Title: On the exponential diophantine equation $\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2}$

Author(s): Li Lan and László Szalay

Let a and b be fixed positive integers such that $a \neq b$ and $\min (a, b)>1$. In this paper, we combine some divisibility properties of the solutions of Pell equations with elementary arguments to prove that if $a \equiv 2(\bmod 6)$ and $b \equiv 0(\bmod 3)$, then the title equation $\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2}$ has no positive integer solution (n, x). Moreover, we show that in case of $a \equiv 2(\bmod 20)$ and $b \equiv 5(\bmod 20)$, where $b-1$ is a full square, the only possible solution belongs to $n=1$.

Address:

Li Lan
Department of Mathematics
Xi'an University of Arts \& Science
Xi'an 710065
P.R. China

Address:

László Szalay
Institute of Mathematics and Statistics
University of West Hungary
Sopron
Hungary

