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On a characterization theorem on Abelian groups

By GENNADIY FELDMAN (Kharkov) and MARGARYTA MYRONYUK (Kharkov)

Abstract. Let ξ1, ξ2, . . . , ξn, n ≥ 2 be independent identically distributed random

variables. It is well known that if ξ̄ = 1
n

∑n
j=1 ξj and v = (ξ1 − ξ̄, ξ2 − ξ̄, . . . , ξn − ξ̄) are

independent, then all ξj are Gaussian. We give a complete description of second coun-

table locally compact Abelian groups for which a group analogue of this characterization

theorem holds true.

1. Introduction

It is well known that if ξ1, ξ2, . . . , ξn, n ≥ 2 are independent identically dis-

tributed Gaussian random variables, then ξ̄ = 1
n

∑n
j=1 ξj and v = (ξ1 − ξ̄, ξ2 − ξ̄,

. . . , ξn − ξ̄) are independent. Assume now that ξ1, ξ2, . . . , ξn, n ≥ 2 are indepen-

dent identically distributed random variables such that ξ̄ and v are independent.

Then ξ̄ and s2 = 1
n

∑n
j=1(ξj − ξ̄)2 are also independent. This implies by Geary’s

theorem ([6], [11], [10], [13]) that the random variables ξj are Gaussian. Thus,

a Gaussian measure on the real line is characterized by the independence of ξ̄

and v.

The article deals with a generalization of this characterization theorem to

the case when independent random variables take values in a locally compact

Abelian group. Since an arbitrary Abelian group generally is not a group with

unique division by n, instead of ξ̄ and v we consider S =
∑n

j=1 ξj and V =

(nξ1 − S, . . . , nξn − S).

We will use in the article the standard results on structure of locally compact

Abelian groups and the duality theory ([7]). Agree on notation. For an arbitrary
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locally compact Abelian group X denote by Y = X∗ its character group, and by

(x, y) the value of a character y ∈ Y at an element x ∈ X. If H is a closed subg-

roup of the group Y, then denote by A(X,H)= {x∈X : (x, y)= 1 for all y ∈H}
its annihilator. Denote by cX the connected component of zero of the group X,

and by bX the set of all compact elements of X. Let n be a natural number. Put

X(n) = {x ∈ X : nx = 0} and X(n) = {x ∈ X : x = nx̃, x̃ ∈ X}. Denote by Z the

group of integers, by R the group of real numbers and by T the circle group (the

one-dimensional torus). Let Y be an arbitrary Abelian group, f(y) be a function

on Y , h be an element of Y . Denote by ∆h the finite difference operator

∆hf(y) = f(y + h)− f(y).

A function f(y) on Y is called a polynomial if for a nonnegative integer m f(y)

satisfies the equation

∆m+1
h f(y) = 0, y, h ∈ Y.

The minimal m for which this equality holds is called the degree of the polyno-

mial f(y).

We will assume in the article that X is a second countable locally compact

Abelian group. Denote by M1(X) the convolution semigroup of probability dist-

ributions on X. For µ ∈ M1(X) denote by

µ̂(y) =

∫

X

(x, y)dµ(x)

its characteristic function. Note that if ξ is a random variable with values in X

and distribution µ, then the characteristic function of the distribution µ is the

mathematical expectation

µ̂(y) = E[(ξ, y)].

Denote by Ex the degenerate distribution concentrated at the point x ∈ X.

The set of all degenerate distributions on the group X denote by D(X). For

µ ∈ M1(X) define the distribution µ̄ ∈ M1(X) by the formula µ̄(B) = µ(−B) for

any Borel set B. Denote by σ(µ) the support of a distribution µ.

A probability measure γ on the group X is called Gaussian (in the sense of

Parthasarathy) ([12, Ch. 4.6]), if its characteristic function can be represented

in the form

γ̂(y) = (x, y) exp{−ϕ(y)}, (1)

where x ∈ X, and ϕ(y) is a continuous nonnegative function on Y satisfying the

equation

ϕ(u+ v) + ϕ(u− v) = 2[ϕ(u) + ϕ(v)], u, v ∈ Y. (2)
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Taking into account that in the article we will deal only with Gaussian measures

in the sense of Parthasarathy we will name them Gaussian. Denote by Γ(X) the

set of Gaussian measures on the group X. Denote by mK the normalized Haar

measure of a compact subgroup K of the group X, and by I(X) the set of shifts

of such measures.

