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Beta-continued fractions over Laurent series

By MANEL JELLALI (Sfax), MOHAMED MKAOUAR (Sfax), KLAUS SCHEICHER (Wien)

and JÖRG M. THUSWALDNER (Leoben)

Abstract. The present paper is devoted to a new notion of continued fractions in

the field of Laurent series over a finite field. The definition of this kind of continued

fraction algorithm is based on a general notion of number systems. We will prove some

ergodic properties and compute the Hausdorff dimensions of bounded type continued

fraction sets.

1. Introduction

Let p be a prime, q a power of p and Fq the finite field with q elements. In

the present paper, we introduce a new kind of continued fraction algorithm in

Fq((X−1)), the field of formal Laurent series over Fq. This algorithm is based

on so called greedy expansions with respect to a base sequence (βi)i∈Z such that

βi ∈ F((X−1)) and (deg βi)i∈Z is strictly increasing. Analogously to the case of

continued fractions of real numbers, the new algorithm is coupled with a dynami-

cal system on a certain subset of Fq((X−1)) and the underlying transformation

turns out to be ergodic. Applying the ergodic theorem, we extend some metrical

properties of the classical algorithm to the new situation. In particular, we obtain

results on the average speed of convergence of our algorithm and the Hausdorff
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dimension of some exceptional sets. Most of our results are inspired by results of

Berthé, Nakada and Wu (cf. [2], [11], [12]).

The paper is organized as follows. In Section 2, some necessary notations

are introduced and the algorithm is described in detail. In Section 3, ergodicity

is proved for the underlying transformation and results on the mean convergence

of the algorithm are established. In Section 4, the Hausdorff dimensions of the

exceptional sets will we determined. In Section 5, the set of series having a fixed

given rate of convergence is studied.

2. Continued fraction expansions of Laurent series

Let Fq be a finite field of q elements, where q is a power of some prime number

and let Fq[X] denote the ring of polynomials in X with coefficients in Fq. Denote

by Fq((X−1)) the field of formal Laurent series

f =

+∞∑
n=n0

anX
−n an ∈ Fq and n0 ∈ Z. (2.1)

If f 6= 0 we may assume without loss of generality, that an0 6= 0. We say that

deg f = −n0 is the degree of f . The norm (or valuation) of f is given by

|f | = qdeg f .

It is well known that | · | is a non-Archimedean valuation over Fq((X−1)) and

Fq((X−1)) is complete with respect to the metric

ν(f, g) = |f − g|.

For a ∈ Fq((X−1)) and r > 0, define

D(a, r) = {ω ∈ Fq((X−1)) : |ω − a| < r} and

D(a, r) = {ω ∈ Fq((X−1)) : |ω − a| ≤ r}.

We shall use the notation | · | also for the diameter of a disc. Thus

|D(a, qn)| = qn−1 and |D(a, qn)| = qn for n ∈ Z.

If f is of the form (2.1), let [f ] be the integral (polynomial) part of f in Fq[X]

and

{f} = f − [f ] =

+∞∑
n=1

anX
−n
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be the fractional part of f .

Let β = (βi)i∈Z with βi ∈ Fq((X−1))\{0} such that (deg βi)i∈Z is a strictly

increasing sequence of integers. β is called base sequence. Let

S = {(si)−∞<i≤k : k ∈ Z, si ∈ Fq[X], deg si < deg βi+1 − deg βi} (2.2)

be the set of admissible digit strings associated to the base sequence β.

Lemma 2.1. Let β = (βi)i∈Z be a base sequence and S the associated set of

admissible digit strings. Then each f ∈ Fq((X−1)) admits a unique representation

of the form

f =
∑

−∞<i≤k

siβi, (si)−∞<i≤k ∈ S. (2.3)

Proof. The existence of a representation of the form (2.3) is guaranteed by

performing the so called greedy algorithm. It remains to prove unicity. To this

matter let s := (si)−∞<i≤k ∈ S be an admissible digit string giving rise to a

representation of a given element w. Assume that the representation (2.3) of w is

not unique. Then there is an admissible digit string s′ := (s′i)−∞<i≤k′ ∈ S with

s′ 6= s satisfying w =
∑

−∞<i≤k′ s′iβi. Subtracting this from (2.3) yields (assume

w.l.o.g that k ≥ k′ and set s′i = 0 for k′ < i ≤ k)

0 =
∑

−∞<i≤k

(si − s′i)βi. (2.4)

As s, s′ ∈ S we conclude that s−s′ ∈ S, where the subtraction is done component-

wise. Since s′ 6= s there is a maximal i0 ∈ Z with si0 6= s′i0 . Thus

deg 0 = deg

( ∑

−∞<i≤k

(si − s′i)βi

)
≥ deg βi0 > −∞,

contradicting (2.4). ¤

The above lemma justifies that we call (β,S) a digit system. Conversely, a

Laurent series associated to a given string in the digit system (β,S) is given by

the evaluation map

π : S → Fq((X−1)), (si)−∞<i≤k 7→
∑

−∞<i≤k

siβi.

