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Some rigidity results for Dirac-harmonic maps

By XIAOHUAN MO (Beijing)

Abstract. Let (¢,1) be a Dirac-harmonic maps from a Riemannian manifold into
another Riemannian manifold. We call (¢, ) trivial if ¢ is harmonic. By using Bochner-
type formula and extending Chen—Jost—Li-Wang’ result, we give some sufficient condi-
tions for a Dirac-harmonic map (¢, ¢) to be trivial. We also give a structure theorem of
Dirac-harmonic maps from a Riemann surface generalizing result previously only known
in the case when source manifold is a two sphere.

1. Introduction

Dirac-harmonic maps are a generalization and combination of harmonic maps
and harmonic spinors while preserving the essential properties of the former. They
arise from the supersymmetric nonlinear sigma model of quantum field theory [6].

Obviously, there are two types of basic examples, a harmonic map together
with a vanishing spinor and a constant map together with a harmonic spinor.
In [4], the authors constructed Dirac-harmonic maps (¢, ) from S? to S?, where
¢ is a harmonic map (or equivalently, a (possible branched) conformal map), ¥
could be written in the form

Y =Yu6 ¥R d)*(eoc) (11)

where €, (o = 1,2) is a local orthonormal basis of S?, and ¥ is a twistor spinor.

In the spirit of CHEN—JOST-LI1-WANG, recently, JOST-MO—-ZHU constructed
explicit examples of Dirac-harmonic maps (¢,v) from an Euclidean space to a
hyperbolic space which are non-trivial in the sense that ¢ is not harmonic [4],
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[10]. Precisely, in their examples, ¢ : R® — H""! is an isometric immersion
where n > 3 and v could be written in the form

P = Ypen - U@ dy(eq)

where (...)T denotes the orthogonal projection into the subbundle XR"*®7TR" and
€ (@ =1,2) is an orthonormal basis of R”. A natural question then is whether
there exist non-trivial Dirac-harmonic maps for hypersphere in a hyperbolic space
in this form.

In this paper, we will first give the following negative answer.

Theorem 1.1. Let M™ be a compact positive scalar curved spinor manifold
immersed in a non-positively constantly curved manifold N. Then there is no non-
vanishing harmonic spinor 1 along this immersion with T = Y€, - U ® ¢ (€,),
therefore, there is no non-trivial Dirac-harmonic map ($, ) from M into N with
YT =Yeq U ® dulen).

For definitions of harmonic spinor and Dirac-harmonic map see Section 2 and
Section 3. In the two-dimensional case we have the following;:

Proposition 1.2. Let ¢ : M — N be a surface in a Riemannian manifold
of constant curvature ¢ with flat normal bundle. Then there is no non-trivial
Dirac-harmonic map (¢,v) from M into N with T = Y60 - ¥ ® ¢y (eq).

Then we generalize CHEN—JOST-L1I-WANG’ construction [4] as following:

Proposition 1.3. Let M be a Riemann surface and N a Riemannian ma-
nifold. Let ¢y ¢ be defined by ¢y v = Ya€q - ¥ Q@ ¢i(eq) from a nonconstant
conformal map ¢ : M — N and a spinor ¥ € I'(XM). If (¢,v4w) is a Dirac-
harmonic map then ¢ is a branched minimal immersion and V¥ is a twistor spinor.

See Section 2 for definition of twistor spinor. Using Proposition 1.3, we obtain
the following structure theorem of Dirac-harmonic maps from Riemann surfaces:

Theorem 1.4. Let (¢,v) is a non-constant Dirac-harmonic map from a
compact Riemann surface M, of genus g to the sphere My with |deg¢| > g — 1.
Then ¢ is + holomorphic, and 1) could be written in the form

1/1 = Eaea U ® ¢*(€a)
where e, (o = 1,2) is a local orthonormal basis of M, and U is a twistor spinor.