We will say that a distribution µ ∈ Γn(X) if there exist independent identi-

cally distributed random variables ξj , j = 1, 2, . . . , n, n ≥ 2 with values in the

group X and a distribution µ such that S and V are independent.

It is not difficult to verify that for a group X the inclusion Γ(X) ⊂ Γn(X)

holds. In §2 we completely describe groups X which have the following property:

if µ ∈ Γn(X) and the characteristic function µ̂(y) does not vanish, then µ ∈ Γ(X).

We apply the results of §2 in §3 to give the complete description of locally com-

pact Abelian groups X for which any distribution µ ∈ Γn(X) is invariant with

respect to a compact subgroup K of the group X and under the natural homo-

morphism X 7→ X/K induces on the factor-group X/K a Gaussian measure. We

can consider the obtained class of groups as the widest subclass of locally compact

Abelian groups on which an analogue of the theorem about characterization of

a Gaussian measure on the real line by the independence of ξ̄ = 1
n

∑n
j=1 ξj and

v = (ξ1 − ξ̄, ξ2 − ξ̄, . . . , ξn − ξ̄) holds.

The above mentioned problems are reduced to solving of a functional equation

in the class of continuous positive definite functions on the group Y = X∗.

2. The characteristic function µ̂(y) does not vanish

Lemma 1. A distribution µ ∈ Γn(X) if and only if its characteristic function

µ̂(y) satisfies the equation

n∏

j=1

µ̂(u+ nvj−(v1 + · · ·+ vn))

= µ̂n(u)

n∏

j=1

µ̂(nvj − (v1 + · · ·+ vn)), u, v1, . . . , vn ∈ Y. (3)

Proof. Note that S and V are independent if and only if the equality

E[(S, u)(V, (v1, . . . , vn))] = E[(S, u)]E[(V, (v1, . . . , vn))] (4)

holds for all u, v1, . . . , vn ∈ Y . Taking into account that the random variables
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ξ1, . . . , ξn are independent, we transform the left-hand side of (4):

E[(S, u)(V, (v1, . . . , vn))] = E[(ξ1 + · · ·+ ξn, u)((nξ1 − (ξ1 + · · ·+ ξn),

. . . , nξn−(ξ1 + · · ·+ ξn)), (v1, . . . , vn))]

= E




n∏

j=1

(ξj , u+ nvj−(v1 + · · ·+ vn))


 =

n∏

i=1

µ̂(u+ nvi−(v1 + · · ·+ vn)).

Analogously we transform the right-hand side of (4):

E[(S, u)]E[(V, (v1, . . . , vn))] = E[(ξ1 + · · ·+ ξn, u)]E[((nξ1 − (ξ1 + · · ·+ ξn),

. . . , nξn − (ξ1 + · · ·+ ξn)), (v1, . . . , vn))]

=

n∏

j=1

E[(ξj , u)]E




n∏

j=1

(ξj , nvj − (v1 + · · ·+ vn))




=

n∏

j=1

E[(ξj , u)]

n∏

j=1

E[(ξj , nvj − (v1 + · · ·+ vn))]

= µ̂n(u)

n∏

i=1

µ̂(nvi − (v1 + · · ·+ vn)). ¤

Suppose that γ ∈ Γ(X) and the characteristic function γ̂(y) has representa-

tion (1). By the function ϕ(y) we can construct a symmetric 2-additive function

by the formula

ψ(u, v) =
1

2
[ϕ(u+ v)− ϕ(u)− ϕ(v)].

Then ϕ(y) = ψ(y, y). Using this representation for the function ϕ(y) one can

check directly that the characteristic function γ̂(y) satisfies equation (3). Hence,

by Lemma 1 the inclusion

Γ(X) ⊂ Γn(X) (5)

holds. The main result of this section is the complete description of groups X

which have the property: if µ ∈ Γn(X) and the characteristic function µ̂(y) does

not vanish, then µ ∈ Γ(X). The following proposition is valid.

Proposition 1. Assume that µ ∈ Γ2(X) and the characteristic function

µ̂(y) does not vanish. This implies that µ ∈ Γ(X) if and only if the group X

contains no subgroup topologically isomorphic to the two-dimensional torus T2.

Assume that µ ∈ Γn(X), where n ≥ 3. This implies that µ ∈ Γ(X) if and only if

the group X contains no subgroup topologically isomorphic to the circle group T.
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We need some lemmas to prove Proposition 1.

