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Some rigidity results for Dirac-harmonic maps

By XIAOHUAN MO (Beijing)

Abstract. Let (φ, ψ) be a Dirac-harmonic maps from a Riemannian manifold into

another Riemannian manifold. We call (φ, ψ) trivial if φ is harmonic. By using Bochner-

type formula and extending Chen–Jost–Li–Wang’ result, we give some sufficient condi-

tions for a Dirac-harmonic map (φ, ψ) to be trivial. We also give a structure theorem of

Dirac-harmonic maps from a Riemann surface generalizing result previously only known

in the case when source manifold is a two sphere.

1. Introduction

Dirac-harmonic maps are a generalization and combination of harmonic maps

and harmonic spinors while preserving the essential properties of the former. They

arise from the supersymmetric nonlinear sigma model of quantum field theory [6].

Obviously, there are two types of basic examples, a harmonic map together

with a vanishing spinor and a constant map together with a harmonic spinor.

In [4], the authors constructed Dirac-harmonic maps (φ, ψ) from S2 to S2, where

φ is a harmonic map (or equivalently, a (possible branched) conformal map), ψ

could be written in the form

ψ = Σαεα ·Ψ⊗ φ∗(εα) (1.1)

where εα (α = 1, 2) is a local orthonormal basis of S2, and Ψ is a twistor spinor.

In the spirit ofChen–Jost–Li–Wang, recently, Jost–Mo–Zhu constructed

explicit examples of Dirac-harmonic maps (φ, ψ) from an Euclidean space to a

hyperbolic space which are non-trivial in the sense that φ is not harmonic [4],
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[10]. Precisely, in their examples, φ : Rn → Hn+1 is an isometric immersion

where n ≥ 3 and ψ could be written in the form

ψT = Σαεα ·Ψ⊗ φ∗(εα)

where (. . . )T denotes the orthogonal projection into the subbundle ΣRn⊗TRn and

εα (α = 1, 2) is an orthonormal basis of Rn. A natural question then is whether

there exist non-trivial Dirac-harmonic maps for hypersphere in a hyperbolic space

in this form.

In this paper, we will first give the following negative answer.

Theorem 1.1. Let Mn be a compact positive scalar curved spinor manifold

immersed in a non-positively constantly curved manifoldN . Then there is no non-

vanishing harmonic spinor ψ along this immersion with ψT = Σαεα ·Ψ⊗ φ∗(εα),
therefore, there is no non-trivial Dirac-harmonic map (φ, ψ) from M into N with

ψT = Σαεα ·Ψ⊗ φ∗(εα).

For definitions of harmonic spinor and Dirac-harmonic map see Section 2 and

Section 3. In the two-dimensional case we have the following:

Proposition 1.2. Let φ : M ↪→ N be a surface in a Riemannian manifold

of constant curvature c with flat normal bundle. Then there is no non-trivial

Dirac-harmonic map (φ, ψ) from M into N with ψT = Σαεα ·Ψ⊗ φ∗(εα).

Then we generalize Chen–Jost–Li–Wang’ construction [4] as following:

Proposition 1.3. Let M be a Riemann surface and N a Riemannian ma-

nifold. Let ψφ,Ψ be defined by ψφ,Ψ = Σαεα · Ψ ⊗ φ∗(εα) from a nonconstant

conformal map φ : M → N and a spinor Ψ ∈ Γ(ΣM). If (φ, ψφ,Ψ) is a Dirac-

harmonic map then φ is a branched minimal immersion and Ψ is a twistor spinor.

See Section 2 for definition of twistor spinor. Using Proposition 1.3, we obtain

the following structure theorem of Dirac-harmonic maps from Riemann surfaces:

Theorem 1.4. Let (φ, ψ) is a non-constant Dirac-harmonic map from a

compact Riemann surface Mg of genus g to the sphere M0 with | deg φ| > g − 1.

Then φ is ± holomorphic, and ψ could be written in the form

ψ = Σαεα ·Ψ⊗ φ∗(εα)

where εα (α = 1, 2) is a local orthonormal basis of Mg, and Ψ is a twistor spinor.