When a representation ends in infinitely many zeros, it is said to be finite, and

the final zeros are omitted. When all the si on the right hand side of the radix

point are zeros, the representation is said to be an integer representation.



446 M. Jellali, M. Mkaouar, K. Scheicher and J. M. Thuswaldner

The set of all f ∈ Fq((X−1)) admitting an integer representation is called the

set of β-integers. For f ∈ Fq((X−1)), we define the β-integer and the β-fractional

part by

[f ]β = π(sk . . . s0.)β and {f}β = π(.s−1s−2 . . . )β ,

respectively.

Now we are in a position to introduce our new algorithm, called β-continued

fraction algorithm. The study of this algorithm is similar to the study of the

usual continued fraction expansions. Let β = (βi)i∈Z be a base sequence and let

H′
0(β) := {dβ0 : d ∈ Fq[X], 0 < deg d < deg β1 − deg β0},

H′′
0 (β) := {dβ0 : d ∈ Fq[X], deg d < deg β1 − deg β0},

Hn(β) := {d0β0 + · · ·+ dnβn : di ∈ Fq[X],

deg di < deg βi+1 − deg βi, dn 6= 0} (n ≥ 1)

and

H(β) := H′
0(β) ∪

⋃

n≥1

Hn(β), I(β) := H′′
0 (β) ∪

⋃

n≥1

Hn(β).

Remark 2.2. Note that |z| ≥ |β0| for all z ∈ I(β) and |z| > |β0| for all

z ∈ H(β).

We start with the following easy result.

Lemma 2.3. Let β = (βi)i∈Z be a base sequence and f ∈ Fq((X−1))\I(β).
Then ∣∣∣∣

β2
0

{f}β

∣∣∣∣ > |β0|.

Proof. This is just another way to write |β0| > |{f}β |. The latter follows

immediately from the definition of the β-fractional part {·}β . ¤

Define the β-continued fraction expansion for f to be an expression of the

form

fa0 +
β2
0

a1 +
. . .

· · ·+ β2
0

an + . . .

= [a0; a1, a2, . . . ]β ,

with a0 ∈ I(β) and ai ∈ H(β) for i ≥ 1. Notice that for any i ≥ 1, we have

deg ai > deg β0.

We extend the standard simple continued fraction algorithm by defining the

β-continued fraction algorithm. Given a formal power series f , we write f0 = f
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and let a0 = [f0]β denote the β-integer part of f0. Thus we have f = a0 + {f0}β
where {f0}β denotes the β-fractional part of f0. If f 6= a0 we write f as

f = a0 +
β2
0

β2
0/{f0}β

.

Next, let f1 = β2
0/{f0}β and a1 = [f1]β . If f1 6= a1, we get

f = a0 +
β2
0

f1
= a0 +

β2
0

a1 +
β2
0

β2
0/{f1}β

.

In general if fn 6= an we set fn+1 = β2
0/{fn}β and an+1 = [fn+1]β . It is clear

from Lemma 2.3, that an+1 ∈ H(β). If fn = an holds for some n, the process

terminates. If it goes on infinitely often we have

f = [a0; a1, a2 . . . ]β .

If f ∈ Fq((X−1)), then the sequence (fi)i∈N which define the β-continued fraction

expansion of f is given by the transformation

Tβ : D(0, |β0|) → D(0, |β0|)

f 7→
{
{β2

0/f}β if f 6= 0,

0 otherwise.

Let f = f0, then for each i ∈ N, we obtain that

fi+1 =
β2
0

Tβ

(β2
0

fi

) =
β2
0

T i+1
β

(β2
0

f0

) .

It is clear that Tβ([0; a1, a2, . . . ]β) = [0; a2, . . . ]β .

Remark 2.4. If β = (Xi)i∈Z, then the transformation Tβ describes the regular

continued fraction over the field of Laurent series and has been introduced by

Artin [1].

Definition 2.5. The expression pn

qn
= [a0; a1, . . . , an]β is called the (β, n)-th

convergent of f and the sequence (ai)i∈N ∈ H(β)N is called the sequence of β-

partial quotients of f .
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Lemma 2.6. For n ≥ 0 the pn and qn are expressed by the recurrence

p−2 = 0, p−1 = 1, pn = anpn−1 + β2
0pn−2, (2.5)

q−2 = β−2
0 , q−1 = 0, qn = anqn−1 + β2

0qn−2. (2.6)

Moreover, for n ≥ 1, we have

|qn| > |β0||qn−1| and thus |qn| = |a1 . . . an|. (2.7)

Proof. The Lemma follows along the same lines as for classical continued

fractions. We sketch the proof of the second assertion. Let n ≥ 1 and an ∈ H(β),

then, because q0 = 1 and |ai| > |β0| we get

q1 = a1q0 ⇒ |q1| > |β0|.
Now suppose that

|qn| > |β0| |qn−1|,
then

|an+1||qn| > |β0||qn| > |β0|2|qn−1|.
Since

qn+1 = an+1qn + β2
0qn−1,

it follows that

|qn+1| = |an+1qn| > |β0||qn|.
The fact that |qn| = |a1 . . . an| now follows from the recurrence relation for the

sequence (qn) since |anqn−1| > |β2
0qn−2|. ¤

Remark 2.7. We will often use (2.7) in the form

deg qn = deg a1 + · · ·+ deg an. (2.8)

The proofs of the following Theorems run along the same lines as for classical

continued fraction expansions. Thus, we will omit them.