Lemma 2. Let X = T and n ≥ 3. Then there exists a distribution µ ∈
Γn(X) such that the characteristic function µ̂(y) does not vanish and µ /∈ Γ(X).

Proof. Let n = 3. Consider on the group Z the function

l(k) =





1 if k ∈ Z(3)

exp

{
2πi

9

}
if k ∈ 1 + Z(3)

exp

{
−2πi

9

}
if k ∈ 2 + Z(3).

(6)

Obviously, (6) implies that

l3(k) = exp

{
2πki

3

}
, k ∈ Z. (7)

Taking into account (7) and the fact that l(k+3p) = l(k), k, p ∈ Z, we can verify

directly that the function l(k) satisfies equation (3) for n = 3.

Take σ > 0 in such a way that the inequality

∑

k∈Z, k 6=0

exp{−σk2} < 1 (8)

holds. Put

ρ(t) = 1 +
∑

k∈Z, k 6=0

l(k) exp{−σk2 − ikt}, t ∈ R.

Since l(−k) = l(k), |l(k)| = 1, k ∈ Z, in view of (8) the inequality

ρ(t) > 0, t ∈ R

is valid. We also have
1

2π

∫ π

−π

ρ(t)dt = 1.

Let µ be the distribution on the group T with density r(eit) = ρ(t) with respect

to mT. By the construction the characteristic function of the distribution µ is of

the form

µ̂(k) = l(k) exp{−σk2}, k ∈ Z.
Since the function l(k) satisfies equation (3) for n = 3, the characteristic function

µ̂(k) also satisfies equation (3) for n = 3. By Lemma 1 µ ∈ Γ3(X). On the other

hand, since the function l(k) is not a character of the group Z, we have µ /∈ Γ(X).
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Let n > 3. If n = 2p− 1 we put

l(k) =





1 if k ∈ q + Z(n), q = 0, 1, . . . , p− 2, p+ 1, . . . , n− 1,

exp

{
2πi

n

}
if k ∈ p− 1 + Z(n)

exp

{
−2πi

n

}
if k ∈ p+ Z(n).

If n = 2p we put

l(k) =

{
1 if k /∈ p+ Z(n)

−1 if k ∈ p+ Z(n).

Next we argue as in the case when n = 3. ¤
Remark 1. Let n ≥ 3. It is easily seen that the function l(k) constructed in

the proof of Lemma 2 is the characteristic function of a signed measure on the

group T concentrated in the subgroup Z(n) (the multiplicative group of nth roots

of unity).

Lemma 3. Assume that γ ∈ Γn(X), and the characteristic function γ̂(y) > 0

for y ∈ Y . Then γ ∈ Γ(X), and the function γ̂(y) can be represented in the

form (1), where x = 0.

Proof. Put ψ(y) = − log γ̂(y). By Lemma 1 the characteristic function

γ̂(y) satisfies equation (3). Taking the logarithm of both sides of (3), we get

n∑

j=1

ψ(u+ nvj − (v1 + · · ·+ vn))

= nψ(y) +

n∑

j=1

ψ(nvj − (v1 + · · ·+ vn)), u, vj ∈ Y. (9)

We use the finite difference method to solve equation (9). Let h1 be an

arbitrary element of the group Y . Substitute u+ h1 for u and vj + h1 for vj , j =

1, 2, . . . , n in equation (9). Subtracting equation (9) from the resulting equation

we obtain
n∑

j=1

∆h1ψ(u+ nvj − (v1 + · · ·+ vn)) = n∆h1ψ(u), u, h1, vj ∈ Y. (10)

Let h2 be an arbitrary element of the group Y . Substitute u+h2 for u and v1+h2

for v1 in equation (9). Subtracting equation (10) from the resulting equation we

get

∆nh2∆h1ψ(u+nv1− (v1+ · · ·+ vn))=n∆h2∆h1ψ(u), u, h1, h2, vj ∈Y. (11)
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Let h3 be an arbitrary element of the group Y . Substitute u+h3 for u and v2+h3

for v2 in equation (9). Subtracting equation (11) from the resulting equation we

find

n∆h3
∆h2

∆h1
ψ(u) = 0. u, h1, h2, h3 ∈ Y. (12)

