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Weak compactness in the space of operator valued measures

By NASIR UDDIN AHMED (Ottawa)

Abstract. In this short paper we present a characterization of weakly compact

sets in the space of finitely additive nuclear operator valued measures. The paper is

concluded with a physical example involving feedback control of stochastic systems on

Hilbert space perturbed by centered Poisson counting measures. Both existence of

optimal policies and necessary conditions of optimality are presented.

1. Introduction

The question of compactness of subsets of the space of vector measures is very

important in control theory and many other applications involving optimization.

This has been studied extensively and the most celebrated results are those of

Bartle–Dunford–Schwartz [1, Theorem 5, p. 105] and Brooks–Dinculeanu [1, Co-

rollary 6, p. 106]. See also [3], [8] for more on weak compactness in the space

of vector measures. In physical sciences and engineering, there are many prob-

lems found in the study of optimal control and optimization where one requires

compactness (weak/strong) of a set of operator valued measures. The author is

not aware of any result on compactness involving operator valued measures. This

was the main motivation for this study. The rest of the paper is organized as

follows: Some notations are introduced in Section 2. Main results are presented
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in Section 3. An application of these results to control theory is presented in Sec-

tion 4. Both existence of optimal policies and necessary conditions of optimality

are presented illustrating the usefulness of the compactness result.

2. Some notations and a basic result

Let {X,Y } denote a pair of real separable Hilbert spaces with a corresponding

pair of complete orthonormal basis denoted by {xi, yi}, i ∈ N . Let L(Y,X) denote

the space of bounded linear operators from Y to X. Furnished with the uniform

operator topology, this is a Banach space. Let L1(X,Y ) denote the space of

nuclear operators from X to Y . This is furnished with the norm topology given by

‖L‖1 ≡
∞∑

i=1

|(Lxi, yi)|,

whenever it is defined. It is easy to verify that this norm is independent of the

choice of the orthonormal basis. With respect to this norm topology, L1(X,Y ) is

a Banach space. In case X = Y we use the notation L(X) for L(X,X), L1(X) for

L1(X,X) and L+
s (X) for bounded positive selfadjoint operators in X. Now we

introduce the function spaces. Let I be a finite interval of the real line with Σ ≡
σ(I) denoting the sigma algebra of subsets of the set I. Let B∞(I,L(Y,X)) denote

the vector space of all Σ measurable functions defined on I and taking values from

the Banach space L(Y,X). In other words these functions are measurable with

respect to the uniform operator (or norm) topology on L(Y,X). We furnish this

space with the norm topology

‖B‖∞ ≡ sup{‖B(t)‖L(Y,X), t ∈ I}.
This is equivalent to the topology of uniform convergence on I in the uniform

operator topology of L(Y,X). Let Mba(Σ) denote the class of (real) bounded

finitely additive signed measures on I. It is well known [1], [2] that, furnished

with the total variation norm, this is a Banach space.

For each µ ∈ Mba(Σ), we let |µ|(·) ∈ M+
ba(Σ) denote the positive finitely

additive measure induced by the variation of the measure µ.

Necessary and sufficient conditions for conditional weak compactness of sub-

sets of Mba(Σ) are well known [3]. For convenience of reference we present it

here.

Lemma 2.1. A set Ξ ⊂ Mba(Σ) is conditionally weakly compact if and only

if (1): Ξ is bounded and (2): the set {|µ|, µ ∈ Ξ} is uniformly additive.
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In case Ξ is weakly compact, condition (2) is equivalent to (2’): there exists

a ν ∈ M+
ba(Σ) such that the set {|µ|, µ ∈ Ξ} is uniformly absolutely continuous

with respect to ν.

This result is a scalar version of the more general result due to Brooks [3],

[8] that holds for vector measures Mba(Σ, E) with E being a reflexive Banach

space. For more on this topic and vector measures, the reader is referred to the

excellent book of Diestel and Uhl Jr. [1].

We are interested in the class of finitely additive L1(X,Y ) valued vector

measures defined on I. We denote this class by Mba(Σ,L1(X,Y )), and furnish

this with the norm topology given by

‖K‖Mba(Σ,L1(X,Y )) ≡ sup
π

∑
σ∈π

‖K(σ)‖1,

where the supremum is taken over all finite Σ measurable disjoint partitions of

the interval I. With respect to this norm topology, Mba(Σ,L1(X,Y )) is also a

Banach space.