Theorem 2.8. Let f ∈ D(0, |β0|) such that

f = [0; a1, . . . , an, an+1, . . . ]β ,

then ∣∣∣∣f − pn
qn

∣∣∣∣ =
|β0|2n+1

|qnqn+1| =
|β0|2n+1

|an+1| |qn|2 <
|β0|2n
|qn|2 . (2.9)

Theorem 2.9. Let (ai)i≥1 be a sequence with ai ∈ H(β) for each i ≥ 1.

Then pn

qn
= [0; a1, . . . , an]β converges to an element of Fq((X−1)) if n tends to

infinity.

Theorem 2.10. Every formal Laurent series can be uniquely expanded into

a β-continued fraction.
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3. Metric properties of the β-continued fractions

In this section, we give some metric and ergodic properties of the transforma-

tion Tβ . The metric properties of classical continued fractions of Laurent series

have been studied in [2], [4], [5], [6], [7], [8].

Let β = (βi)i∈Z be a base sequence.

Proposition 3.1. Let a1, . . . , an ∈ H(β), pn

qn
= [0; a1, . . . , an]β and

∆(a1, . . . , an) := {[0; a1, . . . , an + θ]β , θ ∈ D(0, |β0|)}.

Then

∆(a1, . . . , an) = D

(
pn
qn

,
|β0|2n+1

|qn|2
)

= D

(
pn
qn

,
|β0|2n+1

q|qn|2
)

and thus

|∆(a1, . . . , an)| = |β0|2n+1

q|qn|2 =
|β0|2n+1

q|a1|2 . . . |an|2 .

Proof. Observe that

[0; a1, . . . , an + θ]β =
(an + θ)pn−1 + β2

0pn−2

(an + θ)qn−1 + β2
0qn−2

.

Developing this in a power series with respect to θ and observing that

pnqn−1 − pn−1qn = (−1)n−1β2n−2
0

(which follows by induction on n) the result follows. ¤

Remark 3.2. The closed disk D(0, |β0|) is compact because it is isomorphic

to F∞q . A natural measure on F((X−1)) is the normalized Haar measure µ given

by

µ(D(a, q−n)) = q−(n+deg β0) =
q−n

|β0| .

Theorem 3.3. The transformation Tβ conserves the Haar measure µ.

To prove this theorem, we need the following Lemmas.

Lemma 3.4. Let k > deg β0 be an integer, then

∑

deg a=k
a∈H(β)

1

|a|2 =
q − 1

qk|β0| .
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Proof. Let s ∈ N, such that deg βs ≤ k < deg βs+1. Let a ∈ H(β) such

that deg a = k and a = d0β0 + d1β1 + · · ·+ dsβs. Then

∑

deg a=k
a∈H(β)

1

|a|2 =
∑

deg a=k
a∈H(β)

1

q2k
=

qδ0 . . . qδs−1(q − 1)qk−deg βs

q2k
=

q − 1

qk|β0| . ¤

Remark 3.5. Let β = (βi)i∈Z be a base sequence, then

∑

a∈H(β)

|a|−2 =
1

|β0|2 .

Lemma 3.6. We have the decomposition

T−1
β ∆(a1, . . . , an) =

⋃

b∈H(β)

∆(b, a1, . . . , an)

where the union on the right hand side is disjoint.

Proof. Let θ = [0; b1, . . . , bn, bn+1, . . . ] ∈ T−1
β ∆(a1, . . . , an), or equivalently

Tβθ = [0; a1, . . . , an, . . . ]. If Tβθ = [0; b2, . . . , bn+1, . . . ], then b2 = a1, . . . , bn+1 =

an. Therefore θ ∈ T−1
β ∆(a1, . . . , an) if and only if there exists b′ ∈ H(β) such

that θ ∈ ∆(b′, a1, . . . , an). Then from Theorem 2.10, we have

∆(b, a1, . . . , an) ∩∆(b′, a1, . . . , an) 6= ∅ ⇔ b′ = b.

Then the proof of the Lemma follows immediately. ¤

Now we proceed with the proof of Theorem 3.3.