Put in (12) h1 = h2 = h3 = h. We get

∆3
hψ(u) = 0, u, h ∈ Y, (13)

i.e. ψ(y) is a continuous polynomial of degree ≤ 2. It is easy to see that each

polynomial of degree ≤ 2, in particular ψ(y), can be represented in the form

ψ(y) = ϕ(y) + l(y) + c, y ∈ Y, (14)

where the function ϕ(y) satisfies equation (2), the function l(y) satisfies equation

l(u+ v) = l(u) + l(v), u, v ∈ Y,

and c = const. Since γ̂(0) = 1, we can assume that c = 0. Since the function

γ̂(y) is real-valued, we have γ̂(−y) = γ̂(y) = γ̂(y). Hence, ψ(−y) = ψ(y). This

implies that in (14) l(y) = 0, y ∈ Y . So, ψ(y) = ϕ(y), y ∈ Y . This proves the

lemma. ¤

A distribution µ ∈ M1(X) is called a Gaussian measure in the sense of

Bernstein ([9, 5.3]) if µ has the following property: if ξ1 and ξ2 are independent

identically distributed random variables with values in X and distribution µ,

then their sum and difference are independent. We denote by ΓB(X) the set of

Gaussian measures in the sense of Bernstein on the group X.

Lemma 4 ([9, 5.3]). A distribution µ ∈ M1(X) belongs to the class ΓB(X)

if and only if the characteristic function µ̂(y) satisfies the equation

µ̂(u+ v)µ̂(u− v) = µ̂2(u)|µ̂(v)|2, u, v ∈ Y. (15)

Lemma 5. Γ2(X) = ΓB(X).

Proof. Let µ ∈ Γ2(X). By Lemma 1 the characteristic function µ̂(y) satis-

fies equation (3) which takes the form

µ̂(u+ (v1 − v2))µ̂(u− (v1 − v2)) = µ̂2(u)|µ̂(v1 − v2)|2, u, v1, v2 ∈ Y. (16)

Substituting v1 = v, v2 = 0 into (16), we obtain that the characteristic function

µ̂(y) satisfies equation (15). Hence, by Lemma 4 µ ∈ ΓB(X). Lemmas 1 and 4

also imply that if µ ∈ ΓB(X), then µ ∈ Γ2(X). ¤
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Proof of Proposition 1. Let n = 2. Applying Lemma 5 we reduce the

proof of Proposition 1 to the proof of the corresponding statement for distributions

from the class ΓB(X), but for such distributions this statement was proved in [2]

(see also [5], Lemmas 9.6 and 9.7).

Let n ≥ 3 and µ ∈ Γn(X). Put ν = µ ∗ µ̄. It follows from Lemma 1 that

ν ∈ Γn(X). Since ν̂(y) = |µ̂(y)|2 > 0, by Lemma 3 ν ∈ Γ(X). If a group X

contains no subgroup topologically isomorphic to T, then by Cramer’s theorem

for locally compact Abelian groups ([1], see also [5, Theorem 4.6]), we get that

µ ∈ Γ(X). Thus, the sufficiency when n ≥ 3 is also proved. The necessity follows

from Lemma 2. ¤

3. The main theorem

Put In(X) = I(X) ∩ Γn(X). It follows from (5) and Lemma 1 that the

inclusion

Γ(X) ∗ In(X) ⊂ Γn(X)

holds. The main problem solved in this section is the following: to describe all

groups X for which

Γ(X) ∗ In(X) = Γn(X). (17)

Observe that if µ ∈ Γ(X) ∗ I(X), then µ is invariant with respect to a compact

subgroup K of the group X and under the natural homomorphism X 7→ X/K

induces on the factor-group X/K a Gaussian measure. We formulate now the

main theorem.

Theorem 1. Equality (17) holds for a group X, when n = 2, if and only if

the connected component of zero cX of X contains no more than one element of

order 2. Equality (17) holds for a group X, when n ≥ 3, if and only if cX has the

property

{x ∈ cX : nx = 0} = {0}. (18)

To prove Theorem 1 we need some lemmas. First we will formulate as a

lemma the following simple statement, but omit its proof.

Lemma 6. Let n be a natural number, K be a compact subgroup of a

group X. Then the following statements are equivalent:

(i) K(n) = K;

(ii) if ny ∈ A(Y,K), then y ∈ A(Y,K).
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We note that the characteristic function of the Haar measure mK is of the

form

m̂K(y) =

{
1 if y ∈ A(Y,K)

0 if y /∈ A(Y,K).
(19)

Lemma 7. Let K be a compact subgroup of a group X. Then the following

statements are equivalent:

(i) mK ∈ In(X);

(ii) K(n) = K.