It is worth mentioning the condition that deg¢ > g — 1 is sharp. If g > 1
and 0 < d < g — 1, Lemaire has constructed Riemann surface M, and harmonic
nontholomorphic maps ¢ : My, — M of degree d. Thus (¢, 0) is a Dirac-harmonic
map from M, into M.
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2. Dirac-harmonic maps

In this section, we recall the basic definitions and introduce our notation. Let
(N, h) be a Riemannian manifold of dimension n’. This will be our target mani-
fold. Likewise, let (M, g), our domain manifold, be an n-dimensional Riemannian
manifold with fixed spin structure. By XM, we denote its spinor bundle, on which
we have a Hermitian metric (-, -) induced by the Riemannian metric g(-,-) of M.
Let ¢ be a smooth map from (M, g) to (N,h) and ¢~ *TN the pull-back bundle
of TN by ¢. On the twisted bundle XM ® ¢~ TN there is a metric (still denoted
by {-,-)) induced from the metrics on XM and ¢~'TN. There is also a natural
connection V on ¥M ® ¢~ 'TN induced from those on XM and ¢ 'T'N (which
in turn come from the Levi-Civita connections of (M, g) and (N, h), resp.).

We have the Clifford product X - ® of X € I'(TM), & € I'(¥M). This
Clifford product satisfies the skew-symmetry relation

(X -9,0) =—(D, X -T) (2.1)
as well as the Clifford relations
XYV ?24Y X -&=-29(X, V)P

for XY eT(TM), ,¢ € T'(XM).

We are now prepared to introduce an operator that couples the geometries
of M and N via the map ¢. Let ¢ be a section of the bundle M ® ¢ 'T'N. The
Dirac operator along the map ¢ is defined as

]pw = €q ﬁead}

where €, is a local orthonormal basis of M. For background material about the
spinor bundle and the Dirac operator, we refer to [9], [12].
We consider the space

x = {(¢,¥)|p € C°(M,N) and o) € C®(EM ® ¢ 'TN)}

of mappings and sections along those mappings. On x, we have the functional
1 *
D@0 = 5 [ (40P + (0. 10)] Ly

This functional couples the two fields ¢ and v because the operator I depends
on the map ¢. The Euler-Lagrange equations of L(¢, 1) then also couple the two
fields; they are:

7(¢) = R(9,¥) (2.2)
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and

Dy =0 (2.3)

where 7(¢) is the tension field of the map ¢ (the natural version of the Laplace
operator for maps between manifolds) and the curvature term R (¢, ) is defined
by

1, .
R($,9) = R m" Vo? - w75,
where
-0 ; 0
— o))t f— %
v=vegs (@) =Viegs,
-1 0 0\ 0 ;0
¢~ TN  _pt 2
i <5y’“’ 8yl) oy~ Mgy

where # : T*M ® ¢"'TN — TM ® ¢"'TN is the standard (“musical”) isomorp-
hism obtained from the Riemannian metric g.

Solutions (¢, 1) to (2.2) and (2.3) are called Dirac-harmonic maps from M
into N [4].

We now start with some differential geometric identities: Let €, be a local
orthonormal basis of M. By using the Clifford relations we have

_\Ijv a:ﬂ

2.4
—€g-€ -V, a#p @4)

€q '66 .\I/ = (_1)6@ﬁ+165 - €q .\II — {

for U e T'(XM).
Lemma 2.1. R(¢,9) € I'(¢p~'TN); in particular, it is real.

PROOF. For any (not necessarily orthonormal) frame {¢;} on $~1T'N, we put

77[1 = 7/](1 & €q, (25)

(dqﬁ)ﬁ = VQSCL ® €a, R¢71TN(6¢17 6b)fc = Rdabced (26)

where ¥ : T*M @ ¢ 'TN — TM @ ¢ 'TN is the musical isomorphism as before.