Proof of Theorem 3.3. Let us prove that Tβ conserves the Haar mea-

sure µ over any disk of the form ∆(a1, . . . , an). We know from Proposition 3.1

that

µ(∆(a1, . . . , an)) =
|β0|2n

|a1 . . . an|2 .

Then from Remark 3.5 and Lemma 3.4 3.6 we derive

µ(T−1
β ∆(a1, . . . , an)) =

|β0|2n+2

|a1 . . . an|2
∑

b∈Hβ

1

|b|2 =
|β0|2n

|a1 . . . an|2 = µ(∆(a1, . . . , an)).

Thus Tβ conserves the Haar measure µ. ¤
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Lemma 3.7. For any given ∆(a1, . . . , an) and E ∈ D(0, |β0|), we have

µ((T−n
β E) ∩∆(a1, . . . , an)) = µ(E)µ(∆(a1, . . . , an)).

Proof. It suffices to prove the property for the disks ∆(b1, . . . , bm). Let

θ = [0; c1, . . . , cn, . . . ]β ∈ D(0, |β0|), then θ ∈ T−n
β ∆(b1, . . . , bm) if and only if





cn+1 = b1

cn+2 = b2

. . .

cn+m = bm

which implies that

T−n
β (∆(b1, . . . , bm)) =

⋃

(c1,...,cn)∈Hn
β

∆(c1, . . . , cn, b1, . . . , bm).

Therefore we get

T−n
β (∆(b1, . . . , bm)) ∩∆(a1, . . . , an) = ∆(a1, . . . , an, b1, . . . , bm).

Taking measures we arrive at

µ(T−n
β (∆(b1, . . . , bm)) ∩∆(a1, . . . , an)) = µ(∆(a1, . . . , an))µ(∆(b1, . . . , bm))

which proves the lemma. ¤
Theorem 3.8. The transformation Tβ is ergodic with respect to the mea-

sure µ.

Proof. Suppose that the transformation Tβ satisfies T−1
β (E) = E for some

set E ⊂ D(0, |β0|), then T−n
β (E) = E for any positive integer n. From Lemma 3.7

we get

µ(E ∩∆(a1, . . . , an)) = µ(E)µ(∆(a1, . . . , an))

for any given ∆(a1, . . . , an). Thus µ(E ∩ F ) = µ(E)µ(F ) holds for each F ⊂
D(0, |β0|). In particular, for F = D(0, |β0|) \E we get µ(E)µ(D(0, |β0|) \E) = 0.

Thus either µ(E) = 0 or µ(D(0, |β0|) \ E) = 0 and we are done. ¤

It follows from the ergodic theorem that if f is an integrable function on

D(0, |β0|), then

lim
N→∞

1

N

N∑
n=1

f(Tn−1
β ω) =

∫

D(0,|β0|)
f dµ a.e. (3.1)

In order to give some applications using the ergodic theorem, we need the following

Lemma.
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Proposition 3.9. For µ-almost all ω = [0, a1(ω), . . . ]β ∈ D(0, |β0|) we have

(i) limN→+∞ 1
N card{n ≤ N, deg an(ω) = k} = q−1

qk
.

(ii) For N → ∞ we have
∑N

n=1 deg an(ω) ∼ (q−1) deg β0+q
(q−1) N .

(iii) For n → ∞ we have logq
∣∣ω − pn

qn

∣∣ ∼ − 2qn
q−1 .

Proof. Let n ∈ N, ω be a formal power series over D(0, |β0|) such that

ω = [0; a1(ω), a2(ω), . . . , an(ω), . . . ]β .

Then

Tn−1
β (ω) = [0; an(ω), an+1(ω), . . . ]β .

(i) Let k > deg β0 and

f : D(0, |β0|) → {0, 1}

ω 7→
{
1 if deg

[
β2
0/ω

]
β
= k,

0 otherwise.

It follows that

f(Tn−1
β (ω)) =

{
1 if deg an(ω) = k,

0 otherwise.

From (4.1) , we get

lim
N→∞

1

N

N∑
n=1

deg an(ω)=k

1 =

∫

D(0,|β0|)
fdµ.

Now, partitioning D(0, |β0|) according to the value of a1 in the first convergent

ω = [0; a1, . . . ]β , we get

lim
N→∞

1

N
card{n ≤ N, deg an(ω) = k} =

∫

D(0,|β0|)
fdµ

=

∫

{ω∈D(0,|β0|):f(ω)=1}
dµ = µ([0, a1(ω), . . . ]β : deg a1(ω) = k)

= µ

( ⋃

deg a1(ω)=k

D

(
β2
0

a1
,
|β0|2
|a1|2

))

=
∑

deg a1(ω)=k

µ

(
D

(
β2
0

a1
,
|β0|2
|a1|2

))
=

∑

deg a1(ω)=k

|β0|
|a21|

.
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From Lemma 3.4, we get

lim
N→∞

1

N
card{n ≤ N, deg an(ω) = k} =

q − 1

qk
.

