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Connected topologies on finite sets
and polynomial irreducibility

By LUCIO R. BERRONE (Rosario) and
NATALIO H. GUERSENZVAIG (Cap. Federal)

Abstract. It is known (cf. [10]) that any topology on a finite set with a prime
number of open sets is connected. In this note, a generalization of this result is done
by using a new criterion of irreducibility for polynomials with non-negative integer
coefficients (cf. [5], [6], [7]), which we apply to polynomials naturally associated to
topologies on finite sets.

1. Preliminaries

Throughout this note topologies on finite sets are considered, which
will be called finite topologies. We will also talk about connected topologies
instead of connected topological spaces. If 〈A, τ〉, 〈B, σ〉 are two topologi-
cal spaces with A ∩B = ∅, we call sum space the space 〈A ∪B, ρ〉, where
ρ = {U ∪ V : U ∈ τ , V ∈ σ} (cf. [3], [8]). We will say that ρ is the
sum topology of τ and σ, and we will denote ρ = τ ⊕ σ. For instance,
if A = {a1, a2, . . . , an} and τd(n) is the discrete topology on A, we have

τd(n) =
n⊕

i=1

τd(1). Moreover, if B ⊆ A we symbolize with τ |B the topology

induced by τ on B, i.e. τ |B= {U ∩B : U ∈ τ}.
The following notation will be useful: if A = {a1, a2, . . . , an} and

U ⊆ A, say U = {ai1 , ai2 , . . . , aik
}, the symbol XU indicates the monomial

Xi1Xi2 . . . Xik
. Particularly, we agree that X∅ = 1.
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Given the space 〈A, τ〉, with A = {a1, a2, . . . , an}, the polynomial
Fτ ∈ Z[X1, X2, . . . , Xn] is defined as

(1) Fτ (X1, X2, . . . , Xn) =
∑

U∈τ

XU .

For example, if A = {a1, a2, a3} and τ has the Hasse diagram

then
Fτ (X1, X2, X3) = 1 + X1 + X2 + X1X2 + X1X2X3.

If B ⊆ A, say B = {ai1 , ai2 , . . . , aik
}, the result of specializing in 0 the

indeterminates Xi1 , Xi2 , . . . , Xik
in Fτ (X1, X2, . . . , Xn) is the polynomial

associated to τ |B̃ , where B̃ designs the complement to B in A.

Given F ∈ Z[X1, X2, . . . , Xn] and G ∈ Z[Y1, Y2, . . . , Ym], we define
the tensor product F ⊗G ∈ Z[X1, X2, . . . , Xn, Y1, Y2, . . . , Ym] as usual:

(F ⊗G)(X1, X2, . . . , Xn, Y1, Y2, . . . , Ym) =

= F (X1, X2, . . . , Xn) G(Y1, Y2, . . . , Ym).

The following result, whose proof is straightforward, states the fun-
damental property of the assignation τ 7→ Fτ .

Proposition 1.1. If τ is a topology on A = {a1, a2, . . . , an} and σ is
another topology on Y = {b1, b2, . . . , bm}, then

Fτ⊕σ = Fτ ⊗ Fσ.

Further we shall consider polynomials with integral coefficients. Let
be F ∈ Z[X], F 6= 0. We will call F non-negative if its coefficients are non-
negative. In what follows we assume F non-negative. Now, we shall treat
the divisibility and irreducibility relations between non-negative polyno-
mials through the notions of (+)-divisibility and (+)-irreducibility, which
can be defined in the following terms (cf. [5], [6], [7]):
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Definition 1.2. If G is non-negative, we will say that G is a (+)-divisor
of F (G |(+) F ), if G divides F (G | F ) and G∗ = F/G is non-negative. It
will be said that F is (+)-irreducible if F 6= 1 and

G |(+) F =⇒ G = 1 or G = F.

The following result has an immediate proof.

Proposition 1.3. If F (p) is prime for some p ∈ N, then F is (+)-
irreducible.

In order to lay down another useful criterion of (+)-irreducibility, we
introduce certain restrictions of the divisibility relation to the positive
integers. To this purpose, let a, c and p be any positive integers with
p ≥ 2.