Take
0

i
€q = U —
aayl7

then
P = ug?, Vo' =uiVe®,  uwhugul R = RYapeul.
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A simple calculation gives following

13}
oy’

Rijkl<¢k, V¢J . "(/Jl> = Rabcd (¢($)) <1/)Ca V¢b ! wd>6a (¢($)) . (27)
Tt follows that the definition of R(¢, 1)) is independent of the choice of frame. It
is then well-defined vector field on ¢~!TN. On the other hand, from the skew-
symmetry of R’y with respect to the induces k and [, we have

%R%MW,VW Yty = %Rijmwj oty = %Rimwf -k Yl

= SRV YE ) = LRl Ve )
It follows that R(¢,1) € T(¢~1TN). O

A spinor (field) ¥ € T'(XM) is called a twistor spinor if ¥ belongs to the
kernel of the twistor operator, equivalently,

1
VxU+ X -J¥ =0, VX eT(TM)

where we recall that n is the dimension of the Riemannian manifold M, XM is the
associated spinor bundle of M and @ is the usual Dirac operator (cf. [1], [8], [11]).
In fact the concept of a twistor spinor (in particular, a Killing spinor) is mo-
tivated by theories from physics, like general relativity, 11-dimensional (resp. 10-
dimensional) supergravity theory, supersymmetry (see, for example [2], [3], [5]).
We establish the following Lemma 2.2 required in the proof of Proposition 1.3.

Lemma 2.2. Let ® € T'(XM). Then ® is a twistor spinor if and only if
€:-Vg®=--=¢,-V,® (2.8)

for some orthonormal frame field ¢, of M.

PROOF. Let us assume that (2.8) holds for some orthonormal frame field
of €¢,. Hence we may set
U:i=¢, VP (2.9)

Then
ki :Zea V., ®= Z\I/:nlll
where n = dim M. Together with (2.4) and (2.9) we have

1 1
VSB(I) = —€3-€3" VGB(I’ = —€3" U= —€g - (na(I)) = _Eeﬂ '(?CI).
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It follows that
1 1 1
Vx®+ EX o = Vxae, ®+ - (X“ea . (’3@) =XV, o+ EXQ (ea . (?q))
1
= X“ (v%@ +—ca @(I)) =0

for arbitrary X = X%¢, € I'(T'M). Thus we see that ® is a twistor spinor.
Conversely, if ® is a twistor spinor, then the spinor field

X -Vxo®

does not depend on the unit vector field X [1, page 23, Theorem 2]. O

3. Dirac-harmonic maps along an isometric immersion

In this section, we are going to give some sufficient conditions for a Dirac-
harmonic map along an isometric immersion to be trivial.

Let ¢ € ['(XM ® ¢~ 'TN) be a spinor field along ¢ : M — N. We call ¥ to
be harmonic if Dy = 0 [4].

Let ¢ : M — N be an isometric immersion. This means that the Riemannian
metric on M induced from the ambient space N coincides with the original one
on M. We identify M with its immersed image in N. For each x € M the tangent
space T, N can be decomposed into a direct sum of T,M and its orthogonal
complement T;-M. Such a decomposition is differentiable. Thus, we have an
orthogonal decomposition of the tangent bundle T'N along M

TN|y =¢ 'TN=TMa&T+M.

Let (...)T denote the orthogonal projection into the subbundle XM @ TM from
the twsited bundle M ® ¢~ 'TN.
For a global section R(¢,%) on ¢ 'TN (see Lemma 2.1), we have

R(¢,¥) =R (¢, 0) + RN (¢,9)

where
RT(¢,4) eT(TM), RN(¢,¢) € T(T+M).

Similarly, for Dy € T(SM ® ¢~ 'TN), we have

Dy =0"y+ D"y
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where

Pyer(EMeTM), D¢ eD(SM e THM).