(ii) Let
f : D(0, |β0|) → N

ω 7→
{
deg

[
β2
0/ω

]
β

if ω 6= 0,

0 else.

Then we get
N∑

n=1

f(Tn−1
β (ω)) =

N∑
n=1

deg an(ω).

From (4.1), we have

lim
N→∞

1

N

N∑
n=1

deg an(ω) =

∫

D(0,|β0|)
deg

[
β2
0/ω

]
β
dµ.

Partitioning D(0, |β0|) according to the value of a in the first convergent ω =

[0; a, . . . ]β and observing that a =
[
β2
0/ω

]
β
yields

lim
N→∞

1

N

N∑
n=1

deg an(ω) =
∑

k>deg β0

∑

deg a=k

∫

D

(
β2
0
a ,

|β0|2
|a|2

) deg adµ,

=
∑

k>deg β0

∑

a∈H(β)
deg a=k

kµ

(
D

(
β2
0

a
,
|β0|2
|a|2

))

= |β0|
∑

k>deg β0

k
∑

a∈H(β)
deg a=k

1

|a|2

Applying Lemma 3.4 finally yields

lim
N→∞

1

N

N∑
n=1

deg an(ω) = (q − 1)
∑

k>deg β0

k

qk
=

(q − 1) deg β0 + q

(q − 1)
.

(iii) The result follows immediately from (2.8), (2.9) and (ii). ¤
Corollary 3.10. Let qn(ω) denote the denominator of the (n, β)-convergent

pn(ω)
qn(ω) of ω ∈ D(0, |β0|). Then

lim
n→∞

1

n
deg qn(ω) =

(q − 1) deg β0 + q

(q − 1)
a.e.

Proof. The proof of the Corollary follows immediately from (2.8). ¤
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4. Hausdorff dimensions of bounded type sets

for β-continued fractions

In this section, we consider the Hausdorff dimensions of sets of Laurent series

related to β-continued fraction expansions. If U is a countable collection of discs

J1, J2, · · · ⊂ D(0, |β0|), we define

Λs(U) =

∞∑

i=1

|Ji|s

for any real s ≥ 0. If S is any set of formal power series, we define

Ls,δ(S) = inf Λs(U)

where the infimum is taken over all collections U of open discs Ji which satisfy

|Ji| < δ and whose union contains S. We call such a set U an (open) cover of S.

Finally we define

Ls(S) = lim
δ→0

Ls,δ(S).

The Hausdorff dimension dim(S) is the supremum of those s such that Ls(S) =

+∞ or the infimum of those s such that Ls(S) = 0.

Lemma 4.1 ([3, Mass distribution principle 4.2]). Let E ⊂ D(0, |β0|) and τ

is a measure with τ(E) > 0. If there exist constants c > 0 and δ > 0 such that

τ(D) ≤ c|D|s

for all discs D with diameter |D| ≤ δ. Then

dimE ≥ s.

Remark 4.2. Since the valuation | · | is non archimedean, it follows that if

two discs ∆(a1, . . . , an) and ∆(b1, . . . , bn) intersect, then one contains the other.

Let now S = {a1, . . . , am} be a non-empty finite set of elements of H(β) and

ES = {ω ∈ D(0, |β0|) : ai(ω) ∈ S for i ≥ 1}.

In the following, we adopt the same method as in [12] to give the Hausdorff

dimension of ES .
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Theorem 4.3. Let t be the unique real number determined by

m∑

k=1

∣∣∣∣
β0

ak

∣∣∣∣
2t

= 1,

then

dimES = t.

Proof. Referring to the definition of ES , we get

ES =

∞⋂
n=1

⋃

(b1,...,bn)∈Sn

∆(b1, . . . , bn)

where ∆(b1, . . . , bn) is defined in Proposition 3.1. Then

∑

(b1,...,bn)∈Sn

|∆(b1, . . . , bn)|t =
∑

(b1,...,bn)∈Sn

|β0|(2n+1)t

qt|b1 . . . bn|2t

=
|β0|t
qt

(∑

b1∈S

|β0|2t
|b1|2t

)
. . .

(∑

bn∈S

|β0|2t
|bn|2t

)
=

|β0|t
qt

,

so

Ht(ES) ≤ (|β0|/q)t.
Combining this with the definition of H, we get

dimES ≤ t.

In order to establish the lower bound, we shall apply Lemma 4.1. Define a pro-

bability measure τ on ES by

τ(∆(b1, . . . , bn)) =

n∏

k=1

∣∣∣∣
β0

bk

∣∣∣∣
2t

.

It is easily proved that τ is well defined since

∑

(b1,...,bn)∈Sn

τ(∆(b1, . . . , bn)) = 1,

and ∑

bn+1∈S

τ(∆(b1, . . . , bn+1)) = τ(∆(b1, . . . , bn)).
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Next we estimate τ(D(ω, q−k)), where ω ∈ D(0, |β0|) and
k > max

1≤i≤n
{deg ai} − 3 deg β0 + 1.

