Bm/2) for m ≥ 2.

All estimates are uniform in a0, a1, . . . again. Additionally, we set T1 = Ad−1,

T2 = Ad2−1, w−1 = w−2 = 0, η0 = w0 and η1 = w1 − T1w0, so that equation (9)

is valid for all m ≥ 0. In terms of the generating functions W (t) =
∑

m≥0 wmtm

and H(t) =
∑

m≥0 ηmtm, the recurrence becomes

W (t) =
H(t)

1− T1t− T2t2
.

Note that the equations in (2) imply that T1 + T2 = Ad−1 + Ad2−1 = 1 and

0 < T1, T2 < 1. The partial fraction decomposition

1

1− T1t− T2t2
=

1

1 + T2

(
1

1− t
+

T2

1 + T2t

)

yields

W (t) =
H(t)

(1 + T2)(1− t)
+

T2H(t)

(1 + T2)(1 + T2t)

or

wm =
1

1 + T2

m∑

k=0

ηk +
T2

1 + T2

m∑

k=0

(−T2)
m−kηk.

Therefore,

µ(a0, a1, . . . , am) := wm − wm−1 =

m∑

k=0

(−T2)
m−kηk.

Since 0 < T2 < 1, and since ηk also decreases exponentially, we have

|µ(a0, a1, . . . , am)| ≤ CσD
m
σ

for certain constants Cσ, Dσ. This finishes the proof of Proposition 3.2. ¤

Now, let n be a positive integer, and take ak ≥ 0 (0 ≤ k ≤ `) and ã` ≥ −1

as in (1). Then, (7) translates to

σ(Xn) = αd−a`−ã`

` β(d−a`−ã`)d
`

αã`

`+1β
ã`d

`+1

αa`

`+2β
a`d

`+2
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× λ(a0, . . . , a`−1)β
(d−1)

∑`−1
k=0(1+(d+1)ak)d

k

+ α
d−1−a`−1

`−1 β(d−1−a`−1)d
`−1

α
a`−1

`+1 βa`−1d
`+1

× α
d(d−a`−ã`)
`−1 β(d−a`−ã`)d

`

αdã`

` βã`d
`+1

αda`

`+1β
a`d

`+2

× λ(a0, . . . , a`−2)β
(d−1)

∑`−2
k=0(1+(d+1)ak)d

k

=
(
αd−a`−ã`

` αã`

`+1α
a`

`+2λ(a0, . . . , a`−1)

+ α
d−1−a`−1

`−1 α
a`−1

`+1 α
d(d−a`−ã`)
`−1 αdã`

` αda`

`+1λ(a0, . . . , a`−2)
)
β(d−1)n+1 (10)

for ãl 6= −1. In the special case that M`,1 = · · · = M`,d = C`−1, a` = 0 and

ã` = −1, we obtain analogously

σ(Xn) =
(
αd
`−1λ(a0, . . . , a`−1) + αd2

`−2α
d−1−a`−1

`−1 α
a`−1

`+1 λ(a0, . . . , a`−2)
)

× β(d−1)n+1. (11)

Hence we have proved the following theorem:

Theorem 2. The number of independent vertex subsets of the optimal tree

Xn is

σ(Xn) = ρnβ
(d−1)n

with β = β(d) as in Proposition 2.3, where ρn is bounded above and below by

positive constants which depend only on d.

For d ≤ 4, this can be refined once again:

Theorem 3. If d ≤ 4, the sequence ρn is Cesàro summable, i.e.,

lim
N→∞

1

N

N∑
n=1

ρn

exists.

Proof. From formulas (10) and (11) for σ(Xn), it follows that

ρn = β
(
Adλ(a0, . . . , a`−1) +Ad2+d−1λ(a0, . . . , a`−2)

)
+O(B`/2),

regardless of which of the two cases holds. Now, we make use of the sum repres-

entation for λ(a0, . . . , a`):

ρn = βAd
`−1∑

k=0

µ(a0, . . . , ak) + βAd2+d−1
`−2∑

k=0

µ(a0, . . . , ak) +O(B`/2).
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Note that ` = logd n+O(1). First of all, this means that the error term sums to

O

(
N∑

n=1

Blogd n/2

)
= O

(
N∑

n=1

nlogB/(2 log d)

)
= O

(
N1+logB/(2 log d)

)
= o(N).