The mean curvature vector of M in N is
1
H=—7(¢) € 0(T+M)

where 7(¢) is the tension field of the map ¢. Hence we have the following:

Lemma 3.1. Let ¢ : M — N be an isometric immersion with the mean
curvature vector ¢ and 1 € T'(SM ® ¢~1TN). Then (¢,1) is a Dirac-harmonic
map from M into N if and only if

(i) R"(¢,9) = 0;
(i) RN (¢,1) = n& where n = dimM;

)
(iii) By =0;
(iv) Py =o.
We shall be using the following ranges of indices:

1Sa767"'§”a n+1§57ta"'gn,7 1S2a.]7§n/

Choose a local orthonormal frame field {¢;} of ¢~'T'N such that {e,} lies in
the tangent bundle TM and {e;} in the normal bundle T+ M of M. We put
(do) =V @ e (3.1)

where ¥ : T*M ® ¢~ 'TN — TM ® ¢~ 'TN is the musical isomorphism. By using
(3.1) we have
Vo' = 5ea. (3.2)

Now we assume that N = N(c) is a Riemannian manifold of constant curvature c.
Then the components of the Riemannian curvature tensor of NV satisfy

Rijkl = C((Sik(sj‘l — 5il5jk)~ (33)
PROOF OF THEOREM 1.1. Let ¢ € (XM ® ¢~ T N) be a spinor field along
the isometric immersion ¢ and ¢ = t’;. From (3.2) and (3.3) we obtain
Rijia (V" -4, Vol -97) = ¢ [(Vo' - 9", Vo' - 9p7) — (Vo7 -4, Vg' - 47)]
= c[(ea ¥ 65 - 97) = (eg - ¥ ea - 97)]

= e3> [fea- 0% e 0%) — (e5- 0% e -] . (34)
a#fB
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By using the skew-symmetry relation of the Clifford product and the Clifford
relation we have

D les v ) == (% s ea-P7) =Y (¥ ea s 9P)

aFp a#p a#f

:*Z(ea'ﬂ/a,ﬁﬁ'iﬁB%

a#p
Plugging this into (3.4) yields
Rijir(Voh - ', V! - 4p7) = 2¢ 3 (ea - 9%, €5 - 07).
a#fB

Now we assume

YT = Sen - U@ bul(es).
where ¥ € I'(X M) is a spinor (field). It follows that ¢ = ¢, - ¥, and therefore

Riji (Vo -, Ve - 7) = 2¢ Z<Ea ea -V, eg-€5- V)
a#B

=2c> (¥, ¥) =2(n — 1)nc|¥|*. (3.5)
a#p

Assume that 1) is a harmonic spinor field along the isometric immersion ¢. From
Proposition 3.4 in [4], we have the following Bochner-type formula

1 - 1 1 i ,
SAWE = Vo[ + JRIPI* = SRiju (V" - v', Vo' - ) (3.6)
where R is the scalar curvature of M. Substituting (3.5) into (3.6) yields
1 2 g2 L 2 2
LA = [V + LR~ 2n — e (3.7
Therefore, under the assumption R > 0 and ¢ < 0, (3.7) shows that |¢|? is
subharmonic on M. By the Hope maximum principle, we see that this function

must be a constant and the right hand side of (3.7) must be zero. In particular
9] = 0. O

PROOF OF PROPOSITION 1.2. Plugging (3.2) into (2.7) yields

R(6.9) = 5 Ratt (2) (65, e ¥1)er (1) (33)
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From which together with (3.3) we obtain
R($,10) = (6" k6ot — 6" 10ar) Re(¥¥, eq - 1h)e;
=c [Re(W, €o " V) — Re(y), e, - W)] €i = 2cRe(y’ e - ¥*)e;.
It follows that

RN(QS, ) = 2cRe(¥® e - 0¥ )es = 2¢Re(¥® €y - €4 - Uhes
= —2ncRe(y?, U)e,.

Together with (ii) of Lemma 3.1, we obtain
—2cRe(y" T W) = ¢ (3.9)

where £ is the mean curvature of ¢. Choose a local orthonormal frame field {e,}
near x € M with V._egl, = 0. By (2.5) we have

Dy = lD(W ® €)= €q - @Ea (1#’ ® €;)
= [(Veut)) @ & + 9" ® Ve, 6]
=(ea Ve ¥ @€ +eq - [7,216 ® Ve, €5 +1° @ Ve €]
=P Qe +ea- Y@V, € (3.10)
at x.