Consider now each infinite sequence (b1, b2, . . . ) ∈ S∞ such that

|∆(b1, . . . , bn)| ≤ q−k and |∆(b1, . . . , bn−1)| > q−k.

Let A denote the finite set of all finite sequences admitting these properties and

consider the two following sets defined by

B = {∆(b1, . . . , bn−1) : (b1, . . . , bn) ∈ A},
C = {∆(b1, . . . , bn−1) ∈ B : ∆(b1, . . . , bn−1) ∩D(ω, q−k) 6= ∅}.

We select all discs in C which are maximal, and denote by C̃ the set of all maximal

∆(b1, . . . , bn−1) ∈ C. We claim that

card(C̃) ≤ 1.

In fact, let us suppose that there exist two discs

∆(b1, . . . , bn−1) ∈ C̃ and ∆(b′1, . . . , b
′
n−1) ∈ C̃.

Since the two discs fulfil

|∆(b1, . . . , bn−1)| > q−k and |∆(b′1, . . . , b
′
n−1)| > q−k,

we get, by Remark 4.2,

D(ω, q−k) ⊂ ∆(b1, . . . , bn−1) and D(ω, q−k) ⊂ ∆(b′1, . . . , b
′
n−1),

thus either

∆(b1, . . . , bn−1) ⊂ ∆(b′1, . . . , b
′
n−1) or ∆(b′1, . . . , b

′
n−1) ⊂ ∆(b1, . . . , bn−1)

which contradicts the maximality of elements of C̃. If card(C̃) = 0, then

D(ω, q−k) ∩ ES = ∅, and τ(D(ω, q−k)) = 0. (4.1)

If card(C̃) = 1, let C̃ = {∆(b1, . . . , bn−1)}. Choose bn ∈ S such that

∆(b1, . . . , bn−1, bn) ∈ A. Then

τ(D(ω, q−k)) ≤ τ(∆(b1, . . . , bn−1)) =

n−1∏

k=1

∣∣∣∣
β0

bk

∣∣∣∣
2t

=

∣∣∣∣
bn
β0

∣∣∣∣
2t n∏

k=1

∣∣∣∣
β0

bk

∣∣∣∣
2t

= q(2 deg bn−2 deg β0)t|∆(b1, . . . , bn−1, bn)|t

≤ q(2max(deg a1,...,deg an)−2 deg β0)t|D(ω, q−k)|t.
Finally, from (4.1) and Lemma 4.1, we get dim(ES) ≥ t, which completes the

proof of the Theorem. ¤
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5. On sets of series having a given rate of convergence

Following [11], it is natural to consider the following sets

A(α) =
{
ω ∈ D(0, |β0|) : lim

n→+∞
1

n

n∑

k=1

deg ak(ω) = α
}
,

where α ≥ deg β0 + 1.

Theorem 5.1. For any α ≥ deg β0 + 1, we have

dimA(α) =
log

( (α−deg β0)q
α−deg β0−1

)

2 log q
+

log((α− deg β0 − 1)(q − 1))

2(α− deg β0) log q

where 0 · log 0 := 0.

In order to get the lower bound of Hausdorff dimension, we need the following

result. If λ is a finite measure on D(0, |β0|), the lower pointwise dimension of λ

at ω ∈ D(0, |β0|) is given by

dim locλ(ω) = lim inf
r→0

log λ(D(ω, r))

log r
.

Lemma 5.2. Let E be a non-empty Borel set. Then

dim(E) = sup
{
s : there exists a measure λ with 0 < λ(E) < ∞
and dim locλ(ω) ≥ s for λ− almost all ω ∈ E

}
.

Proof of Theorem 5.1. We distinguish two cases.
Case 1. α > 1 + deg β0. For any t < − log q and for any sequence {b1, . . . , bn} ⊂

H(β) such that deg bj > deg β0 (1 ≤ j ≤ n), we define a probability measure λt on

D(0, |β0|) by letting

λt(∆(b1, . . . , bn)) = exp(t

n∑
j=1

deg bj − nP (t)),

where

P (t) = log(q(q − 1))− log(e−t − q) + t deg β0.

It can be easily seen that this measure is well defined since
∑

(b1,...,bn)

λt(∆(b1, . . . , bn)) = 1,

and ∑

bn+1

λt(∆(b1, . . . , bn+1)) = λt(∆(b1, . . . , bn)).

These equalities are assured by the following result
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Lemma 5.3. ∑

b∈H(β)

et deg b =
q(q − 1)

e−t − q
et deg β0 = eP (t)

Proof. Let δi = deg βi+1 − deg βi. As usual, we divide the proof into two parts.

