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On the maximum principle for discrete inclusions
with constraints

By AURELIAN CERNEA (Bucharest)

Abstract. We consider an optimization problem given by a discrete inclusion,

whose trajectories are constrained to closed sets. Necessary optimality conditions in

the form of the maximum principle and in terms of local generalized derived cones of

constraints are obtained.

1. Introduction

Consider the following problem

minimize g(xN ) (1.1)

over the solutions of the discrete inclusion

xi ∈ Fi(xi−1), i = 1, 2, . . . , N, dx0 ∈ K0 (1.2)

with state constraints of the form

xi ∈ Ki, i = 1, . . . , N, (1.3)

where Fi : Rn → P(Rn) are set-valued maps, i = 1, 2, . . . , N , Ki ⊂ Rn, i =

1, 2, . . . , N are closed sets and g : Rn → R is a given function.

Optimization problems given by discrete inclusions have been studied by

many authors ([4], [15], [22], [24], [26], [28] etc.). In the framework of multivalued
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problems necessary optimality conditions for problems described by discrete inc-

lusions are obtained in [6]–[9] and in [27]. All these approaches are presented in

the absence of state constraints (i.e., Ki = Rn, i = 1, . . . , N). In [11] it is cons-

idered the more general problem (1.1)-(1.3) and necessary optimality conditions

are obtained in terms of local tents of constraints.

In [18], [19] Mirică introduced the concept of generalized derived cone and

it is proved that it is more general than the regular tangent cone introduced

by Polovinkin and Smirnov ([23]) while the local generalized derived cone

coincides with a local variant of regular tangent cone and contains as a particular

case Boltyanskii’s local tent ([5], [25]).

In general, the efficiency of a given type of local approximation in the theory

of necessary optimality conditions seems to rely on certain “intersection proper-

ties” from which the best known is that introduced by Dubovitskii and Milly-

utin ([10]) and developed by Girsanov ([12]) and Boltyanskii ([4], [5]). In

[19] it is proved that the local generalized derived cones satisfy another type of

intersection property called “the quasitangent intersection property” and which

allows to obtain more powerful generalized multiplier rules for general Mathema-

tical Programming problems.

The aim of the present paper is to obtain necessary optimality conditions

in the form of the Maximum Principle for problem (1.1)–(1.3) in terms of local

generalized derived cones of constraints and in terms of convex linearizations of

the discrete inclusions.

On one hand, our result provides a significant example for which the method

developed in [19] can be applied and on the other hand, since Boltyanskii’s local

tent is a particular case of local generalized derived cone, our result extends the

necessary optimality conditions obtained in [11].

The paper is organized as follows: in Section 2 we recall some notations and

some preliminary results to be used in the sequel and in Section 3 we present the

main result of this paper.

2. Preliminaries

Denote by P(Rn) the family of all subsets of Rn and by B ⊂ Rn the closed

unit ball in Rn. If A ⊂ Rn we denote by cl(A) the closure of A and by co(A) the

closed convex hull of A. In what follows, when the product Z = Z1 × · · · ×ZN of

metric spaces (Zi, dZi), i = 1, N , is considered, it is assumed that Z is equipped

with the distance dZ((z1, . . . , zN ), (z′1, . . . , z
′
N )) =

∑N
i=1 dZi(zi, z

′
i).
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For a set that is, in general, neither a differentiable manifold, nor a convex

set, its infinitesimal properties may be characterized only by tangent cones in a

generalized sense, extending the classical concepts of tangent cones in Differential

Geometry and Convex Analysis, respectively.

We recall first the definitions of the main types of intrinsic tangent cones

to an arbitrary subset X ⊆ Rn at a point x ∈ X, that have been most often

used in the study of optimization, optimal control and many other problems

involving nonsmooth sets and mappings (see, e.g. [1]). The contingent cone, the

quasitangent (intermediate tangent) cone and Clarke’s tangent cone are defined,

respectively, by

KxX =

{
v ∈ Rn; ∃ sm → 0+, xm ∈ X :

xm − x

sm
→ v

}

QxX =

{
v ∈ Rn; ∀ sm → 0+, ∃xm ∈ X :

xm − x

sm
→ v

}

CxX =

{
v ∈ Rn; ∀ (xm, sm) → (x, 0+), xm ∈ X, ∃ ym ∈ X :

ym − xm

sm
→ v

}

All the above sets are cones. KxX, QxX, CxX are closed and CxX is convex.