It is worth mentioning the condition that deg φ > g − 1 is sharp. If g ≥ 1

and 0 ≤ d ≤ g − 1, Lemaire has constructed Riemann surface Mg and harmonic

non±holomorphic maps φ : Mg → M0 of degree d. Thus (φ, 0) is a Dirac-harmonic

map from Mg into M0.
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2. Dirac-harmonic maps

In this section, we recall the basic definitions and introduce our notation. Let

(N,h) be a Riemannian manifold of dimension n′. This will be our target mani-

fold. Likewise, let (M, g), our domain manifold, be an n-dimensional Riemannian

manifold with fixed spin structure. By ΣM , we denote its spinor bundle, on which

we have a Hermitian metric 〈· , ·〉 induced by the Riemannian metric g(· , ·) of M .

Let φ be a smooth map from (M, g) to (N,h) and φ−1TN the pull-back bundle

of TN by φ. On the twisted bundle ΣM ⊗φ−1TN there is a metric (still denoted

by 〈· , ·〉) induced from the metrics on ΣM and φ−1TN . There is also a natural

connection ∇̃ on ΣM ⊗ φ−1TN induced from those on ΣM and φ−1TN (which

in turn come from the Levi–Civita connections of (M, g) and (N,h), resp.).

We have the Clifford product X · Φ of X ∈ Γ(TM), Φ ∈ Γ(ΣM). This

Clifford product satisfies the skew-symmetry relation

〈X · Φ,Ψ〉 = −〈Φ, X ·Ψ〉 (2.1)

as well as the Clifford relations

X · Y · Φ+ Y ·X · Φ = −2g(X,Y )Φ

for X,Y ∈ Γ(TM), Φ,Ψ ∈ Γ(ΣM).

We are now prepared to introduce an operator that couples the geometries

of M and N via the map φ. Let ψ be a section of the bundle ΣM ⊗φ−1TN . The

Dirac operator along the map φ is defined as

/Dψ := εα · ∇̃εαψ

where εα is a local orthonormal basis of M . For background material about the

spinor bundle and the Dirac operator, we refer to [9], [12].

We consider the space

χ := {(φ, ψ)|φ ∈ C∞(M,N) and ψ ∈ C∞(ΣM ⊗ φ−1TN)}

of mappings and sections along those mappings. On χ, we have the functional

L(φ, ψ) :=
1

2

∫

M

[|dφ|2 + 〈ψ, /Dψ〉]∗1M .

This functional couples the two fields φ and ψ because the operator /D depends

on the map φ. The Euler–Lagrange equations of L(φ, ψ) then also couple the two

fields; they are:

τ(φ) = R(φ, ψ) (2.2)
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and

/Dψ = 0 (2.3)

where τ(φ) is the tension field of the map φ (the natural version of the Laplace

operator for maps between manifolds) and the curvature term R(φ, ψ) is defined

by

R(φ, ψ) =
1

2
Ri

jkl〈ψk,∇φj · ψl〉 ∂

∂yi
,

where

ψ = ψi ⊗ ∂

∂yi
, (dφ)] = ∇φi ⊗ ∂

∂yi
,

Rφ−1TN

(
∂

∂yk
,
∂

∂yl

)
∂

∂yj
= Ri

jkl
∂

∂yi

where ] : T ∗M ⊗ φ−1TN → TM ⊗ φ−1TN is the standard (“musical”) isomorp-

hism obtained from the Riemannian metric g.

Solutions (φ, ψ) to (2.2) and (2.3) are called Dirac-harmonic maps from M

into N [4].

We now start with some differential geometric identities: Let εα be a local

orthonormal basis of M . By using the Clifford relations we have

εα · εβ ·Ψ = (−1)δαβ+1εβ · εα ·Ψ =

{
−Ψ, α = β

−εβ · εα ·Ψ, α 6= β
(2.4)

for Ψ ∈ Γ(ΣM).

Lemma 2.1. R(φ, ψ) ∈ Γ(φ−1TN); in particular, it is real.

Proof. For any (not necessarily orthonormal) frame {εi} on φ−1TN , we put

ψ = ψa ⊗ εa, (2.5)

(dφ)] = ∇φa ⊗ εa, Rφ−1TN (εa, εb)εc = Rd
abcεd (2.6)

where ] : T ∗M ⊗ φ−1TN → TM ⊗ φ−1TN is the musical isomorphism as before.