Let A, be the shape operator and V)L( the normal connection of M in N
where X denotes a tangent vector of M and v a normal vector to M. Then

Ve, €s = —Ac €a + Vj‘aes. (3.11)
Let B be the second fundamental form of M in N. Then B satisfies the Weing-

arten equation
(B(X,Y),v) =(A,(X),Y) (3.12)

where X,Y € I'(T'M). By using (3.11) and (3.12) we have
Ve.€s = —(Blea,€5), €5)€5 + Vi €. (3.13)
By plugging (3.13) into (3.10) we obtain

DY =P’ @€ — (Blea,€p), €s)€a 1 @ eg +€q - V° @ VL e, (3.14)
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Let 4T be defined by
YT = Baea - U@ ¢ulea).
Choose a local orthonormal frame field {e,} near z € M with V. egl, = 0.
M =Pea V) =€s-Ve,(€a V) =€ [(Ves€a) VUt eq - Ve, V]
=€g €0 Ve, U==V, U= €65V, U=—2V, U —eo-JT. (3.15)

o
Substituting (3.15) into (3.14) and taking the tangent projection yield
DTy =—[2V, U +cs- P + (Blea,65),6s)ea - °] @ 5. (3.16)

It is easy to see that

<B(€aa 65)7 ES>604 PP ® €3
does not depend on the choice of {e,}. Since the normal bundle of M is flat, we
choose {e4} such that

(Bleas€p), €s) = Ao0as- (3.17)
Therefore we have
DN =ng, and Y A5=0 fors#n+1 (3.18)
B B
Plugging (3.17) into (3.16) yields
ply=-% [Weﬂxpﬂg.aquAg‘eﬁ .W‘} ® es. (3.19)
B a,A

Thus "% = 0 if and only if

Ve, Ut es-JU+ > Meg-yp* =0 (3.20)
A
for all 8. By (2.4), (3.20) holds if and only if
2e5- Ve, U — U = A (3.21)

Summing on 8 and using (3.18) we have
(2= )P = ngy" 1.
Note that n = dim M = 2. It follows that
gt =0. (3.22)

Suppose that £(x) # 0 for some z € M, then (3.22) implies that ¥"*1(z) = 0.
Plugging this into (3.9) yields &£(x) = 0 which is a contradiction and therefore
&E=0. O



Some rigidity results for Dirac-harmonic maps 437

Corollary 3.2. Let ¢ : M — N be an n(> 3)-dimensional submanifold in
a Riemannian manifold of constant curvature ¢ with flat normal bundle and let
(¢,4) be a Dirac-harmonic map where

wT = Zea'\p®¢*(€a)

for some ¥ € I'(XM). Then ¢ is minimal if and only if U is harmonic.

4. Dirac-harmonic maps from a Riemann surface

In this section, we extend Chen—Jost-Li-Wang’ result and give a structure
theorem of Dirac-harmonic maps from a Riemann surface.

PROOF OF PROPOSITION 1.3. We claim that
1
RObou) =0, Doy =-187(0)-2 (Ve ¥+ oo 09) @0.(c0) (41)

where €, (a =1,2), as always, is a local orthonormal basis of M.
In fact, we define local vector fields V@' on M by

Vo' = (do)*(dy’)
where {dy'} is the natural local dual basis on N. By using (1.1), we have
O =g u(dy’) = V' - 0.
Set d¢p = ¢L,0% ® a%i where 6 is the dual basis for €,. Then V¢’ = > ¢! ¢, and
(WF, VT - l) = Edhel (e V,ep - ey - W),

Note that Re(eq - ¥, €3 - €, - ¥) = 0 [10, Lemma 3.1]. We conclude that
Rijkl<@/}k7v¢j -1} is purely imaginary. On the other hand, from the proof of
Lemma 2.1, R%j (Y%, V¢ - ') must be real, and hence

850

R(p,¥p,w) = %Rijkz@/f’“, Vel -t oy

By using (2.4) we have

1 1
Ve, ¥+ € P =V U+ 3o [Seg - Ve, V]
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1
i(qu] +e-6-V,U), a=1
=9, (4.2)
i(VQ\I’*Gl'EQ'VEl\P), a=2
We choose a local orthonormal frame field €, such that V. eg = 0 at z € M.
Then