Now, set L = b 1
2 logd Nc, and let N1 be the largest number such that the rep-

resentation of N1 according to equation (1) has length < L. Furthermore, N2

denotes the largest multiple of dL less or equal to N . We divide the sum
∑N

n=1 ρn
into three parts:

• First of all,
N1∑
n=1

ρn ¿ N1 ¿ dL ¿
√
N.

• Moreover,
N∑

n=N2+1

ρn ¿ dL ¿
√
N.

• Finally, since a0, a1, . . . , aL−1 only depend on n modulo dL, and since we

know that µ(a0, a1, . . . , ak) = O(Dk
σ), we have

N2∑

n=N1+1

ρn = β(Ad +Ad2+d−1)
N2

dL

∑

0≤a0,a1,...,aL−1<d

L−1∑

k=0

µ(a0, . . . , ak)

+O(N1) +O(N2D
L
σ ).

Combining all the estimates, we obtain

1

N

N∑
n=1

ρn = β(Ad +Ad2+d−1)
1

dL

∑

0≤a0,a1,...,aL−1<d

L−1∑

k=0

µ(a0, . . . , ak)

+O(N−1/2 +D
1
2 logd N
σ +N logB/(2 log d))

= β(Ad +Ad2+d−1)

L−1∑

k=0

1

dk+1

∑

0≤a0,a1,...,ak<d

µ(a0, . . . , ak)

+O(N−1/2 +D
1
2 logd N
σ +N logB/(2 log d)).

Hence, as N → ∞,

lim
N→∞

1

N

N∑
n=1

ρn = β(Ad +Ad2+d−1)

∞∑

k=0

1

dk+1

∑

0≤a0,a1,...,ak<d

µ(a0, . . . , ak). (12)

¤
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The same theorem holds (with an analogous proof) for Z(Xn) (and arbit-

rary d):

Theorem 4. The number of independent edge subsets of the optimal tree

Xn is

Z(Xn) = τnδ
(d−1)n

with δ = δ(d) as in Proposition 2.6, where τn is bounded above and below by

positive constants which depend only on d. Furthermore, τn is Cesàro summable.

Note that Theorem 3 is not correct for d > 4: this is due to the fact that

ã` and thus the most significant digit in the representation (1) is relevant (also

from an asymptotic point of view) for the value of ρn, and this digit is, unlike the

least significant digit, not uniformly distributed (cf. [6]). This phenomenon leads

to tiny fluctuations in the Cesàro means; however, the restricted means over all

n such that ã` is fixed converge by almost the same argument (Proposition 3.2

has to be refined for this purpose as well) as in the proof of Theorem 3.

Equation (12) is useful for the proof of convergence, but not for actually

computing the value of limN→∞ 1
N

∑n
n=1 ρn. For this purpose, we rewrite it once

again:

lim
N→∞

1

N

N∑
n=1

ρn = β(Ad +Ad2+d−1) lim
L→∞

L∑

k=0

1

dk+1

∑

0≤a0,a1,...,ak<d

µ(a0, . . . , ak)

= β(Ad +Ad2+d−1) lim
L→∞

d−L−1
∑

0≤a0,a1,...,aL<d

L∑

k=0

µ(a0, . . . , ak)

= β(Ad +Ad2+d−1) lim
L→∞

d−L−1
∑

0≤a0,a1,...,aL<d

λ(a0, . . . , aL).