3. Weak compactness in Mba(Σ,L1(X,Y ))

Here we are interested in finding sufficient conditions for weak compactness

of subsets of the space of operator valued measures Mba(Σ,L1(X,Y )). Let Z be

any real Banach space and `1(Z) denote the space of (infinite) sequences with

values in Z. Furnished with the norm topology given by

‖z‖`1(Z) =

∞∑

i=1

‖zi‖Z ,

it is easy to see that `1(Z) is a Banach space.

Lemma 3.1. For any pair of separable Hilbert spaces {X,Y }, the space

Mba(Σ,L1(X,Y )) is isometrically isomorphic to the space `1(Mba(Σ)) which we

denote by

Mba(Σ,L1(X,Y )) ∼= `1(Mba(Σ)). (1)

Proof. Let {xi, yi} be any pair of orthonormal basis of the pair of Hilbert

spaces {X,Y } respectively. Given λ ∈ `1(Mba(Σ)), define the operator valued

measure K by

K(·) ≡
∞∑

i=1

λi(·)(yi ⊗ xi), (2)

with K(σ)x =
∑∞

i=1 λi(σ)(xi, x)yi for every x ∈ X and σ ∈ Σ. Clearly, it follows
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from this expression that, for each i ∈ N , (K(·)xi, yi)Y = λi(·). Hence,

‖λ‖`1(Mba(Σ)) =

∞∑

i=1

‖λi‖Mba(Σ) =

∞∑

i=1

(
sup
π

∑
σ∈π

|λi(σ)|
)
.

By definition of nuclear norm, we have

∞∑

i=1

(
sup
π

∑
σ∈π

|λi(σ)|
)

=

∞∑

i=1

(
sup
π

∑
σ∈π

|(K(σ)xi, yi)|
)

≥ sup
π

∑
σ∈π

‖K(σ)‖L1(X,Y ) ≡ sup
π

∑
σ∈π

‖K(σ)‖1 = ‖K‖Mba(Σ,L1(X,Y )),

where the supremum is taken over all finite, mutually disjoint, Σ-measurable

partitions of the interval I. Thus it follows from the above inequalities, that every

λ ∈ `1(Mba(Σ)) determines a K ∈ Mba(Σ,L1(X,Y )) through the expression (2).

Conversely, given K ∈ Mba(Σ,L1(X,Y )), we have K(σ) ∈ L1(X,Y ) for all σ ∈ Σ.

Hence there exists a sequence of scalars {µi} dependent on σ ∈ Σ, such that∑∞
i=1 |µi(σ)| < ∞ for every σ ∈ Σ and that

K(σ) =

∞∑

i=1

µi(σ)(yi ⊗ xi), for σ ∈ Σ. (3)

Thus it follows from the definition of nuclear norm that

sup
π

∑
σ∈π

( ∞∑

i=1

|µi(σ)|
)

= sup
π

∑
σ∈π

‖K(σ)‖L1(X,Y ) ≡ ‖K‖Mba(Σ,L1(X,Y )) < ∞, (4)

where π denotes any finite disjoint Σ-measurable partition of the interval I. Let

F(Σ) denote the class of all finite disjoint Σ-measurable partitions of the inter-

val I. Clearly, it follows from the above inequality that for each π ∈ F(Σ) and

every n ∈ N , we have,

n∑

i=1

(∑
σ∈π

|µi(σ)|
)

=
∑
σ∈π

( n∑

i=1

|µi(σ)|
)

≤ sup
π

∑
σ∈π

( ∞∑

i=1

|µi(σ)|
)

= ‖K‖Mba(Σ,L1(X,Y )) < ∞.