Proof. (i) ⇒ (ii). By Lemma 1 the characteristic function m̂K(y) satisfies

equation (3). Substituting v1 = u, v2 = · · · = vn = 0 into (3), we get

m̂K(nu) = m̂K(u)m̂K((n− 1)u), u ∈ Y. (20)

It follows from (19) and (20) that if ny ∈ A(Y,K), then y ∈ A(Y,K). Hence, by

Lemma 6 K(n) = K.

(ii) ⇒ (i). By Lemma 1 it suffices to check that the characteristic function

m̂K(y) satisfies equation (3), which takes the form

n∏

j=1

m̂K(u+ nvj−(v1 + · · ·+ vn))

= m̂K(u)

n∏

j=1

m̂K(nvj − (v1 + · · ·+ vn)), u, v1, . . . , vn ∈ Y. (21)

Both sides of equation (21) take the values either 0 or 1. If the right-hand side of

(21) is equal to 1, then u ∈ A(Y,K), nvj−(v1+· · ·+vn) ∈ A(Y,K), j = 1, 2, . . . , n.

Hence, u+nvj−(v1+ · · ·+vn) ∈ A(Y,K), j = 1, 2, . . . , n. Therefore the left-hand

side of (21) is also equal to 1.

Let the left-hand side of (21) be equal to 1. This implies that

u+ nvj − (v1 + · · ·+ vn) ∈ A(Y,K), j = 1, 2, . . . , n. (22)

It follows from (22) that

n∑

j=1

(u+ nvj − (v1 + · · ·+ vn)) = nu ∈ A(Y,K). (23)

By Lemma 6 we get from (23) that u ∈ A(Y,K). Then (22) implies that nvj −
(v1 + · · · + vn) ∈ A(Y,K), j = 1, 2, . . . , n. Hence, the right-hand side of (21) is

also equal to 1. ¤
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Lemma 8 (compare with [4, Lemma 10.4]). Let X be a discrete torsion free

group. Then Γn(X) = D(X).

Proof. If X is a discrete torsion free group, then Y is a connected compact

group ([7, (24.25)]). Assume first that Y 6∼= T. Then there exists a continuous

monomorphism p : R 7→ Y such that its image p(R) is everywhere dense in Y

([7, (25.18)]). Let µ ∈ Γn(X). Consider the restriction of the characteristic

function µ̂(y) to p(R). Put f(t) = µ̂(p(t)), t ∈ R. By Lemma 1 the characteristic

function µ̂(y) satisfies equation (3). Therefore f(t) is a characteristic function

on R satisfying (3) too. Taking into account that Γn(R)=Γ(R), we have

f(t) = exp{−σt2 + iβt}, σ ≥ 0, β ∈ R.

Since p is a monomorphism and p(R) = Y , for any neighborhood of zero V of the

group Y we can choose a sequence of real numbers tn → ∞ such that p(tn) ∈ V

for all n. If σ > 0, then

|f(tn)| = |µ̂(p(tn))| = exp{−σt2n} → 0

when tn → ∞. Taking into account that V is an arbitrary neighborhood of zero of

the group Y we come to contradiction with the continuity at zero of the function

µ̂(y). Hence, σ = 0, and this implies that |µ̂(p(t))| = 1 for t ∈ R. Since p(R) = Y ,

we have |µ̂(y)| = 1 for y ∈ Y . It follows from this that µ ∈ D(X).

If Y ∼= T, then X ∼= Z. Since Z is a subgroup of R, we have Γn(Z) ⊂ Γn(R) =
Γ(R). Taking into account that any Gaussian measure on R supported in Z is

degenerated we completely prove the lemma. ¤

Corollary 1. Let Y be a connected compact group, f(y) be a characteristic

function on Y satisfying equation (3). Then |f(y)| = 1, y ∈ Y.

Lemma 9. Let µ ∈ Γn(X). Then µ is supported in a coset of a subgroup

G ∼= Rm × K, where m ≥ 0, and K is a compact subgroup of X such that

K(n) = K.

Proof. Note first that if λ ∈ Γn(X), then for any x ∈ X we have λ ∗ Ex ∈
Γn(X). Therefore if it is necessary we can substitute a distribution λ ∈ Γn(X)

by its shift, and the shift also belongs to the class Γn(X).