Take

εa = ui
a

∂

∂yi
,

then

ψi = ui
aψ

a, ∇φi = ui
a∇φa, uj

au
k
bu

l
cR

i
jkl = Rd

abcu
i
d.
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A simple calculation gives following

Ri
jkl〈ψk,∇φj · ψl〉 ∂

∂yi
= Ra

bcd (φ(x)) 〈ψc,∇φb · ψd〉εa (φ(x)) . (2.7)

It follows that the definition of R(φ, ψ) is independent of the choice of frame. It

is then well-defined vector field on φ−1TN . On the other hand, from the skew-

symmetry of Ri
jkl with respect to the induces k and l, we have

1

2
Ri

jkl〈ψk,∇φj · ψl〉 = 1

2
Ri

jkl〈∇φj · ψl, ψk〉 = 1

2
Ri

jlk〈∇φj · ψk, ψl〉

= −1

2
Ri

jkl〈∇φj · ψk, ψl〉 = 1

2
Ri

jkl〈ψk,∇φj · ψl〉.

It follows that R(φ, ψ) ∈ Γ(φ−1TN). ¤

A spinor (field) Ψ ∈ Γ(ΣM) is called a twistor spinor if Ψ belongs to the

kernel of the twistor operator, equivalently,

∇XΨ+
1

n
X · /∂Ψ = 0, ∀X ∈ Γ(TM)

where we recall that n is the dimension of the Riemannian manifold M , ΣM is the

associated spinor bundle of M and /∂ is the usual Dirac operator (cf. [1], [8], [11]).

In fact the concept of a twistor spinor (in particular, a Killing spinor) is mo-

tivated by theories from physics, like general relativity, 11-dimensional (resp. 10-

dimensional) supergravity theory, supersymmetry (see, for example [2], [3], [5]).

We establish the following Lemma 2.2 required in the proof of Proposition 1.3.

Lemma 2.2. Let Φ ∈ Γ(ΣM). Then Φ is a twistor spinor if and only if

ε1 · ∇ε1Φ = · · · = εn · ∇εnΦ (2.8)

for some orthonormal frame field εα of M .

Proof. Let us assume that (2.8) holds for some orthonormal frame field

of εα. Hence we may set

Ψ := εα · ∇εαΦ. (2.9)

Then
/∂Φ =

∑
α

εα · ∇εαΦ =
∑
α

Ψ = nΨ

where n = dimM . Together with (2.4) and (2.9) we have

∇εβΦ = −εβ · εβ · ∇εβΦ = −εβ ·Ψ = −εβ ·
(
1

n
/∂Φ

)
= − 1

n
εβ · /∂Φ.
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It follows that

∇XΦ+
1

n
X · /∂Φ = ∇XαεαΦ+

1

n

(
Xαεα · /∂Φ) = Xα∇εαΦ+

1

n
Xα

(
εα · /∂Φ)

= Xα

(
∇εαΦ+

1

n
εα · /∂Φ

)
= 0

for arbitrary X = Xαεα ∈ Γ(TM). Thus we see that Φ is a twistor spinor.

Conversely, if Φ is a twistor spinor, then the spinor field

X · ∇XΦ

does not depend on the unit vector field X [1, page 23, Theorem 2]. ¤

3. Dirac-harmonic maps along an isometric immersion

In this section, we are going to give some sufficient conditions for a Dirac-

harmonic map along an isometric immersion to be trivial.

Let ψ ∈ Γ(ΣM ⊗ φ−1TN) be a spinor field along φ : M → N . We call ψ to

be harmonic if /Dψ = 0 [4].

Let φ : M ↪→ N be an isometric immersion. This means that the Riemannian

metric on M induced from the ambient space N coincides with the original one

on M . We identify M with its immersed image in N . For each x ∈ M the tangent

space TxN can be decomposed into a direct sum of TxM and its orthogonal

complement T⊥
x M . Such a decomposition is differentiable. Thus, we have an

orthogonal decomposition of the tangent bundle TN along M

TN |M = φ−1TN = TM ⊕ T⊥M.

Let (. . . )T denote the orthogonal projection into the subbundle ΣM ⊗ TM from

the twsited bundle ΣM ⊗ φ−1TN .

For a global section R(φ, ψ) on φ−1TN (see Lemma 2.1), we have

R(φ, ψ) = RT (φ, ψ) +RN (φ, ψ)

where

RT (φ, ψ) ∈ Γ(TM), RN (φ, ψ) ∈ Γ(T⊥M).