Now taking the supremum with respect to π ∈ F(Σ), it follows from this and the

inequality (4) that, for every n ∈ N ,

n∑

i=1

‖µi‖Mba(Σ) ≤ ‖K‖Mba(Σ,L1(X,Y )) < ∞.
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Hence we conclude that for each i ∈ N , µi ∈ Mba(Σ) and that

‖µ‖`1(Mba(Σ)) ≤ ‖K‖Mba(Σ,L1(X,Y )) < ∞,

and consequently µ, given by µ ≡ {µi}∞i=1 determining K as in (3), belongs to

`1(Mba(Σ)). Thus we have proved that for every K ∈ Mba(Σ,L1(X,Y )) there

exists a µ ∈ `1(Mba(Σ)) such that K has the representation given by (3). Com-

bining the above results we conclude that Mba(Σ,L1(X,Y )) is isometrically iso-

morphic to `1(Mba(Σ)) proving (2). ¤

An interesting problem in the theory of vector measures is the characteriza-

tion of its weakly compact sets [1, Theorem IV.5; Corollary IV.6, p. 105]. This

has natural applications in optimization and optimal controls. Here, we are in-

terested in the characterization of weakly compact sets in Mba(Σ,L1(X,Y )). For

convenience of notation we let Pi denote the projection (coordinate map) taking

`1(Mba(Σ)) to its i-th coordinate, that is, for λ ∈ `1(Mba(Σ)), Pi(λ) = λi.

Theorem 3.2. A set Γ ⊂ Mba(Σ,L1(X,Y )) is relatively (or conditionally)

weakly compact if, and only if, the following conditions are satisfied

(c1): ] Γ is bounded,

(c2): for all σ ∈ Σ, the sum
∑∞

i=1 |(K(σ)xi, yi)Y | is convergent uniformly in

K ∈ Γ,

(c3): for each i ∈ N , the set of scalar valued measures
{
(K(·)xi, yi),K ∈ Γ

}

is a conditionally weakly compact subset of Mba(Σ).

Proof. First we prove that these are necessary conditions. Suppose Γ is a

relatively weakly compact subset of Mba(Σ,L1(X,Y )). Since, in a Banach space,

a weakly conditionally compact set is always bounded, Γ is bounded justifying

(c1). By Lemma 3.1, Mba(Σ,L1(X,Y )) ∼= `1(Mba(Σ)). Let the map

Ψ : Mba(Σ,L1(X,Y )) −→ `1(Mba(Σ))

denote the isometric isomorphism. Since compactness is preserved under isomor-

phism and Γ is relatively weakly compact, we have Ψ(Γ) ≡ Λ a weakly relatively

compact subset of `1(Mba(Σ)). Hence the sum
∑∞

i=1 |λi(σ)| must be convergent

uniformly with respect to λ ∈ Λ. But, under the isomorphism, this is equivalent

to the statement that the sum
∑∞

i=1 |(K(σ)xi, yi)| be convergent uniformly with

respect to K ∈ Γ. Thus (c2) is necessary. Finally, since under the isomorphism,

the set Λ is a relatively weakly compact subset of `1(Mba(σ)), every i-th section

Λi ≡ Pi(Λ) must be a relatively weakly compact subset of Mba(Σ). Hence the set

{(K(·)xi, yi), K ∈ Γ} = {λi ∈ Mba(Σ) : λ ∈ Λ} ≡ Λi
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is a weakly relatively compact subset of Mba(Σ) justifying the necessity of condi-

tion (c3).

Next, we prove that these conditions are sufficient. We show that these con-

ditions are equivalent to the conditions that guarantee relative weak compact-

ness of the set Λ. Sufficient conditions for relative weak compactness for a set

Λ ⊂ `1(Mba(Σ)) are:

(s1): Λ is bounded,

(s2):
∑∞

i=1 ‖λi‖Mba(Σ) and consequently,
∑∞

i=1 |λi(σ)| for each σ ∈ Σ, is

convergent uniformly with respect to λ ∈ Λ, and

(s3): for each i ∈ N , Pi(Λ) is a conditionally weakly compact subset of

Mba(Σ).