Let λ ∈ M1(X) be an arbitrary distribution. Consider the set

E = {y ∈ Y : |λ̂(y)| = 1}.
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Then E is a subgroup of Y , and there exists an element x ∈ X such that λ̂(y) =

(x, y) for y ∈ E. It follows from what has been said that we can substitute the

distribution µ by its shift and assume from the beginning that

E = {y ∈ Y : |µ̂(y)| = 1} = {y ∈ Y : µ̂(y) = 1}. (24)

It follows from (24) that σ(µ) ⊂ G, where G = A(X,E). Put H = G∗. The

distribution µ considering as a distribution on G has the property

{y ∈ H : |µ̂(y)| = 1} = {0}. (25)

We will check that G is the desired subgroup. It follows from the structure

theorem for locally compact Abelian group that H ∼= Rm × L, where m ≥ 0,

and L contains a compact open subgroup [7, (24.30)]). Consider the restriction

of equation (3) to the connected component of zero cL of the group L. Since the

group cL is compact, by Corollary 1 |µ̂(y)| = 1 for y ∈ cL. Taking into account

(25) this implies that cL = {0}, i.e. the group L is totally disconnected. We will

prove that the group L is discrete.

By Lemma 1 the characteristic function µ̂(y) satisfies equation (3). Substi-

tute v1 = u, v2 = · · · = vn = 0 into (3). From the resulting equation we obtain

|µ̂(nu)| = |µ̂(u)|2n−1|µ̂((n− 1)u)|, u ∈ H.

This implies the inequality

|µ̂(nu)| ≤ |µ̂(u)|2n−1, u ∈ H. (26)

It follows from (26) that for any natural p the inequality

|µ̂(npu)| ≤ |µ̂(u)|(2n−1)p , u ∈ H (27)

holds. Since µ̂(0) = 1 and the function µ̂(y) is continuous, there exists a neigh-

borhood of zero V of the group L such that |µ̂(y)| > 0 for y ∈ V . Inasmuch as the

group L is totally disconnected, for any neighborhood of zero of L, in particular

for V , there exists a compact subgroup W such that W ⊂ V ([7, (7.7)]). Thus,

we have

|µ̂(y)| > 0, y ∈ W. (28)

Assume that at a point y0 ∈ W the inequality

|µ̂(y0)| < 1 (29)
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holds. Since the group W is compact, the sequence npy0, p = 1, 2, . . . contains

a converging subsequence npjy0 → ỹ, ỹ ∈ W . It follows from (27) and (29) that

µ̂(ỹ) = 0, that contradicts (28). Hence, |µ̂(y)| = 1 for y ∈ W . Taking into account

(25), we get that W = {0}, i.e. the group L is discrete. Put K = L∗. Since L is

discrete, this implies that K is compact.

Take y0 ∈ L(n), i.e. ny0 = 0. It follows from (26) that |µ̂(y0)| = 1. Taking

into account (25), we obtain that y0 = 0. Hence, L(n) = {0}. This implies that

K(n) = K. ¤

Lemma 10. Let X = Rm × K, where m ≥ 0 and K is a compact group

such that K(n) = K. Then X(n) ⊂ cX .

Proof. We have A(Y, Y (n)) = X(n), A(Y, bY ) = cX ([7, (24.17)]). The

lemma will be proved if we check that Y (n) ⊃ bY . Put L = K∗. Obviously, bY
is a discrete torsion group. Since K(n) = K, we have L(n) = {0}. Take y0 ∈ bY .

Let M be a finite cyclic subgroup generated by y0. It follows from L(n) = {0}
that the restriction of the mapping y 7→ ny, y ∈ Y , to M is a monomorphism.

Taking into account that the group M is finite, this mapping is an isomorphism.

Hence, y0 ∈ Y (n). ¤

Lemma 11. Let X be a locally compact Abelian group. Then the following

statements are equivalent:

(i) for any compact subgroupK of the groupX, satisfying the conditionK(n)=K,

the equality (K∗)n = K∗ holds;

(ii) the connected component of zero cX of the group X has the property (18);

(iii) for any compact subgroupK of the groupX, satisfying the conditionK(n)=K,

the factor group X/K contains no subgroup topologically isomorphic to T.

Proof. The equivalence of (i) and (ii) was proved in [3] (see also [4, Lem-

ma 11.15]). To prove the equivalence of (i) and (iii) note first that K(n) = K if

and only if K(p) = K for any prime divisor p of the number n. Hence it suffices

to prove the equivalence of (i) and (iii) assuming that n is a prime number.