Similarly, for /Dψ ∈ Γ(ΣM ⊗ φ−1TN), we have

/Dψ = /D
T
ψ + /D

N
ψ
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where
/D
T
ψ ∈ Γ(ΣM ⊗ TM), /D

N
ψ ∈ Γ(ΣM ⊗ T⊥M).

The mean curvature vector of M in N is

H =
1

n
τ(φ) ∈ Γ(T⊥M)

where τ(φ) is the tension field of the map φ. Hence we have the following:

Lemma 3.1. Let φ : M ↪→ N be an isometric immersion with the mean

curvature vector ξ and ψ ∈ Γ(ΣM ⊗ φ−1TN). Then (φ, ψ) is a Dirac-harmonic

map from M into N if and only if

(i) RT (φ, ψ) = 0;

(ii) RN (φ, ψ) = nξ where n = dimM ;

(iii) /D
T
ψ = 0;

(iv) /D
N
ψ = 0.

We shall be using the following ranges of indices:

1 ≤ α, β, · · · ≤ n, n+ 1 ≤ s, t, · · · ≤ n′, 1 ≤ i, j, · · · ≤ n′.

Choose a local orthonormal frame field {εi} of φ−1TN such that {εα} lies in

the tangent bundle TM and {εs} in the normal bundle T⊥M of M . We put

(dφ)] = ∇φi ⊗ εi (3.1)

where ] : T ∗M ⊗ φ−1TN → TM ⊗ φ−1TN is the musical isomorphism. By using

(3.1) we have

∇φi =
∑

δiαεα. (3.2)

Now we assume that N = N(c) is a Riemannian manifold of constant curvature c.

Then the components of the Riemannian curvature tensor of N satisfy

Rijkl = c(δikδjl − δilδjk). (3.3)

Proof of Theorem 1.1. Let ψ ∈ Γ(ΣM ⊗φ−1TN) be a spinor field along

the isometric immersion φ and ψ = ψiεi. From (3.2) and (3.3) we obtain

Rijkl〈∇φk · ψi,∇φl · ψj〉 = c
[〈∇φi · ψi,∇φi · ψj〉 − 〈∇φj · ψi,∇φi · ψj〉]

= c
[〈εα · ψα, εβ · ψβ〉 − 〈εβ · ψα, εα · ψβ〉]

= c
∑

α 6=β

[〈εα · ψα, εβ · ψβ〉 − 〈εβ · ψα, εα · ψβ〉] . (3.4)
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By using the skew-symmetry relation of the Clifford product and the Clifford

relation we have

∑

α 6=β

〈εβ · ψα, εα · ψβ〉 = −
∑

α 6=β

〈ψα, εβ · εα · ψβ〉 =
∑

α 6=β

〈ψα, εα · εβ · ψβ〉

= −
∑

α 6=β

〈εα · ψα, εβ · ψβ〉.

Plugging this into (3.4) yields

Rijkl〈∇φk · ψi,∇φl · ψj〉 = 2c
∑

α 6=β

〈εα · ψα, εβ · ψβ〉.

Now we assume

ψT = Σαεα ·Ψ⊗ φ∗(εα).

where Ψ ∈ Γ(ΣM) is a spinor (field). It follows that ψα = εα ·Ψ, and therefore

Rijkl〈∇φk · ψi,∇φl · ψj〉 = 2c
∑

α6=β

〈εα · εα ·Ψ, εβ · εβ ·Ψ〉

= 2c
∑

α6=β

〈Ψ,Ψ〉 = 2(n− 1)nc|Ψ|2. (3.5)

Assume that ψ is a harmonic spinor field along the isometric immersion φ. From

Proposition 3.4 in [4], we have the following Bochner-type formula

1

2
∆|ψ|2 = |∇̃ψ|2 + 1

4
R|ψ|2 − 1

2
Rijkl〈∇φk · ψi,∇φl · ψj〉 (3.6)

where R is the scalar curvature of M . Substituting (3.5) into (3.6) yields

1

2
∆|ψ|2 = |∇̃ψ|2 + 1

4
R|ψ|2 − 2(n− 1)nc|Ψ|2. (3.7)

Therefore, under the assumption R > 0 and c ≤ 0, (3.7) shows that |ψ|2 is

subharmonic on M . By the Hope maximum principle, we see that this function

must be a constant and the right hand side of (3.7) must be zero. In particular

|ψ| = 0. ¤

Proof of Proposition 1.2. Plugging (3.2) into (2.7) yields

R(φ, ψ) =
1

2
Ri

αkl (x) 〈ψk, εα · ψl〉εi (x) . (3.8)
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From which together with (3.3) we obtain