Part 1. If deg β1 = deg β0 + 1, then H0(β) = ∅ and we get

∑

b∈H(β)

et deg b =

∞∑
n=1

∑

b∈Hn(β)

et deg b =

∞∑
n=1

δn∑

k=0

(qδ0 . . . qδn−1(q − 1)qk)et(k+deg βn)

= (q − 1)

∞∑
n=1

qdeg βn−deg β0et deg βn

δn∑

k=0

etkqk

= (q− 1)

∞∑
n=1

qdeg βn−deg β0et deg βn
1− (qet)δn+1

1− qet
=

q(q− 1)

e−t− q
et deg β0 = eP (t).

Part 2. If deg β1 > deg β0 + 1, then

∑

b∈H(β)

et deg b =

∞∑
n=1

∑

b∈Hn(β)

et deg b +
∑

b∈H′
0(β)

et deg b

=
q − 1

|β0|(1− qet)
|β1|et deg β1 + (q − 1)

deg β1−deg β0−1∑

k=1

(qet)k = eP (t)

Indeed, the latter equality is implied from

m∑

k=n

qk =
qm+1 − qn

q − 1
. (5.1)

¤

Notice that the condition t < − log q is required.

Remark 5.4. The sequence {an(ω)}n≥1 is a sequence of independent and identi-

cally distributed random variables with respect to the probability measure λt.

Lemma 5.5.

I =

∫

D(0,|β0|)
deg a1(ω)dλt(ω) = P ′(t) =

1

1− etq
+ deg β0. (5.2)

Proof. We know that D(0, |β0|) =
⋃

B∈Hβ
[0, B, . . . ], then we get

I =
∑

B∈Hβ

∫

[0,B,... ]

deg a1(ω)dλt =
∑

B∈Hβ

degB

∫

[0,B,... ]

dλt
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=
∑

s≥0

∑

B∈Hs(β)

degB λt(ω ∈ [0, B, . . . ]; a1(ω) = B)

=
∑

s≥0

∑

B∈Hs(β)

degB exp(t degB − P (t)).

Now we divide the proof into two parts.

Part 1. If deg β1 > deg β0 + 1, then

I =
∑

s≥1

∑

B∈Hs(β)

degBet degB−P (t) +
∑

B∈H′
0(β)

degBet degB−P (t)

=
∑

s≥1

deg βs+1−1∑

B∈Hs(β)
degB=deg βs

degBet degB−P (t) +
∑

B∈H′
0(β)

degBet degB−P (t)

=
∑

s≥1

deg βs+1−1∑

deg βs=k

∑

B∈Hs(β)
degB=k

ketk−P (t) +

δ0−1∑

k=1

(deg β0 + k)(q − 1)qk

e−t(deg β0+k)+P (t)

=
q − 1

|β0|eP (t)

∑

s≥1

deg βs+1−1∑

deg βs=k

k(qet)k +
(q − 1)et deg β0

eP (t)

δ0−1∑

k=1

(deg β0 + k)(qet)k

=
1 + deg β0(1− qet)

1− qet
= P ′(t).

The latter equalities are implied by (5.1) and the fact that

m∑

k=n

kqk =
qn

(q − 1)2
(mqm−n+2 + (1− n)q + n− (m+ 1)qm−n+1).

Part 2. If deg β1 = deg β0 + 1, then H0(β) = ∅ and the proof follows immediately from

Part 1. ¤

For any ε > 0 and ω ∈ A(α), there exists an integer N(ω) such that ∀n ≥ N(ω),

n(α− ε) ≤
n∑

j=1

deg aj(ω) ≤ n(α+ ε).
It follows that

A(α) ⊂
∞⋃

N=1

∞⋂
n=N

{ω ∈ D(0, |β0|) : n(α− ε) ≤
n∑

j=1

deg aj(ω) ≤ n(α+ ε)}.

Let J (n, α, ε) be the family of all ∆(b1, . . . , bn) such that

deg bj ≥ 1 + deg β0 and n(α− ε) ≤
n∑

j=1

deg bj(ω) ≤ n(α+ ε)

For N ≥ 1, we select all discs in
⋃∞

n=N J (n, α, ε) which are maximal. We denote by
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M(n,α, ε) the set of all maximal discs in
⋃∞

n=N J (n,α, ε). It is clear that
⋃∞

n=N J (n,α, ε)

is a cover of A(α), it follows that M(n, α, ε) is a cover of A(α). For any t < − log q, let

d(t) =
P (t)− (α+ ε)

2(α− deg β0 − ε) log q

For any ∆(b1, . . . , bn) ∈ M(n, α, ε), we have

λt(∆(b1, . . . , bn)) = et
∑n

j=1 deg bj−nP (t) ≥ etn(α+ε)−nP (t) ≥ q−2d(t)
∑n

j=1 deg bj |β0|2nd(t)

It follows that

∑

∆(b1,...,bn)∈M(n,α,ε)

|∆(b1, . . . , bn)|d(t) =
∑

∆(b1,...,bn)∈M(n,α,ε)

|β0|2nd(t)

qd(t)|b1 . . . bn|2d(t)

≤ q−d(t)
∑

∆(b1,...,bn)∈M(n,α,ε)

q−2d(t)
∑n

i=1 deg bi |β0|2nd(t)

≤ q−d(t)
∑

∆(b1,...,bn)∈M(n,α,ε)

λt(∆(b1, . . . , bn)) ≤ q−d(t).

