A monotonicity property of M-matrices

By AURÉL GALÁNTAI (Miskolc)

Abstract

In this paper we show that if $A \leq B, A$ and B are M-matrices, A is nonsingular or irreducible singular and B is nonsingular, then $L_{A} \leq L_{B}, D_{A} \leq D_{B}$ and $U_{A} \leq U_{B}$ also hold, where $X=L_{X} D_{X} U_{X}$ denotes the $L D U$-factorization of the matrix X.

1. Introduction

For two matrices A and $B\left(A, B \in \mathbb{R}^{m \times m}\right)$ the inequality $A \leq B$ holds if $a_{i j} \leq b_{i j}(i, j=1, \ldots, m)$. A matrix $A\left(A \in \mathbb{R}^{m \times m}\right)$ is said to be an M-matrix if $A=s I-B$, where $s>0, B \geq 0, I$ is the $m \times m$ unit matrix and $s \geq \varrho(B)$, where $\varrho(B)$ denotes the spectral radius of B. We shall prove the following monotonicity theorem on the $L D U$-factorization of two M-matrices A and B satisfying $A \leq \mathrm{B}$.

Theorem 1. Let A and B be two M-matrices such that $A \leq B$ and assume that A is nonsingular or irreducible singular and B is nonsingular. Let $A=L_{A} V_{A}$ and $B=L_{B} V_{B}$ be the $L U$-factorizations of A and B such that both L_{A} and L_{B} are unit lower triangular. Then

$$
L_{A} \leq L_{B}, \quad V_{A} \leq V_{B}
$$

In addition, if $V_{A}=D_{A} U_{A}$ and $V_{B}=D_{B} U_{B}$, where U_{A} and U_{B} are unit upper triangular and D_{A} and D_{B} are diagonal matrices, then

$$
D_{A} \leq D_{B}, \quad U_{A} \leq U_{B}
$$

The result is related to the fact $([1],[2],[5])$ that a nonsingular matrix A is an M-matrix if and only if there exist lower and upper triangular M-matrices R and S, respectively, such that $A=R S$.

Theorem 1 is not true for general matrices. Using the results of Jain and Snyder [3] we define A and B as follows:

$$
A=\left[\begin{array}{cccc}
1 & -4 & 9 & -12 \\
-4 & 17 & -40 & 57 \\
9 & -40 & 98 & -148 \\
-12 & 57 & -148 & 242
\end{array}\right] \quad B=\left[\begin{array}{cccc}
2 & -4 & 9 & -12 \\
-4 & 17 & -40 & 57 \\
9 & -40 & 98 & -148 \\
-12 & 57 & -148 & 242
\end{array}\right]
$$

These matrices are monotone, $A \leq B$ and

$$
L_{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 \\
9 & -4 & 1 & 0 \\
-12 & 9 & -4 & 1
\end{array}\right] \quad L_{B}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
\frac{9}{2} & -\frac{22}{9} & 1 & 0 \\
-6 & \frac{11}{3} & -\frac{240}{67} & 1
\end{array}\right]
$$

L_{A} and L_{B} are not comparable implying that Theorem 1 does not hold for monotone matrices. The reverse of Theorem 1 also fails to be true. Let

$$
L_{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 \\
-9 & -4 & 1 & 0 \\
-12 & -9 & -4 & 1
\end{array}\right] \quad L_{B}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-4 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 0 & -4 & 1
\end{array}\right] .
$$

The matrices L_{A} and L_{B} are M-matrices and $L_{A} \leq L_{B}$. The product matrix $L_{A} L_{A}^{T}$ is not an M-matrix. Furthermore $L_{A} L_{A}^{\bar{T}}$ and $L_{B} L_{B}^{T}$ are not comparable. We notice however that if L and R are lower triangular M matrices such that $L L^{T} \leq R R^{T}$ holds then $L \leq R$ also holds. This result is due to Schmidt and Patzke [4].

2. Proof of theorem 1

We prove the result by induction. Assume that the $k \times k$ matrices A and B are nonsingular and such that $L_{A} \leq L_{B}$ and $V_{A} \leq V_{B}$ hold. Let

$$
A^{\prime}=\left[\begin{array}{cc}
A & c \\
r^{T} & a
\end{array}\right] \quad B^{\prime}=\left[\begin{array}{cc}
B & p \\
q^{T} & b
\end{array}\right] \quad\left(c, r, p, q \in R^{k}\right)
$$

Assume that A^{\prime} and B^{\prime} are also nonsingular M-matrices. They have the $L U$-factorizations

$$
\begin{aligned}
A^{\prime} & =\left[\begin{array}{cc}
L_{A} & 0 \\
r^{T} V_{A}^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
V_{A} & L_{A}^{-1} c \\
0 & a-r^{T} A^{-1} c
\end{array}\right] \\
B^{\prime} & =\left[\begin{array}{cc}
L_{B} & 0 \\
q^{T} V_{B}^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
V_{B} & L_{B}^{-1} p \\
0 & b-q^{T} B^{-1} p
\end{array}\right]
\end{aligned}
$$