R(φ, ψ) = c(δikδαl − δilδαk)Re〈ψk, εα · ψl〉εi
= c

[
Re〈ψi, εα · ψα〉 − Re〈ψα, εα · ψi〉] εi = 2cRe〈ψi, εα · ψα〉εi.

It follows that

RN (φ, ψ) = 2cRe〈ψs, εα · ψα〉εs = 2cRe〈ψs, εα · εα ·Ψ〉εs
= −2ncRe〈ψs,Ψ〉εs.

Together with (ii) of Lemma 3.1, we obtain

−2cRe〈ψn+1,Ψ〉 = ξ (3.9)

where ξ is the mean curvature of φ. Choose a local orthonormal frame field {εα}
near x ∈ M with ∇εαεβ |x = 0. By (2.5) we have

/Dψ = /D(ψi ⊗ εi) = εα · ∇̃εα(ψ
i ⊗ εi)

= εα · [(∇εαψ
i)⊗ εi + ψi ⊗∇εαεi

]

= (εα · ∇εαψ
i)⊗ εi + εα · [ψβ ⊗∇εαεβ + ψs ⊗∇εαεs

]

= /∂ψi ⊗ εi + εα · ψs ⊗∇εαεs (3.10)

at x.

Let Aν be the shape operator and ∇⊥
X the normal connection of M in N

where X denotes a tangent vector of M and ν a normal vector to M . Then

∇εαεs = −Aεsεα +∇⊥
εαεs. (3.11)

Let B be the second fundamental form of M in N . Then B satisfies the Weing-

arten equation

〈B(X,Y ), ν〉 = 〈Aν(X), Y 〉 (3.12)

where X,Y ∈ Γ(TM). By using (3.11) and (3.12) we have

∇εαεs = −〈B(εα, εβ), εs〉εβ +∇⊥
εαεs. (3.13)

By plugging (3.13) into (3.10) we obtain

/Dψ = /∂ψi ⊗ εi − 〈B(εα, εβ), εs〉εα · ψs ⊗ εβ + εα · ψs ⊗∇⊥
εαεs. (3.14)
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Let ψT be defined by

ψT = Σαεα ·Ψ⊗ φ∗(εα).

Choose a local orthonormal frame field {εα} near x ∈ M with ∇εαεβ |x = 0.

/∂ψα = /∂(εα ·Ψ) = εβ · ∇εβ (εα ·Ψ) = εβ
[
(∇εβ εα) ·Ψ+ εα · ∇εβΨ

]

= εβ · εα · ∇εβΨ=−∇εαΨ−
∑

β 6=α

εα · εβ ·∇εβΨ=− 2∇εαΨ− εα · /∂Ψ. (3.15)

Substituting (3.15) into (3.14) and taking the tangent projection yield

/D
T
ψ = − [

2∇εβΨ+ εβ · /∂Ψ+ 〈B(εα, εβ), εs〉εα · ψs
]⊗ εβ . (3.16)

It is easy to see that

〈B(εα, εβ), εs〉εα · ψs ⊗ εβ

does not depend on the choice of {εα}. Since the normal bundle of M is flat, we

choose {εα} such that

〈B(εα, εβ), εs〉 = λs
αδαβ . (3.17)

Therefore we have
∑

β

λn+1
β = nξ, and

∑

β

λs
β = 0 for s 6= n+ 1. (3.18)

Plugging (3.17) into (3.16) yields

/D
T
ψ = −

∑

β

[
2∇εβΨ+ εβ · /∂Ψ+

∑

α,A

λA
β εβ · ψA

]
⊗ εβ . (3.19)

Thus /D
T
ψ = 0 if and only if

2∇εβΨ+ εβ · /∂Ψ+
∑

A

λA
β εβ · ψA = 0 (3.20)

for all β. By (2.4), (3.20) holds if and only if

2εβ · ∇εβΨ− /∂Ψ =
∑
s

λs
βψ

s. (3.21)

Summing on β and using (3.18) we have

(2− n)/∂Ψ = nξψn+1.