By the p-expansion of c we mean the representation of c in base p, let
us say

c = (cmcm−1 . . . c0)p = cmpm + cm−1p
m−1 + · · ·+ c0,

where 0 ≤ ck < p; k = 0, 1, . . . ,m, and cm 6= 0. The non-negative
polynomial

c〈p〉 = cmXm + cm−1X
m−1 + · · ·+ c0

is called p-polynomial of c.
With this terminology at hands we can now state the following defi-

nition:
Definition 1.4. We will say that c is a p-divisor of a (c |p a) if c divides

a (c | a) and, for each k = 0, 1, . . . , the integers a, c y c∗ = a/c verify

ak = ckc∗0 + ck−1c
∗
1 + · · ·+ c0c

∗
k,

where ak, ck y c∗k; k = 0, 1, . . . , denote the digits of the p-expansions of a, c
and c∗ respectively. It will be said that a is p-irreducible if a 6= 1 and

c |p a =⇒ c = 1 or c = a.

Analogously to Proposition 1.3, we deduce the following result:

Proposition 1.5. If a is prime, then a is p-irreducible.

It should be observed that a divisor c of a is a p-divisor of a if and only
if the product of the p-expansions of c and c∗ can be made, by operating
on the base p, without carries.

Examples 1.6. The 4-divisors of 30 are 1, 5, 6, 30, because in base 4,
we have 5 = (11)4, 6 = (21)4, 30 = (132)4 and (132)4 = (11)4(21)4. Note
that in the products between 2 and 15((2)4(33)4), 3 and 10((3)4(22)4)
there are carries. Besides, 6 is 4-irreducible since in the product (2)4(3)4
there is a carry.
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A criterion to distinguish among the divisors of a those which are
p-divisors, can be given by considering the sum of the digits of the p-
expansions. The integer

|c|p = cm + cm−1 + · · ·+ c0

is called p-height of c = (cmcm−1 · · · c0)p. A theorem of C. de Polignac
(cf. [4], pg. 269) establishes that the product (operating in base p) of the p-
expansions of a and c is made without carries if and only if |ac|p = |a|p|c|p.
This result can be restated as follows:

Theorem 1.7. Suppose that c | a and let c∗ = a/c. Then

c |p a ⇐⇒ |a|p = |c|p |c∗|p.
The maximum of the coefficients of F is called radius of F and is

denoted by r(F ). Symbolically, we have r(F ) = max
0≤i≤n

ai whenever F =
n∑

i=0

aiX
i.

The (+)-irreducibility criterion above mentioned can now be estab-
lished in the following terms (cf. [5], [6], [7]):

Theorem 1.8. Let F be with integral coefficients, and let p ∈ Z,
p > r(F ). Then

F is (+)-irreducible ⇐⇒ F (p) is p-irreducible.

2. Results

In the sequel, τ denotes an arbitrary topology on A = {a1, a2, . . . , an}.
Let Fτ ∈ Z[X1, X2, . . . , Xn] be the polynomial (1) associated to τ . Then,
the following theorem holds:

Theorem 2.1. τ is connected if and only if Fτ is irreducible in
Z[X1, X2, . . . , Xn].

Proof. ⇐= ) If τ is not connected and A1, A2, . . . , Ar (r ≥ 2) are
the connected components of 〈A, τ〉, then we have

τ = τ |A1 ⊕ τ |A2 ⊕ · · · ⊕ τ |Ar ,

and according to Proposition 1.1

Fτ = Fτ |A1
⊗ Fτ |A2

⊗ · · · ⊗ Fτ |Ar
,

from where we obtain that Fτ is reducible.
=⇒ ) Suppose that Fτ = GH, with G and H polynomials of posi-

tive degree. Because F is linear in each of its indeterminates, each of
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these appears in G or in H and then Fτ = G ⊗ H. By specializing in
0 the indeterminates of H, which up to a permutation can be supposed
Xk+1, Xk+2, . . . , Xn, we obtain

(2) Fτ (X1, X2, . . . , Xk, 0, 0, . . . , 0) = G(X1, X2, . . . , Xk).