Let us prove (iii) ⇒ (i). Let n be a prime number and K be a compact

subgroup of X such that K(n) = K. Put L = K∗. Then L is a discrete group

satisfying the condition L(n) = {0}. It follows from this that if y0 is an element

of finite order in L, then y0 ∈ L(n). We will check that any element y0 of infinite

order in L also belongs to L(n). Thus, the implication (iii) ⇒ (i) will be proved.

Let y0 be an element of infinite order in L such that y0 /∈ L(n). Consider

the factor-group L/L(n). Since n is a prime number, all nonzero elements of the

factor-group L/L(n) have order n. It is obvious that [y0] 6= 0. Therefore [y0] has
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order n and hence, ky0 /∈ L(n), k = 1, 2, . . . , n − 1. Denote by M the subgroup

of L generated by y0, i.e. M = {y ∈ L : y = ly0, l ∈ Z}. Let h ∈ L and nh ∈ M .

Then nh = ly0, l ∈ Z. We have l = qn+k, where q ∈ Z, k ∈ {0, 1, . . . , n−1}. This
implies that ky0 = n(h − qy0) ∈ L(n). Therefore k = 0, and hence nh = qny0.

Since L(n) = {0}, we get h = qy0 ∈ M . Thus, the subgroup M has the property:

if nh ∈ M , then h ∈ M . By Lemma 6 it follows from this that for the annihilator

G = A(K,M) the equality G(n) = G holds. Note now that (K/G)∗ ∼= M ∼= Z.
This implies that K/G ∼= T. Since K/G is a subgroup of X/G, this contradicts

to (iii).

The implication (i) ⇒ (iii) for n = 2 was proved in [5, Lemma 7.7]. The

proof in the general case is the same as in the case when n = 2. ¤

Proof of Theorem 1. Let n = 2. By Lemma 5 Γ2(X) = ΓB(X) and the

statement of the theorem in this case was proved in [2] (see also [4, Theorem 9.10]).

Assume that n ≥ 3 and let us prove the sufficiency. Let µ ∈ Γn(X). By

Lemma 1 the characteristic function µ̂(y) satisfies equation (3). Substituting

v1 = v, v2 = −v, v3 = · · · = vn = 0 in (3), we get

µ̂(u+ nv)µ̂(u− nv)µ̂n−2(u) = µ̂n(u)|µ̂(nv)|2, u, v ∈ Y. (30)

By Lemma 9 we can assume that the group X is of the form X = Rm×K, where

m ≥ 0, and K is a compact group such that K(n) = K. Applying Lemma 10 we

obtain X(n) ⊂ cX . Then (18) implies that X(n) = {0}, and hence A(Y,X(n)) =

Y (n) = Y (n) = Y . Taking this into account, (30) implies that the characteristic

function µ̂(y) satisfies equation

µ̂(u+ v)µ̂(u− v)µ̂n−2(u) = µ̂n(u)|µ̂(v)|2, u, v ∈ Y. (31)

It follows from (31) that the set

B = {y ∈ Y : µ̂(y) 6= 0}

is an open subgroup of Y . Put K = A(X,B). Since B is an open subgroup,

the group K is compact. Inasmuch as the characteristic function µ̂(y) satisfies

equation (3), the function µ̂(y) satisfies inequality (26), and it follows from (26)

that the group B has the property: if ny ∈ B, then y ∈ B. Applying Lemma 6

we get K(n) = K. By Lemma 11 the factor-group X/K contains no subgroup

topologically isomorphic to T. Note now that (X/K)∗ ∼= B and consider the

restriction of the characteristic function µ̂(y) to B. By Lemma 1 this restriction
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is the characteristic function of a distribution from Γn(X/K). Since the factor-

group X/K contains no subgroup topologically isomorphic to T, we can apply

Proposition 1 to the factor-group X/K. As a result we obtain the following

representation for the characteristic function µ̂(y)

µ̂(y) =

{
(x, y) exp{−ϕ(y)} if y ∈ B

0 if y /∈ B.
(32)

where x ∈ X, and ϕ(y) is a continuous function on B, satisfying equation (2).

It is well known that the function ϕ(y) can be extended from the subgroup B

to Y retaining its properties ([9, Lemma 5.2.5]). Denote by ϕ̃(y) the extended

function. Let γ be a Gaussian measure on X with the characteristic function

γ̂(y) = (x, y) exp{−ϕ̃(y)}, y ∈ Y. (33)

Obviously, that µ̂(y) = γ̂(y)m̂K(y). Hence, µ = γ ∗mK .