Note that n = dim M = 2. It follows that

ξψn+1 = 0. (3.22)

Suppose that ξ(x) 6= 0 for some x ∈ M , then (3.22) implies that ψn+1(x) = 0.

Plugging this into (3.9) yields ξ(x) = 0 which is a contradiction and therefore

ξ ≡ 0. ¤
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Corollary 3.2. Let φ : M ↪→ N be an n(≥ 3)-dimensional submanifold in

a Riemannian manifold of constant curvature c with flat normal bundle and let

(φ, ψ) be a Dirac-harmonic map where

ψT =
∑
α

εα ·Ψ⊗ φ∗(εα)

for some Ψ ∈ Γ(ΣM). Then φ is minimal if and only if Ψ is harmonic.

4. Dirac-harmonic maps from a Riemann surface

In this section, we extend Chen–Jost–Li–Wang’ result and give a structure

theorem of Dirac-harmonic maps from a Riemann surface.

Proof of Proposition 1.3. We claim that

R(φ, ψφ,Ψ) ≡ 0, /Dψφ,Ψ = −Ψ⊗τ(φ)−2

(
∇εαΨ+

1

2
εα · /∂Ψ

)
⊗φ∗(εα) (4.1)

where εα (α = 1, 2), as always, is a local orthonormal basis of M .

In fact, we define local vector fields ∇φi on M by

∇φi := (dφ)](dyi)

where {dyi} is the natural local dual basis on N . By using (1.1), we have

ψi := ψφ,Ψ(dy
i) = ∇φi ·Ψ.

Set dφ = φi
αθ

α ⊗ ∂
∂yi where θα is the dual basis for εα. Then ∇φi =

∑
φi
αεα and

〈ψk,∇φj · ψl〉 = φk
αφ

j
βφ

l
γ〈εα ·Ψ, εβ · εγ ·Ψ〉.

Note that Re〈εα ·Ψ, εβ · εγ ·Ψ〉 = 0 [10, Lemma 3.1]. We conclude that

Ri
jkl〈ψk,∇φj · ψl〉 is purely imaginary. On the other hand, from the proof of

Lemma 2.1, Ri
jkl〈ψk,∇φj · ψl〉 must be real, and hence

R(φ, ψφ,Ψ) ≡ 1

2
Ri

jkl〈ψk,∇φj · ψl〉 ∂

∂yi
≡ 0.

By using (2.4) we have

∇εαΨ+
1

2
εα · /∂Ψ = ∇εαΨ+

1

2
εα · [Σεβ · ∇εβΨ

]
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=





1

2
(∇ε1Ψ+ ε1 · ε2 · ∇ε2Ψ), α = 1

1

2
(∇ε2Ψ− ε1 · ε2 · ∇ε1Ψ), α = 2

(4.2)

We choose a local orthonormal frame field εα such that ∇εαεβ = 0 at x ∈ M .

Then

/Dψφ,Ψ = εβ · ∇̃εβψφ,Ψ = εβ · ∇̃εβ (εα ·Ψ⊗ φ∗(εα))

= εβ · [∇εβ (εα ·Ψ)⊗ φ∗(εα) + εα ·Ψ⊗∇εβ (φ∗(εα))
]

= εβ · [((∇εβ (εα) ·Ψ+ εα · ∇εβΨ)⊗ φ∗(εα) + εα ·Ψ⊗∇εβ (φ∗(εα))
]

= εβ · εα · {∇εβΨ⊗ φ∗(εα) + Ψ⊗∇εβ (φ∗(εα))
}

= (Σα=β +Σα6=β)εβ · εα · {∇εβΨ⊗ φ∗(εα) + Ψ⊗∇εβ (φ∗(εα))
}

= (I) + (II) (4.3)

where

(I) = εα · εα · {∇εαΨ⊗ φ∗(εα) + Ψ⊗∇εα(φ∗(εα))}
= −{∇εαΨ⊗ φ∗(εα) + Ψ⊗ [∇εα(φ∗(εα))− φ∗(∇εα(φ∗(εα))]}
= −{∇εαΨ⊗ φ∗(εα) + Ψ⊗ τ(φ)} (4.4)

and

(II) = ε1 · ε2 ·
{∇ε1Ψ⊗ φ∗(ε2) + Ψ⊗∇ε1(φ∗(ε2))