Doy = €5 Ve, how = €5 Ve, (€a - U R du(ea))
=e5 [Vey(ea V) @ ¢ulen) + €0 ¥R Ve, (dulea))]
=5 [(Vey(€a) U+ €0 - Ve, ¥) @ hulea) + €a - ¥ @ Ve, (¢(ea))]
=¢5 €a {Ve, U@ ¢u(ea) + TRV, (dulca))}
= (Ba=p + Zazs)es  €a - {Ve, U ® bu(éa) + ¥ @ Ve, (dulea))}
= (I) +(11) (4.3)

where

(I) =€a €a {Ve, V@ dul€a) + VO Ve, (dul€a))}
= —{Ve ¥V ®di(ea) + ¥ @[V, (dx(€a)) = 9x(Ve. (Px(€a))]}
= —{Ve. U @ bulea) + V@ 7(0)} (4.9)

and

(IT) =€ - €2 {VGIKIJ ® du(e2) + U ®V61(¢*(62))}
+er-€1- {Ve, U@ di(e1) + U@ Ve, (du(e1))}
=c1- e {Va, U@ du(ea) = Ve, U @ ¢uler) + ¥ @ Ve, (.(e2))
—\IJ®VE2(¢*(61))}
=e1 € {Va, U@ d.(e2) — Ve, U @ ¢s(er) } (4.5)

here we have used the following

Ve (¢u(e2)) = (Ve 9:)(€2) = (Ve 0:)(€1) = Ve, (9 (e1))-
Substituting (4.4) and (4.5) into (4.3) yields

Dyw = —{Ve, ¥ ® ¢u(ea) + ¥ @ 7(0)}
+er-e2 {Va VU ®du(e2) = Ve, ¥ ® ¢u(e1)}
=-VR7()) — (Va,V+e -6V, U)® dyer)
+ (€1 €V, U —=V.,T)R d.(€2). (4.6)
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Plugging (4.2) into (4.6) yields the second equation of (4.1).
By using the Clifford relation, ones obtain

1 1 1
v51\p+§€1'aqj:5(v61\1’+61'62'v62\1/):§€1'(1) (47)

where
P = —¢€ - Vel\l’ + € - VQ\II.

We recall that ® = 0 if and only if ¥ is a twistor spinor, equivalently, ¥ belongs
to the kernel of the twistor operator (cf. Lemma 2.2). Similarly, we have

1 1 1
VEZ\I/ + 562 . a‘lf = §(v52\11 + €2 €1 - Vel\I/) = —562 - O, (48)
Plugging (4.7) and (4.8) into (4.1) yields
1 1
Dgw = -0 @7(9) + 261 2® Pi(e1) — Se2- D ® Pu(e2). (4.9)

2

Note that (¢,%4 w) is a Dirac-harmonic map, i.e.

7(¢) = R(d, ¥p.v), (4.10)
mi/)¢7q/ =0. (4.11)

(4.1) and (4.10) imply that
7(¢) = 0. (4.12)

Hence ¢ is a harmonic map, equivalently, it is a branched minimal immersion.
Substituting (4.12) into (4.9) and using (4.11) yield

61'@®¢*(61)—62'¢®¢*(62) =0. (413)

Since ¢ : (M, g) — (N, h) is conformal, we can assume that ¢*h = e*g. It follows
that

h($s(€a), du(es)) = dape™. (4.14)

Note that ¢ is non-constant, there exists an « such that ¢ (eq) # 0. Without loss
of generality, we assume ¢.(€1) # 0. From (4.13) and (4.14) we have ¢ - & = 0.
It follows that

<I>:—el~(el-<1>):0.

Thus ¥ is a twistor spinor. ([
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Remark. Note that the Dirac-harmonicity of (¢, 14 v) implies the harmoni-
city of ¢ and any harmonic map from a sphere is conformal. Hence Proposition 1.3
is a natural generalization of Proposition 2.2 of [4].