Let us prove the necessity. Assume that (18) is not fulfilled. By Lemma 11

there exists a compact subgroup K of the group X such that K(n) = K and the

factor-group X/K contains a subgroup topologically isomorphic to T. Therefore
the distribution µ on the group T, constructed in Lemma 2, can be considered

as a distribution on the factor-group X/K. We retain the notation µ for this

distribution. Since (X/K)∗ ∼= A(Y,K), we may assume that the characteristic

function µ̂(y) is defined on A(Y,K). Consider on the group Y the function

h(y) =

{
µ̂(y) if y ∈ A(Y,K)

0 if y /∈ A(Y,K).

Since the set A(Y,K) is a subgroup and µ̂(y) is a positive definite function,

h(y) is also a positive definite function ([8, (32.43)]). Since K is a compact

group, its annihilator A(Y,K) is an open subgroup, and hence the function h(y)

is continuous. By Bochner’s theorem there exists a distribution λ ∈ M1(X) such

that λ̂(y) = h(y). We will check that λ ∈ Γn(X). By Lemma 1 it suffices to verify

that the function h(y) satisfies equation (3).

Take u ∈ A(Y,K). If nvj0 − (v1 + · · ·+ vn) /∈ A(Y,K) holds at least for one

j = j0, then u + nvj0 − (v1 + · · · + vn) /∈ A(Y,K), and both sides of equation

(3) are equal to zero. Assume that nvj − (v1 + · · · + vn) ∈ A(Y,K) for all

j = 1, 2, . . . , n. This implies that n(vj − v1) ∈ A(Y,K), and hence by Lemma 6

vj − v1 = hj ∈ A(Y,K), j = 1, 2, . . . , n. Substituting vj = v1 + hj , j = 1, 2, . . . , n

in equation (3) and taking into account that the function µ̂(y) satisfies equation

(3) on A(Y,K), we get the equality.
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Take u /∈ A(Y,K). Then the right-hand side of equation (3) is equal to zero.

If in this case the left-hand side of equation (3) does not vanish, then the inclusions

u + nvj − (v1 + · · · + vn) ∈ A(Y,K), j = 1, 2, . . . , n are fulfilled. This implies

that
∑n

j=1(u+ nvj − (v1 + · · ·+ vn)) = nu ∈ A(Y,K), and hence by Lemma 6

u ∈ A(Y,K), contrary to the choice of u. So we proved that the function h(y)

satisfies equation (3). Since µ /∈ Γ(X/K), obviously that λ /∈ Γ(X) ∗ I(X). The

theorem is completely proved. ¤

Remark 2. Let µ ∈ Γn(R), n ≥ 2. Put γ = µ ∗ µ̄ ∈ Γn(R). Then γ̂(y) =

|µ̂(y)|2 ≥ 0. By Lemma 1 the characteristic function γ̂(y) satisfies equation (3),

and hence satisfies equation (30) too. Taking into account that R(n) = R, (30)
implies (31), and hence the set B = {y ∈ R : γ̂(y) 6= 0} is an open subgroup of R.
So, B = R. Since γ̂(y) > 0, y ∈ R, by Lemma 3 γ ∈ Γ(R). This implies by Cra-

mer’s theorem that µ ∈ Γ(R). Thus, we proved the equality Γ(R) = Γn(R), n ≥ 2,

which we used in the proof of Lemma 8, and this proof is independent from Ge-

ary’s theorem.

Remark 3. Comparing Proposition 1 and Theorem 1 we see that in both

statements we have a particular case n = 2. If n ≥ 3, then the description of the

corresponding class of groups in Proposition 1 does not depend on n, and does

not depend on n in Theorem 1.

Remark 4. Observe that if µ is an infinitely divisible distribution and µ ∈
Γn(X), then µ ∈ Γ(X) ∗ In(X). Indeed, since µ is an infinitely divisible distribu-

tion, the set B = {y ∈ Y : µ̂(y) 6= 0} is an open subgroup of Y ([12, p. 106]). Put

ν = µ ∗ µ̄ and consider the restriction of the characteristic function ν̂(y) to B.

Since ν̂(y) = |µ̂(y)|2 > 0 for y ∈ B, by Lemma 3 ν̂(y) = exp{−ϕ(y)}, y ∈ B.

Note now that on an arbitrary locally compact Abelian group in the class of in-

finitely divisible distributions a Gaussian measure has only Gaussian factors ([5,

Remark 4.8]). Thus, for the characteristic function µ̂(y) we get the representation

similar to (32), and the desired statement follows from this.
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