Now, set S` :=
∑

0≤a0,a1,...,a`<d λ(a0, . . . , a`). Then we can deduce a recurrence

formula for S` from (8):

S` =
∑

0≤a0,a1,...,a`<d

λ(a0, . . . , a`)

=

d−1∑
a`=0

∑

0≤a0,a1,...,a`−1<d

αd−1−a`

` αa`

`+2λ(a0, . . . , a`−1)

+

d−1∑
a`=0

d−1∑
a`−1=0

∑

0≤a0,a1,...,a`−2<d

α
d−1−a`−1+d(d−1−a`)
`−1 α

a`−1+da`

`+1 λ(a0, . . . , a`−2)
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=

d−1∑
a`=0

αd−1−a`

` αa`

`+2S`−1 +

d−1∑
a`=0

α
d(d−1−a`)
`−1 αda`

`+1

d−1∑
a`−1=0

α
d−1−a`−1

`−1 α
a`−1

`+1 S`−2

and finally

S` =
αd
` − αd

`+2

α` − α`+2
S`−1 +

αd2

`−1 − αd2

`+1

α`−1 − α`+1
S`−2. (13)

This enables us to compute numerical values of the Cesàro means in an effective

way; the result of the numerical computations in the case d = 2 is given in

the following section. Note also that an analogous formula can be proved for∑
0≤a0,a1,...,a`<d ζ(a0, . . . , a`).

4. Final remarks and numerical results

In this final section, we provide some numerical data for the most important

constants given in the previous section, namely ρn, τn and their Cesàro means.

Figure 2 shows a plot of ρn in the case d = 2 – the different branches that can be

observed correspond to specific choices for the “least significant digits” a0, a1, . . .

200 400 600 800 1000

1.145

1.15

1.155

1.16

1.165

Figure 2. Plot of ρn in the case d = 2.

The subsequent plot (see Figure 3) gives the corresponding mean values
1
N

∑N
n=1 ρn, which tend to a limit, as proved in Theorem 3. Its numerical va-

lue can be determined by means of the recurrence formula (13):

lim
N→∞

N∑
n=1

ρn = 1.15247 35251 60637 47956 21404.
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2000 4000 6000 8000 10000

1.1522

1.1524

1.1526

Figure 3. Plot of the Cesàro means 1
N

∑N
n=1 ρn in the case d = 2.

Let us also give the respective plots for τn in the case d = 3 (see Figures 4

and 5).

200 400 600 800 1000

0.75

0.76

0.77

0.78

0.79

0.81

Figure 4. Plot of τn in the case d = 3.

However, the constants β(d)d−1 and δ(d)d−1 are far more relevant for the

growth of σ(Xn) and Z(Xn). From general considerations, it is clear that β(d)d−1

lies between 1+
√
5

2 and 2 (since the absolute minimum and maximum number of

independent vertex subsets in a tree on n vertices are given by Fn+2 and 2n−1+1

for the path and star respectively), and that β(d)d−1 increases with d (since the

restriction becomes weaker for increasing d) and tends to 2. Similarly, δ(d)d−1

lies between 1 and 1+
√
5

2 , is decreasing and tends to 1. Some numerical values are
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2000 4000 6000 8000 10000

0.777

0.778

0.779

Figure 5. Plot of the Cesàro means 1
N

∑N
n=1 τn in the case d = 3.

given in the following table – it is not difficult to achieve a considerable precision

for these constants.

d β(d)d−1 δ(d)d−1

2 1.66345 83970 72426 71400 29341 1.53717 67171 82357 94959 01403

3 1.71104 77168 65854 39252 73758 1.46792 93132 06252 26446 93247

4 1.75277 22835 08758 20411 33753 1.41392 59361 85955 94075 16282

5 1.78663 80672 40820 67508 45428 1.37155 08691 35932 33996 43430

10 1.87794 53843 82516 51109 09164 1.25029 46884 25647 29912 57823

20 1.93506 36009 86574 58856 21997 1.15777 24711 29443 56294 89233

50 1.97300 16421 91753 19422 92396 1.08042 81828 41889 98839 31038

100 1.98632 13043 16506 81563 84834 1.04682 49561 02834 62023 79355

Table 1. Numerical values for β(d) and δ(d) in some special cases
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