PRrROOF OF THEOREM 1.4. We only consider the case that g > 0 and deg ¢ >
g — 1 where g is the genus of compact Riemann surface M. Let (¢, %) is a Dirac-
harmonic map from a compact Riemann surface M, of genus g to the sphere M
and ¢ is non-constant. By using Theorem 1.1 in [15], ¢ is a harmonic map. Note
that My is homeomorphic to S? = CP! and ¢ is a non-constant map. Hence ¢ is
linearly full into CP!. By using Liao’s result ¢ is isotropic [13, Corollary 1]. Recall
that isotropic harmonic maps are generated from holomorphic maps by a process
of taking derivatives. Therefore ¢ is £holomorphic for n = 1. Consider the Fubini—
Study metric on CP! with the constant holomorphic sectional curvature 4. The
degree of ¢ can be computed as follows [7], [14]

deg(9) = — [E'(¢) — B"(9)]

where E’(¢) (resp. E”(¢)) is the holomorphic (resp. anti-holomorphic) energy
of ¢. If ¢ is anti-holomorphic, then E'(¢) = 0. It follows that
E//
0§g—1<d0g(¢)=—ﬂ

™

Thus E”(¢) < 0. Hence ¢ is also holomorphic. We conclude that ¢ is constant
which is a contradiction.
The twisted bundle XM, ® ¢~'TM; can be divided into the following

YM, ® ¢ T My = XM, @ (¢~ T M)
= (STM, ® ¢ T My) @ (ST M, @ ¢~ 'T" M)
O(E "My ®¢ "T'My) ® (2" My @ ¢ 'T"My)  (4.15)

where
SEM, = {V € SMy[vV—1le; -2 T =£T} (4.16)

for some orthonormal frame field €, of M, and 7'My (resp. T" M) denote the
tangent bundle of My of type (1,0) (resp. (0,1)). Denote by 7 (resp. 7~ ) the
projection of the twisted bundle XM, ® ¢~ T M, onto the subbundle M, ®
¢~1T" My (resp. ¥~ M, ®@ ¢~ T'My). Let m denote the sum of the multiplicaties
of the zeros of the function |7 (1)|. If |77 (1))| is not identically zero, then (cf.
[15, Theorem 4.2])

m=g—1—2deg(¢).
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Note that
g—1—2deg(¢) <g—1-2(¢g—1)=1-g<0.

It follows that m < —1 which is a contradiction, therefore

7" () = 0.

Similarly we have
7~ ()| = 0.

For non-constant holomorphic map ¢
¢~ 'T' My = Span{¢.(e1) — V—16.(e2)},
¢~ 'T" My = Span{p.(e1) + v~ 1¢.(e2)}.

We write
S0, = Span{y*}
where
YT =T
By using (4.15), (4.17) and (4.18), we have

Y= f¢+ ® [(15*(61) - \/jl(b*(@)] +9Y” ® [¢*(€1) + \/j1¢*(€2)] .

From (4.16), (4.19) and the Clifford relation ones obtain
P =—e1 -y = —V-lea -9,
b=t = —V eyt

Plugging (4.21) and (4.22) into (4.20) yields

Y =Zata " V® du(€a)

441

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

where ¥ = gyb™ — f1)~. Note that arbitrary isotropic harmonic map is conformal.

From Proposition 1.3, ¥ is a twistor spinor.

In particular, we have the following

O

Corollary 4.1. Let (¢,%) is a non-constant Dirac-harmonic map from a
torus T2 to a sphere with non-zero degree. Then ¢ is + holomorphic, and

could be written in the form

P =2aa ¥ ® ¢*(€o¢)

where €, (o = 1,2) is a local orthonormal basis of T?, and V¥ is a twistor spinor.

We have several special case of Theorem 1.4.

(1) When g = 0, our corollary have been given by YANG LING [15];

(2) When ¢ = 0, our result is reduced to Liao’s isotropy work [13, Corollary 1].
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