Since Γ is a bounded subset of Mba(Σ,L1(X,Y )) and Ψ is continuous linear,

it is clear that Λ ≡ Ψ(Γ) is a bounded subset of `1(Mba(Σ)) proving (s1). For

each K ∈ Γ, we have Ψ(K) = λ ∈ Λ. Since (c2) holds for Γ, the series
∞∑

i=1

|λi(σ)| =
∞∑

i=1

|(K(σ)xi, yi)|

is convergent uniformly with respect to λ ∈ Λ proving (s2). By virtue of condition

(c3), for each i ∈ N , the set

{(K(·)xi, yi), K ∈ Γ} = {λi, λ ∈ Λ} = Pi(Λ)

is a relatively weakly compact subset of Mba(Σ) verifying (s3). Thus Λ is a relati-

vely weakly compact subset of `1(Mba(Σ)) and hence Γ = Ψ−1(Λ) is a relatively

weakly compact subset of Mba(Σ,L1(X,Y )). This completes the proof. ¤
Remark 1. An open problem of significant interest in the study of operator

valued measures is the search for necessary and sufficient conditions for weak

compactness of a set Γ ⊂ Mba(Σ,L(X,Y )).

Remark 2. Similar questions arise in the study of operator valued multi-

measures. An interesting example is the system model given by the following

differential inclusion,

dx ∈ Ax(t)dt+ C(dt)x(t−), x(0) = x0,

where C : Σ −→ cbc(L(X)), the class of nonempty closed (in the weak opera-

tor topology) bounded convex subsets of the space of bounded linear operators

in X. Here, one is interested in the relative weak compactness of the measure

selections SC of the operator valued multimeasure C. This has interesting applica-

tion in the study of systems determined by operator valued measures [5], [6]. For

multimeasures see the excellent book due to Hu and Papageorgiou [4, p. 850].
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4. An application

Consider the control system

dx = Ax(t)dt+ u(dt) +

∫

Z0

B(t)zq(dt× dz), x(0) = x0, t ∈ I, (5)

where A is the infinitesimal generator of a C0-semigroup {S(t), t ≥ 0} on X and

u ∈ Mba(Σ, X) is the control. The operator valued function B is a bounded Borel

measurable function defined on I and taking values B(t) ∈ L(Z,X) where Z is

another Hilbert space with Z0 ≡ Z \ {0}. Let B(Z0) denote the sigma algebra of

Borel subsets of the set Z0; and (Ω,F ,Ft≥0 ⊂ F , P ) a complete filtered proba-

bility space with a nondecreasing current of subsigma algebras Ft, t ≥ 0, which

are right continuous having left limits. The process {q}, defined on this probabi-

lity space and taking values q(J ×∆), J ∈ Σ, ∆ ∈ B(Z0), is a centered random

Poisson measure (counting measure) with mean E{q(J × ∆)} = 0 and variance

E{q(J×∆)}2 = λ(J)m(∆), where λ is the Lebesgue measure and m is a bounded

countably additive positive Borel measure on B(Z0) known as the Levy measure.

For any ∆ ∈ B(Z0), m(∆) gives the expected (average) number of jumps per unit

time hitting the set ∆. To understand the impact of the last term of equation (5)

on the process {x}, let us consider the random process {ξ} given by

dξ(t) =

∫

Z0

B(t)zq(dt× dz), ξ(0) = 0, t ≥ 0.

This is a pure jump process with values in X. For example, if there is one and

only one jump during the interval [t1, t2) and it has size z∗ ∈ Z0 and occurs at

time t∗ ∈ [t1, t2), and B(t∗) is uniquely defined, we have ξ(t) = ξ(t1−) for all

t ∈ [t1, t
∗) and ξ(t) = ξ(t1−) + B(t∗)z∗, for t ∈ [t∗, t2). The process {ξ} is an Ft

martingale and it evolves purely by jumps. It is easy to verify that

E{ξ(t)} = 0 and E{(ξ(t), e)2X} =

∫ t

0

∫

Z0

(z,B∗(s)e)2m(dz)ds, ∀ e ∈ X.