}

+ ε2 · ε1 ·
{∇ε2Ψ⊗ φ∗(ε1) + Ψ⊗∇ε2(φ∗(ε1))

}

= ε1 · ε2 ·
{∇ε1Ψ⊗ φ∗(ε2)−∇ε2Ψ⊗ φ∗(ε1) + Ψ⊗∇ε1(φ∗(ε2))

−Ψ⊗∇ε2(φ∗(ε1))
}

= ε1 · ε2 ·
{∇ε1Ψ⊗ φ∗(ε2)−∇ε2Ψ⊗ φ∗(ε1)

}
(4.5)

here we have used the following

∇ε1(φ∗(ε2)) = (∇ε1φ∗)(ε2) = (∇ε2φ∗)(ε1) = ∇ε2(φ∗(ε1)).

Substituting (4.4) and (4.5) into (4.3) yields

/Dψφ,Ψ = −{∇εαΨ⊗ φ∗(εα) + Ψ⊗ τ(φ)}
+ ε1 · ε2 · {∇ε1Ψ⊗ φ∗(ε2)−∇ε2Ψ⊗ φ∗(ε1)}

= −Ψ⊗ τ(φ)− (∇ε1Ψ+ ε1 · ε2 · ∇ε2Ψ)⊗ φ∗(ε1)

+ (ε1 · ε2 · ∇ε1Ψ−∇ε2Ψ)⊗ φ∗(ε2). (4.6)
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Plugging (4.2) into (4.6) yields the second equation of (4.1).

By using the Clifford relation, ones obtain

∇ε1Ψ+
1

2
ε1 · /∂Ψ =

1

2
(∇ε1Ψ+ ε1 · ε2 · ∇ε2Ψ) =

1

2
ε1 · Φ (4.7)

where

Φ := −ε1 · ∇ε1Ψ+ ε2 · ∇ε2Ψ.

We recall that Φ = 0 if and only if Ψ is a twistor spinor, equivalently, Ψ belongs

to the kernel of the twistor operator (cf. Lemma 2.2). Similarly, we have

∇ε2Ψ+
1

2
ε2 · /∂Ψ =

1

2
(∇ε2Ψ+ ε2 · ε1 · ∇ε1Ψ) = −1

2
ε2 · Φ. (4.8)

Plugging (4.7) and (4.8) into (4.1) yields

/Dψφ,Ψ = −Ψ⊗ τ(φ) +
1

2
ε1 · Φ⊗ φ∗(ε1)− 1

2
ε2 · Φ⊗ φ∗(ε2). (4.9)

Note that (φ, ψφ,Ψ) is a Dirac-harmonic map, i.e.

τ(φ) = R(φ, ψφ,Ψ), (4.10)

/Dψφ,Ψ = 0. (4.11)

(4.1) and (4.10) imply that

τ(φ) = 0. (4.12)

Hence φ is a harmonic map, equivalently, it is a branched minimal immersion.

Substituting (4.12) into (4.9) and using (4.11) yield

ε1 · Φ⊗ φ∗(ε1)− ε2 · Φ⊗ φ∗(ε2) = 0. (4.13)

Since φ : (M, g) → (N,h) is conformal, we can assume that φ∗h = eλg. It follows

that

h(φ∗(εα), φ∗(εβ)) = δαβe
λ. (4.14)

Note that φ is non-constant, there exists an α such that φ∗(εα) 6= 0. Without loss

of generality, we assume φ∗(ε1) 6= 0. From (4.13) and (4.14) we have ε1 · Φ = 0.

It follows that

Φ = −ε1 · (ε1 · Φ) = 0.

Thus Ψ is a twistor spinor. ¤
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Remark. Note that the Dirac-harmonicity of (φ, ψφ,Ψ) implies the harmoni-

city of φ and any harmonic map from a sphere is conformal. Hence Proposition 1.3

is a natural generalization of Proposition 2.2 of [4].