Combine this with the definition of the Hausdorff dimension and the fact that ε is

arbitrary small, we get

dimA(α) ≤ P (t)− αt

2(α− deg β0) log q
,

Notice that the derivative P ′ : (−∞,− log q) → (1 + deg β0,+∞) is one to one and

increasing. Let β ∈ (−∞,− log q) be the unique solution of α = P ′(β). Then

β = log(
α− deg β0 − 1

(α− deg β0)q
).

It follows that

dimA(α) ≤ P (β)− αβ

2(α− deg β0) log q
.

To prove the inverse inequality, we use the fact that {an(ω)}n≥1 is a sequence of inde-

pendent and identically distributed random variables with respect to λβ . By the law of

large numbers and (5.2), we have:

(i) λβ(A(α)) = 1.

(ii) n−1 log λβ(∆(b1(ω), . . . , bn(ω))) → βα− P (β) λβ-a.e;

(iii) n−1 log λβ |(b1(ω), . . . , bn(ω)|) → (−α+ 2deg β0) log q λβ-a.e.

Notice that for any m ≥ 1, and any ω ∈ D(0, |β0|) having an infinite continued fraction

expansion, there exists an integer n(ω) such that

2

n(ω)∑
j=1

deg bj(ω) + 1 ≤ m < 2

n(ω)+1∑
j=1

deg bj(ω) + 1.



Beta-continued fractions over Laurent series 461

So

∆(b1(ω), . . . , bn+1(ω)) ⊂ D(ω, q−m) ⊂ ∆(b1(ω), . . . , bn(ω)).

Combine this with (ii) and (iii), we get

lim
m→∞

log λβ(D(ω, q−m))

log |D(ω, q−m)| =
P (β)− βα

2(α− deg β0) log q
, λβ-a.e.

From lemma 5.2 and (i), we get

dimA(α) ≥ P (β)− βα

2(α− deg β0) log q
.

Case 2. α = 1 + deg β0. In this case we will prove that

dimA(1 + deg β0) =
log(q(q − 1))

2 log q
= lim

α→1+deg β0

dimA(α).

Using the same argument as in case 1, we show that for any ε > 0,

dimA(1 + deg β0) ≤ P (t)− t(1 + deg β0 + ε)

2(1 + deg β0 − ε) log q
, ∀t < − log q.

And we get the upper bound by letting ε → 0 and t → −∞.

Now to get the inverse inequality, let H1+deg β0
β = {bj ∈ Hβ , such that deg bj =

1+deg β0,∀1 ≤ j ≤ n}. We know that ∆(b1, . . . , bn) is a disc with diameter q−2n−1. In

fact,

|∆(b1, . . . , bn)| = |β0|2n
q|b1 . . . bn|2 = |β0|2nq−2

∑n
1 deg bj−1

= |β0|2nq−2(n+n deg β0)−1 = q−2n−1.

Let now (b1, . . . , bn) 6= (b′1, . . . , b
′
n) then

∆(b1, . . . , bn) ∩∆(b′1, . . . , b
′
n) = ∅

Let

En =
⋃

bj∈H1+deg β0
β

∆(b1, . . . , bn),

then

En = {ω ∈ D(0, |β0|) : deg a1(ω) = . . . deg an(ω) = 1 + deg β0},
and En consists of qn(q − 1)n disjoint discs of diameter q−2n−1. Set

E =

∞⋂
n=1

En.
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It is clear that

E = {ω ∈ D(0, |β0|) : deg ak(ω) = 1 + deg β0, for any k ≥ 1}

It follows that E ⊂ A(1 + deg β0). Now, in order to give a lower bound of Hausdorff

dimension of E, define a masse distribution µ supported on E, by

µ(∆(b1, . . . , bn)) = (q − 1)−nq−n,

for all n ≥ 1 and bk ∈ H1+deg β0
β , 1 ≤ k ≤ n. For any ω ∈ D(0, |β0|) and m ≥ 3, choose

n ≥ 2 such that

2n− 1 ≤ m ≤ 2n+ 1,

so D(ω, q−m) intersect at most (n− 1) discs in En−1. Therefore

µ(D(ω, q−m)) ≤ (q − 1)−n+1q−n+1 ≤ ((q − 1)q)
−m+3

2 ≤ ((q − 1)q)
3
2 (q−m)

log(q(q−1))
2 log q .

From Lemma 5.2, we get

dimE ≥ log(q(q − 1))

2 log q
,

which achieve the proof. ¤
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JÖRG M. THUSWALDNER
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