For the uncontrolled system, (u ≡ 0), its presence in equation (5) induces volatility

(fluctuation) in the process {x} of intensity which is dependent on the norm of B

and the measure m through the covariance operator Qm where

(Qmη, η)Z ≡
∫

Z0

(z, η)2m(dz), ∀ η ∈ Z.
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We assume that Qm ∈ L+
s (Z), the space of positive selfadjoint bounded linear

operators in Z. The objective is to choose a linear state feedback control law of

the form

u(dt) ≡ K(dt)x(t−), t ≥ 0, (6)

that minimizes this volatility. The feedback (closed loop) system is then given by

dx = Ax(t)dt+K(dt)x(t−) +

∫

Z0

B(t)zq(dt× dz), x(0) = x0, t ∈ I. (7)

The volatility of this process at time t is given by the trace of its covariance

operator P (t) ∈ L(X) where P is defined by

(P (t)ξ, ξ) ≡ E([x(t)− x̄(t)], ξ)2, ∀ ξ ∈ X, t ≥ 0,

with x̄(t) denoting the mean of the process x. This is given by the mild solution

of the deterministic evolution equation

dx̄(t) = Ax̄(t)dt+K(dt)x̄(t−), x̄(0) = x̄0, t ∈ I.

It can be shown that P satisfies the following differential equation on the Banach

algebra L(X),

dP (t) = (AP (t) + P (t)A∗)dt+ (K(dt)P (t−) + P (t−)K∗(dt)) + Q̂m(t)dt, t ∈ I,

P (0) = P0, (8)

where Q̂m(t) ≡ B(t)QmB∗(t) with Qm as defined above. We assume that, for

each t ≥ 0, Q̂m(t) ∈ L+
1 (X), the space of positive nuclear operators in X. Under

this assumption, for each t ≥ 0, the operator P (t) ∈ L+
1 (X) also. The cost

functional, measured in terms of cumulative volatility of the process {x}, can be

taken as the integral of the weighted trace of P given by

J(K) ≡
∫

I

Tr(G(t)P (t))dt, (9)

where G is a positive self adjoint uniformly bounded operator valued function defi-

ned on I and P is the solution of equation (8) corresponding K ∈ Mba(Σ,L1(X)).

Regarding equation (8) as the dynamic system on L(X) and the expression (9)

as the cost functional, and K as the control to be chosen, we have an optimal

control problem with control constraint K ∈ Γ ⊂ Mba(Σ,L1(X)). The problem

is: find K ∈ Γ that minimizes the functional (9) subject to the dynamic const-

raint (8). This is where weak compactness of the set Γ is used. We present the

following results. Existence of optimal control law is given in Theorem 4.1 and

the necessary conditions of optimality are presented in Theorem 4.2.
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Theorem 4.1 (Existence). Consider the system (8) with the objective func-

tional given by (9) and suppose that A is the infinitesimal generator of a C0-

semigroup S(t), t≥ 0, on X, Q̂m∈L1(I,L+
1 (X)), P0∈L+

1 (X), G∈B∞(I,L+
s (X))

and Γ is a weakly compact subset of Mba(Σ,L1(X)). Then, there exists a Ko ∈Γ

that minimizes the functional (9).

Proof. Since a weakly continuous functional attains its minimum on any

weakly compact set, it suffices to verify that J is weakly continuous. By our

assumption, Γ is weakly compact and hence weakly sequentially compact by

Eberlein–Smulian theorem and therefore it suffices to verify that the functional (9)

is weakly (sequentially) continuous. So we prove that J(Kn) −→ J(Ko) whenever

Kn
w−→ Ko in Mba(Σ,L1(X)). First note that, for every K ∈ Mba(Σ,L1(X)), the

pair {A,K} generates a unique strongly measurable bounded evolution operator

UK(t, s), 0 ≤ s ≤ t < ∞ on X solving the Cauchy problem,

dx = Axdt+K(dt)x(t−), x(s+ 0) = ξ ∈ X,

giving x(t) ≡ UK(t, s)ξ in the mild sense with x ∈ B∞(I,X). Thus, for every

such K, the mild solution of (8), denoted by PK , is given by

PK(t) = UK(t, 0)P0U
∗
K(t, 0) +

∫ t

0

UK(t, s)Q̂m(s)U∗
K(t, s)ds, t ∈ I.