Proof of Theorem 1.4. We only consider the case that g > 0 and deg φ >

g− 1 where g is the genus of compact Riemann surface M . Let (φ, ψ) is a Dirac-

harmonic map from a compact Riemann surface Mg of genus g to the sphere M0

and φ is non-constant. By using Theorem 1.1 in [15], φ is a harmonic map. Note

that M0 is homeomorphic to S2 = CP1 and φ is a non-constant map. Hence φ is

linearly full into CP1. By using Liao’s result φ is isotropic [13, Corollary 1]. Recall

that isotropic harmonic maps are generated from holomorphic maps by a process

of taking derivatives. Therefore φ is±holomorphic for n = 1. Consider the Fubini–

Study metric on CP1 with the constant holomorphic sectional curvature 4. The

degree of φ can be computed as follows [7], [14]

deg(φ) =
1

π
[E′(φ)− E′′(φ)]

where E′(φ) (resp. E′′(φ)) is the holomorphic (resp. anti-holomorphic) energy

of φ. If φ is anti-holomorphic, then E′(φ) = 0. It follows that

0 ≤ g − 1 < deg(φ) = −E′′(φ)
π

Thus E′′(φ) ≤ 0. Hence φ is also holomorphic. We conclude that φ is constant

which is a contradiction.

The twisted bundle ΣMg ⊗ φ−1TM0 can be divided into the following

ΣMg ⊗ φ−1TM0 = ΣMg ⊗ (φ−1TM0)
C

= (Σ+Mg ⊗ φ−1T ′M0)⊕ (Σ+Mg ⊗ φ−1T ′′M0)

⊕ (Σ−Mg ⊗ φ−1T ′M0)⊕ (Σ−Mg ⊗ φ−1T ′′M0) (4.15)

where

Σ±Mg :=
{
Ψ ∈ ΣMg|

√−1ε1 · ε2 ·Ψ = ±Ψ
}

(4.16)

for some orthonormal frame field εα of Mg and T ′M0 (resp. T ′′M0) denote the

tangent bundle of M0 of type (1, 0) (resp. (0,1)). Denote by π+ (resp. π−) the

projection of the twisted bundle ΣMg ⊗ φ−1TM0 onto the subbundle Σ+Mg ⊗
φ−1T ′′M0 (resp. Σ−Mg ⊗ φ−1T ′M0). Let m denote the sum of the multiplicaties

of the zeros of the function |π+(ψ)|. If |π+(ψ)| is not identically zero, then (cf.

[15, Theorem 4.2])

m = g − 1− 2 deg(φ).
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Note that

g − 1− 2 deg(φ) < g − 1− 2(g − 1) = 1− g ≤ 0.

It follows that m ≤ −1 which is a contradiction, therefore

|π+(ψ)| ≡ 0. (4.17)

Similarly we have

|π−(ψ)| ≡ 0. (4.18)

For non-constant holomorphic map φ

φ−1T ′M0 = Span{φ∗(ε1)−
√−1φ∗(ε2)},

φ−1T ′′M0 = Span{φ∗(ε1) +
√−1φ∗(ε2)}.

We write

Σ±Mg = Span{ψ±}
where

ψ− = ε1 · ψ+. (4.19)

By using (4.15), (4.17) and (4.18), we have

ψ = fψ+ ⊗ [
φ∗(ε1)−

√−1φ∗(ε2)
]
+ gψ− ⊗ [

φ∗(ε1) +
√−1φ∗(ε2)

]
. (4.20)

From (4.16), (4.19) and the Clifford relation ones obtain

ψ+ = −ε1 · ψ− = −√−1ε2 · ψ−, (4.21)

ψ− = ε1 · ψ+ = −√−1ε2 · ψ+. (4.22)

Plugging (4.21) and (4.22) into (4.20) yields

ψ = Σαεα ·Ψ⊗ φ∗(εα)

where Ψ = gψ+−fψ−. Note that arbitrary isotropic harmonic map is conformal.

From Proposition 1.3, Ψ is a twistor spinor. ¤

In particular, we have the following

Corollary 4.1. Let (φ, ψ) is a non-constant Dirac-harmonic map from a

torus T 2 to a sphere with non-zero degree. Then φ is ± holomorphic, and ψ

could be written in the form

ψ = Σαεα ·Ψ⊗ φ∗(εα)

where εα (α = 1, 2) is a local orthonormal basis of T 2, and Ψ is a twistor spinor.

We have several special case of Theorem 1.4.

(1) When g = 0, our corollary have been given by Yang Ling [15];

(2) When ψ = 0, our result is reduced to Liao’s isotropy work [13, Corollary 1].
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