By assumption $L_{A} \leq L_{B}, V_{A} \leq V_{B}, c \leq p \leq 0, r \leq q \leq 0$ and $0<a \leq b$. The relation $L_{A}^{-1} \geq L_{B}^{-1} \geq 0$ implies $L_{A}^{-1} c \leq L_{B}^{-1} p \leq 0$. The inequality
$V_{A}^{-1} \geq V_{B}^{-1} \geq 0$ implies $r^{T} V_{A}^{-1} \leq q^{T} V_{B}^{-1} \leq 0$. Notice that $a-r^{T} A^{-1} c=$ $\operatorname{det}\left(A^{\prime}\right) / \operatorname{det}(A)>0$ and $b-q^{T} B^{-1} p=\operatorname{det}\left(B^{\prime}\right) / \operatorname{det}(B)>0$. Finally $a-r^{T} A^{-1} c \leq b-q^{T} B^{-1} p$ follows from $A^{-1} \geq B^{-1} \geq 0$. Thus we have proved the first part of the theorem for the nonsingular case. If A^{\prime} is an irreducible singular matrix of order m, then by Theorem 4.16 of Berman and Plemmons [1, p. 156] A^{\prime} has rank $m-1$, each principal submatrix of A^{\prime} other than A^{\prime} itself is a nonsingular M-matrix, $a=r^{T} A^{-1} c$ and A^{\prime} has the $L U$-factorization

$$
A^{\prime}=\left[\begin{array}{cc}
L_{A} & 0 \\
r^{T} V_{A}^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
V_{A} & L_{A}^{-1} c \\
0 & 0
\end{array}\right]
$$

with singular upper triangular matrix $V_{A^{\prime}}$. As $0 \leq b-q^{T} B^{-1} p$ the theorem also holds in this case. Let $V_{A}=D_{A} U_{A}$ and $V_{B}=D_{B} U_{B}$. As A^{T} and B^{T} are also M-matrices which satisfy $A^{T} \leq B^{T}$ we have the $L U$ factorizations $A^{T}=U_{A}^{T}\left(D_{A} L_{A}^{T}\right)$ and $B^{T}=U_{B}^{T}\left(D_{B} L_{B}^{T}\right)$ with $U_{A}^{T} \leq U_{B}^{T}$ and $D_{A} L_{A}^{T} \leq D_{B} L_{B}^{T}$. This implies $U_{A} \leq U_{B}$ and $0 \leq D_{A} \leq D_{B}$. The same reasoning applies to A^{\prime} and B^{\prime} if they are nonsingular. If A^{\prime} is irreducible singular, then

$$
\begin{gathered}
D_{A^{\prime}} U_{A^{\prime}}=\left[\begin{array}{cc}
D_{A} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
U_{A} & D_{A}^{-1} L_{A}^{-1} c \\
0 & 0
\end{array}\right] \\
D_{B^{\prime}} U_{B^{\prime}}=\left[\begin{array}{cc}
D_{B} & 0 \\
0 b-q^{T} B^{-1} p &
\end{array}\right]\left[\begin{array}{cc}
U_{B} & D_{B}^{-1} L_{B}^{-1} p \\
0 & 1
\end{array}\right],
\end{gathered}
$$

from which $0 \leq D_{A^{\prime}} \leq D_{B^{\prime}}$ immediately follows. As $D_{A}{ }^{-1} L_{A}^{-1} c \leq$ $D_{B}{ }^{-1} L_{B}^{-1} p \leq 0$ the rest of the theorem also follows.

Remark. From Theorem 4.16 of Berman and Plemmons [1, p. 156] it also follows that Theorem 1 does not hold if B is irreducible singular and $A \neq B$.

References

[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[2] M. Fiedler and V. Pták, On Matrices with Nonpositive Off-Diagonal Elements and Positive Principal Minors, Czech. Math. J. 12 (1962), 619-633.
[3] S. K. Jain and L. E. Snyder, New Classes of Monotone Matrices (F. Uhlig and R. Grone, eds.), in Current Trends in Matrix Theory, North-Holland, New York, 1987, pp. 155-166.
[4] J. W. Schmidt and U. Patzke, Iterative Nachverbesserung mit Fehlereingrenzung der Cholesky-Faktoren von Stieltjes-Matrizen, Journ. für die reine und angewandte Mathematik 327 (1981), 81-92.
[5] J. Schröder, Operator Inequalities, Academic Press, New York, 1980.

AURÉL GALÁNTAI
INSTITUTE OF MATHEMATICS
UNIVERSITY OF MISKOLC
3515 MISKOLC-EGYETEMVÁROS, HUNGARY
(Received September 16, 1992; revised November 17, 1993)