Since P0 is a positive (self adjoint) nuclear operator and Q̂m(·) ∈ L1(I,L+
1 (X)),

it follows from the above expression that PK(t) is a positive self adjoint bounded

operator valued function on I. From this expression, it is easy to verify that

Tr(PK(t)) ≤ M2
K

{
Tr(P0) +

∫

I

Tr(Q̂m(t))dt
}
, (10)

where MK ≡ sup{‖UK(t, s)‖L(X), 0 ≤ s ≤ t ≤ T} < ∞. Hence PK ∈
B∞(I,L+

1 (X)). By assumption Γ is a bounded subset of Mba(Σ,L1(X)), and

hence, there exists a finite positive number M ≡ sup{MK ,K ∈ Γ} such that the

set of mild solutions of equation (8) denoted by {PK ,K ∈ Γ} is contained in a

bounded subset of B∞(I,L+
1 (X)). Now we prove the continuity. Let Kn ∈ Γ and

Kn
w−→ Ko in Γ and let Pn and Po denote the corresponding mild solutions of

equation (8) respectively for the same initial state P (0) = P0. Then, using the

semigroup S(t), t ∈ I, and defining Rn ≡ Pn−Po, it follows from straight forward
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computation involving equation (8) that

Rn(t) =

∫ t

0

S(t− θ)Kn(dθ)Rn(θ−)S∗(t− θ)

+

∫ t

0

S(t− θ)Rn(θ−)K∗
n(dθ)S

∗(t− θ)

+

∫ t

0

S(t− θ)(Kn(dθ)−Ko(dθ))Po(θ−)S∗(t− θ)

+

∫ t

0

S(t− θ)Po(θ−)(K∗
n(dθ)−K∗

o (dθ))S
∗(t− θ). (11)

Recall that the norm of a bounded operator coincides with that of its adjoint.

Hence the variation norm of a bounded operator valued measure coincides with

that of its adjoint. Using this fact and taking the trace on either side of equation

(11), we have

|Tr(Rn(t))| ≤ 2M2
0

∫ t

0

|Tr(Rn(θ−)| ‖Kn‖v(dθ) + |en(t)| (12)

for all t ∈ I, where

en(t) ≡
∫ t

0

Tr
(
S(t− θ)

(
Kn(dθ)−Ko(dθ)

)
Po(θ−)S∗(t− θ)

)

+

∫ t

0

Tr
(
S(t− θ)Po(θ−)

(
K∗

n(dθ)−K∗
o (dθ)

)
S∗(t− θ)

)
, (13)

with ‖Kn‖v(·), denoting the measure induced by the variation of the operator

valued measure Kn, and M0 ≡ sup{‖S(t)‖L(X), t ∈ I}. Since Po is a nuclear

operator valued function, and S(t), t ≥ 0, and S∗(t), t ≥ 0, are strongly con-

tinuous semigroups (because X is Hilbert), it is easy to verify that en(t) −→ 0

uniformly on the compact interval I. Define

ϕn(t) ≡ sup{|Tr(Rn(s))|, 0 ≤ s ≤ t},

for all t ∈ I. Then it follows from (12) that

ϕn(t) ≤ sup{|en(s)|, s ∈ I}+ 2M2
0

∫ t

0

ϕn(s)‖Kn‖v(ds), t ∈ I. (14)

Hence, by virtue of generalized Gronwall inequality [7, Lemma 5, p. 268], it follows

from this that

ϕn(t) ≤ sup{|en(s)|, s ∈ I} exp{2M2
0

(‖Kn‖Mba(Σ,L1(X))

)} (15)
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for all t ∈ I. Since the set Γ is bounded and {Kn} ⊂ Γ, there exists a finite

positive number γ such that

ϕn(t) ≤ sup{|en(s)|, s ∈ I} exp{2M2
0 γ} ∀ t ∈ I. (16)

Recalling that en converges to zero uniformly on I, it follows from the above

inequality that ϕn(t) → 0 uniformly on I. Hence Tr(Rn(t)) → 0 uniformly on I

implying that Pn
s−→ Po in the topology of the Banach space B∞(I,L1(X)).