Since the left hand side of (2) is the polynomial associated to
τ |{a1,a2,... ,ak}, it follows that

(3) G = Fτ |{a1,a2,... ,ak}
.

A similar reasoning, this time for H, leads to

(4) H = Fτ |{ak+1,ak+2,··· ,an} .

From (3) and (4) we obtain

τ = τ |{a1,a2,··· ,ak} ⊕ τ |{ak+1,ak+2,··· ,an},

that is, τ is disconnected.
Note 2.2. Theorem 2.1 remains valid if Fτ is considered as a poly-

nomial with coefficients on Z2 and the irreducibility is understood in
Z2[X1, X2, . . . , Xn].

Let F̂τ (X) = Fτ (X, X, . . . , X) be the non-negative polynomial ob-
tained by replacing by X the indeterminates of (1). We can now, by using
the notion of (+)-irreducibility, prove a sufficient condition of connected-
ness for a finite topology τ .

Theorem 2.3. If F̂τ is (+)-irreducible, then τ is connected.

Proof. If τ is disconnected, say τ = τ1 ⊕ τ2, then Proposition 1.1
implies

Fτ = Fτ1 ⊗ Fτ2 ,

from where
F̂τ = F̂τ1 F̂τ2 ,

with F̂τ1 and F̂τ2 of positive degree, which completes the proof.
The converse of Theorem 2.3 is false. In fact, the topology τ on A =

{a1, a2, a3}, which has the following Hasse diagram is obviously connected
and F̂τ (X) = 1 + X + X2 + X3 = (1 + X)(1 + X2) is reducible.

Remark 2.4. In order to establish a converse of Theorem 2.3, it would

be useful to characterize the polynomials F̂τ =
n∑

i=0

aiX
i with τ a topology

on a set of cardinal n ∈ N. Excepting immediate properties (for instance,
0 ≤ ai ≤

(
n
i

)
; i = 0, 1, . . . , n), we have been unable generally to answer

this question, which remains an interesting open problem.
Next, we state two important consequences of Theorem 2.3.
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Corollary 2.5. If F̂τ (p) is prime for some p ∈ N, then τ is connected.

Proof. According to what has been stated in the previous section,
F̂τ is (+)-irreducible when F̂τ (p) is prime for some p ∈ N.

Corollary 2.6. Let be rk = |{U ∈ τ : |U | = k}|; k = 0, 1, . . . , n and
r = max

0≤k≤n
rk. If p > r, then

F̂τ (p) p-irreducible =⇒ τ connected.

Proof. By virtue of the definition of rk, we can write F̃τ (X) =
n∑

k=0

rkXk. Now, the conclusion follows from Theorem 1.8.

From Corollary 2.5 or from Corollary 2.6 and Theorem 1.7 we deduce
the following known result:

Corollary 2.7. If |τ | is prime, then τ is a connected topology.

In some cases we can establish sufficient conditions for the (+)-reduc-
ibility of F̂τ based on criteria of disconnectedness of the associated topol-
ogy. In the sequel an example of this situation is given.

Proposition 2.8. Let τ be a topology on {a1, a2, . . . , an} such that

|τ | > 2n−1 + 1. Then, F̂τ is (+)-reducible.

Proof. Any connected topology τ on {a1, a2, . . . , an} verifies |τ | ≤
2n−1+1, (cf. [10]). Because of Theorem 2.3, F̂τ cannot be (+)-irreducible.

Next, we will show some simple applications.

Examples 2.9. 1) The (+)-reducibility of the polynomial F (X) = 1 +
X + X2 + X3 can be established through Theorem 1.8 by observing that
F = F̂τ where τ is the disconnected topology with diagram
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2) Any topology τ on {a1, a2, a3, a4} such that F̂τ (X) = 1 + X +
3X2 + 3X3 + X4 is connected because F̂τ (9) = 9001 is prime. We arrive
to the same conclusion by observing that F̂τ (4) = 501 is 4-irreducible. In
fact, 501 = 3 · 167 or, in base 4, (13311)4 = (3)4(2213)4; thus, |501|4 =
9 6= 3 · 8 = |3|4|167|4, which implies (according to Theorem 1.7) that 501
is 4-irreducible.