Since P0 ∈ L+
1 (X), Q̂m ∈ L1(I,L+

1 (X)) and Γ is bounded, it follows from (10)

that

|Tr(Pn(t))| ≤ M2
{
Tr(P0) +

∫

I

Tr(Q̂m(t))dt
}
≤ C < ∞,

for all t ∈ I and for all n ∈ N , where M is as defined following equation

(10). By assumption, G ∈ B∞(I,L+
s (X)), and I is a finite interval, and hence

Tr(GPn) ∈ L1(I). Thus, it follows from Lebesgue dominated convergence the-

orem and convergence of Pn
s−→ Po in B∞(I,L1(X)) that

∫

I

Tr(GPn)dt −→
∫

I

Tr(GPo)dt

proving that J(Kn) −→ J(Ko) whenever Kn
w−→ Ko in Mba(Σ,L1(X)). This

proves weak continuity. Since Γ is weakly compact, J attains its minimum on Γ

proving existence. ¤

Given the existence of an optimal policy, the next question is how we de-

termine it. This is done by use of necessary conditions of optimality. These are

conditions that characterize the optimal policy.

Theorem 4.2 (Necessary Conditions). Suppose the assumptions of Theo-

rem 4.1 hold and further, Γ is a closed convex subset of Mba(Σ,L1(X)). Let Po

be the solution of equation (8) corresponding to the control Ko ∈ Γ. Then, in

order for Ko to be optimal, it is necessary that there exists a Qo ∈ B∞(I,L(X))

satisfying the inequality (17) and the evolution equations (18)–(19) as shown

below:

dJ(Ko,K −Ko) =

∫

I

Tr
(
(Qo(t)(K −Ko)(dt)Po

+ Po(t)(K
∗ −K∗

o )(dt)Qo(t))
) ≥ 0, ∀ K ∈ Γ. (17)
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−dQo = (A∗Qo +QoA)dt+ (Qo(t+)Ko(dt) +K∗
o (dt)Qo(t+)) +G(t)dt, t ∈ I,

Q(T ) = 0 (18)

dPo = (APo + PoA
∗)dt+ (Ko(dt)Po(t−) + Po(t−)Ko(dt)) + Q̂m(t)dt, t ∈ I,

Po(0) = P0, (19)

where dJ(Ko,K −Ko) denotes the Gateaux differential of J at Ko in the direc-

tion K −Ko.

Proof. Let Ko ∈ Γ be optimal and Po ∈ B∞(I,L1(X)), the corresponding

mild solution of the evolution equation (8)/(19) and K ∈ Γ an arbitrary element.

By (closed) convexity of Γ, it is clear that Ko + ε(K −Ko) ∈ Γ for all ε ∈ [0, 1].

Let Pε denote the (mild) solution of (8) corresponding to Kε. Thus by optimality

of Ko,

J(Kε) =

∫

I

Tr(GPε)dt ≥
∫

I

Tr(GPo)dt = J(Ko), ∀ ε ∈ [0, 1]

and hence ∫

I

Tr(G(Pε − Po))dt ≥ 0, ∀ ε ∈ [0, 1].

From this it follows that the Gateaux differential of J at Ko in the direction

K −Ko must satisfy the following inequality,

dJ(Ko,K −Ko) =

∫

I

Tr(GP̃ )dt ≥ 0, ∀K ∈ Γ, (20)

where P̃ ∈ B∞(I,L1(X)) is the mild solution of the variational equation given by

dP̃ = (AP̃ + P̃A∗)dt+ (Ko(dt)P̃ + P̃K∗
o (dt))

+ (K −Ko)(dt)Po + Po(K
∗ −K∗

o )(dt), P̃ (0) = 0. (21)

From this it is easy to verify that the map

(K −Ko)Po + Po(K
∗ −K∗

o ) −→ P̃

is continuous and linear from Mba(I,L1(X)) to B∞(I,L1(X)). Since G ∈ B∞
(I,L+

s (X)) ⊂ B∞(I,L(X)), it is evident that the map

P̃ −→
∫

I

Tr(GP̃ )dt
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is a continuous linear functional on B∞(I,L1(X)) ⊂ L1(I,L1(X)). Thus the

composition map

(K −Ko)Po + Po(K
∗ −K∗

o ) −→ P̃ −→
∫

I

Tr(GP̃ )dt

is a continuous linear functional on Mba(Σ,L1(X)). Hence, there exists a Qo ∈
B∞(I,L+

s (X)) (symmetry and positivity is justified later in the proof) such that

∫

I

Tr(GP̃ )dt =

∫

I

Tr
(
Qo(K −Ko)(dt)Po + Po(K

∗ −K∗
o )(dt)Qo

)
. (22)

From the expressions (20) and (22) we arrive at the necessary inequality,

dJ(Ko,K −Ko)

=

∫

I

Tr
(
Qo(K −Ko)(dt)Po + Po(K

∗ −K∗
o )(dt)Qo

) ≥ 0, ∀K ∈ Γ, (23)

which is inequality (17) as stated in the theorem. Considering the variation of

the trace Tr(QoP̃ ) and integrating over the interval I and setting Qo(T ) = 0, it

follows from the variational equation (21) that

∫

I

Tr
(
P̃{dQo + (QoA+A∗Qo)dt+ (QoKo(dt) +K∗

o (dt)Qo)}
)

+

∫

I

Tr
(
Qo(K −Ko)(dt)Po + (Po(K

∗ −K∗
o )(dt)Qo

)
= 0. (24)

Now choosing Qo, whose existence was announced above, as the mild solution of

the evolution equation

dQo + (QoA+A∗Qo)dt+ (QoKo(dt) +K∗
o (dt)Qo) = −G(t)dt,Qo(T ) = 0, (25)

it follows from equation (24) that

∫

I

Tr(P̃G)dt =

∫

I

Tr(GP̃ )dt

=

∫

I

Tr
(
Qo(K −Ko)(dt)Po + (Po(K

∗ −K∗
o )(dt)Qo

)
. (26)

This is precisely the equation (22) as expected. Clearly, equation (25) gives

the adjoint equation (18) as stated in the theorem. By our assumption, G ∈
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B∞(I,L+
s (X)) and hence the positivity and symmetry of Qo follows from the

closed form expression given by

Qo(t) =

∫ T

t

Uo(s, t)G(s)U∗
o (s, t)ds, t ∈ I, (27)

where Uo is the strongly measurable bounded evolution operator corresponding to

the pair {A,Ko}. Clearly, equation (19) is the state equation (8) corresponding

to the optimal policy Ko and hence automatic. Thus, we have proved all the

necessary conditions of optimality. This completes the proof. ¤

Remark 3. Recall that the solution of the state equation (19) is nuclear

because both P0 and Q̂m(t), t ∈ I, are nuclear. On the other hand, it follows

from the expression (27) that, if G is nuclear then Qo is also nuclear. Thus, if

G ∈ L1(I,L1(X)) (for Theorem 4.2), both the state equation (19) and the adjoint

equation (18) will have mild solutions possessing identical regularities. Though

not necessary, this is an interesting symmetry between the adjoint and the state

equations.

Remark 4. The necessary conditions stated in Theorem 4.2, are also sufficient.

In fact, we can show that, for every K ∈ Γ with P being the corresponding

solution of equation (8) and Qo being the solution of the adjoint equation (18)

corresponding to Ko ∈ Γ, the identity

∫

I

Tr(G(t)(P (t)− Po(t)))dt

=

∫

I

Tr
(
(P (t)(K −Ko)(dt)Qo(t) +Qo(t)(K

∗ −K∗
o )(dt)P (t))

)
(28)

holds. From this one can easily deduce that the necessary conditions given by the

above theorem are also sufficient.

Remark 5. If, in addition to the Poisson process {q}, there is also disturbance

due to Brownian motion {W}, we have to deal with the system

dx = Ax(t)dt+K(dt)x(t−) +

∫

Z0

B(t)zq(dt× dz) + σ(t)dW, x(0) = x0, t ∈ I.

(29)

A standard assumption is that the random processes {x0, q,W} are mutually

independent. In that case, the covariance equation (8) requires minor modifica-

tion; Q̂m(t) is replaced by Q̂(t) ≡ Q̂m(t) + Q̂W (t), where Q̂W (t) = σ(t)Qσ∗(t)
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with Q being the incremental covariance operator, associated with the Brow-

nian motion W (t), t ≥ 0, taking values from a separable Hilbert space U , and

σ ∈ B∞(I,L(U,X)). For the process x, determined by the evolution equation

(29), to have bounded second moments, it is essential that Q̂ be nuclear, more

precisely, Q̂ ∈ L1(I,L+
1 (X)). This is guaranteed if both Q̂m and Q̂W have this

property.
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