3) There exists a topology τ on {a1, a2, a3, a4, a5} such that F̂τ (X) =
1 + 3X + 5X2 + 5X3 + 3X4 + X5. Since |τ | = 18 > 17 = 25−1 + 1, it
results from Corollary 2.8 that F̂τ is (+)-reducible. In fact, we find that
F̂τ (X) = (1 + X)(1 + X + X2)2.

Note 2.10. A result analogous to the previous theorem can be ob-
tained (cf. [7]) by considering polynomials in Zp[X] (i.e. the polynomials
whose coefficients are integers modulo p, with p not necessarily prime).
More precisely, let F , G be arbitrary non-zero polynomials in Zp[X]. We
say that G is a divisor of F (G | F ), if there exists H ∈ Zp[X] such that
F = GH; in this case H is called a complement of G in F (H is not
necessarily unique when p is not prime). We denote by F̂ the polynomial
in Z[X] whose coefficient of order k is the minimal non-negative integer in
the class corresponding to the coefficient of order k of F . The following
definitions (p-divisibility, p-irreducibility and p-height) are convenient.

We say that G is a p-divisor of F (G |p F ) , if G | F and there
exists a complement H of G in F such that F̂ = ĜĤ. We say that F is
p-irreducible if F 6= 1 and

G |p F =⇒ G = 1 or G = F.

The p-height of F is the integer defined by |F |p = F̂ (1).

In the first place, we have the following analogous of Theorem 1.7:

Theorem 1.7∗. Assume that G | F . Then G |p F ⇐⇒ |F |p =
|G|p |H|p for some complement H of G in F .

Theorems 1.7 and 1.7∗ imply the following analogous of Theorem 1.8:
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Theorem 1.8∗. F̂ is (+)-irreducible ⇐⇒ F is p-irreducible.

Now, if we consider Fτ as a polynomial in Zp[X1, X2, . . . , Xn], we have
F̂τ ∈ Zp[X]. Thus, we obtain the following analogous of Theorem 2.3:

Theorem 2.3∗. If F̂τ is p-irreducible, then τ is connected.

Remark 2.11. Here we will briefly indicate how the results obtained
up to now can be transferred to a more general context. If A is a family of
sets such that

⋃
A∈A

A is finite, we can, similarly to what was made above for

a finite topology, associate to A a polynomial FA(X1, X2, . . . , Xn), where

n =
∣∣∣∣

⋃
A∈A

A

∣∣∣∣. Now, if A and B are two families where
⋃

A∈A
A and

⋃
B∈B

B

are finite and disjoint (disjoint families, to be brief), there can be defined
a “product” A⊗ B as follows:

A⊗ B = {A ∪B : A ∈ A, B ∈ B}.
With respect to this product, the associated polynomials have the following
property (corresponding to Proposition 1.1):

FA⊗B = FA ⊗ FB.

This allows, after making an appropriate change in the terminology, an
immediate generalization of the results previously obtained. For instance,
if we say that a family A 6= {∅} is irreducible when there do not exist
disjoint families B 6= {∅} and C 6= {∅} such that A = B⊗C, one can prove
the following analogous to Theorem 2.3:

F̂A (+)-irreducible =⇒ A irreducible,

where F̂A(X) = FA(X,X, . . . ,X).
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[8] N. H. Guersenzvaig, Caracterización de los divisores de polinomios en varias
indeterminadas, 1990 (unpublished).

[9] S. T. Hu, General Topology, Holden–Day, San Francisco, 1966.
[10] H. Sharp, Jr., Cardinality of finite topologies, J. Combinatorial Theory 5 (1968),

82–86.

LUCIO R. BERRONE
PROMAR (CONICET–UNR)
AV. PELLEGRINI 250 – (2000) ROSARIO
ARGENTINA

E-mail : LRBLEVI@BIBFEI.EDU.AR

NATALIO H. GUERSENZVAIG
UNIV. CAECE
AV. DE MAYO 1400 – (1085) CAP. FEDERAL
ARGENTINA

(Received September 15, 1992; revised January 4, 1993)