These cones are related as follows CxX ⊂ QxX ⊂ KxX. The rather large gap

between Clarke’s tangent cone and the quasitangent one may be diminished by se-

veral other types of tangent cones, from which we mention only the “asymptotic”

variant of the quasitangent cone defined as follows AQxX = {v ∈ Rn; v+QxX ⊂
QxX}. AQxX is a convex cone and AQxX ⊂ QxX.

The efforts of some researchers to clarify and extend Pontryagin’s Maxi-

mum Principle in optimal control theory resulted in the introduction of several

“local convex approximations” that may not have the intrinsic character of the

cones above but still served their purposes in the theory of necessary optimality

conditions. We mention the derived cone by Hestenes ([13]), the first order

convex approximation by Neustadt ([21]), the cone of tangent vectors by Lee

and Markus ([16]) and the (local) tent by Boltyanskii ([4], [5]). Further on,

Polovinkin and Smirnov ([23]) extended Boltyanskii’s concept of tent to regu-

lar tangent cone. In the same way in which Boltyanskii relaxed the concept of

tents to those of local tents, Bianchini ([3]) introduced the slightly more general

concept of locally regular tangent cone.

In [18], [19]Mirică introduced the following concept which is a generalization

of Hestenes’ derived cone in [13].

Definition 2.1. A subset D ⊂ Rn is said to be a generalized derived set to

X ⊂ Rn at x ∈ X if for any ε > 0 and for any finite subset {v1, . . . , vm} ⊂ D,
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there exist rε > 0 and the continuous mappings ρ(ε, r, .) : [0, 1]m → Rn, r ∈ [0, rε)

such that

a(ε, r, s) := x+ r

[ m∑

i=1

sivi + ρ(ε, r, s)

]
∈ X,

‖ρ(ε, r, s)‖ ≤ ε, ∀ε > 0, r ∈ [0, rε), s ∈ [0, 1]m

and is said to be generalized derived cone if, in addition, it is convex cone; a convex

cone C ⊆ Rn is said to be local generalized derived cone if for any v ∈ ri(C) there

exist a generalized derived cone K ⊆ C such that

v ∈ ri(K), span(C) = span(K) =

{ k∑

i=1

sivi, si ∈ R, vi ∈ K

}
,

where ri(C) denotes the relative interior and span(C) denotes the vector space

generated by the vectors in C.

For the properties of generalized derived cones we refer to [19]. We recall that

if D is a generalized derived set then the convex cone generated by D, defined by

cco(D) =

{ k∑

i=1

λjvj ; λj ≥ 0, k ∈ N, vj ∈ D, j = 1, . . . , k

}

is a generalized derived cone.

As it is proved in [19], the regular tangent cones are particular cases of

generalized derived cones but the local regular tangent cones coincide with the

local generalized derived cones. At the same time Boltyanskii’s local tent is a

particular case of local generalized derived cone.

We recall that two cones C1, C2 ⊂ Rn are said to be separable if there exists

q ∈ Rn\{0} such that:

〈q, v〉 ≤ 0 ≤ 〈q, w〉 ∀v ∈ C1, w ∈ C2.

We denote by C+ the positive dual cone of C ⊂ Rn

C+ = {q ∈ Rn; 〈q, v〉 ≥ 0, ∀ v ∈ C}

The negative dual cone of C ⊂ Rn is C− = −C+.

The following “quasitangent intersection property” of local generalized deri-

ved cones, obtained in [19], is a key tool in the proof of our necessary optimality

conditions.
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Lemma 2.1 ([19]). Let X1, X2 ⊂ Rn be given sets, x ∈ X1 ∩ X2, and let

C1, C2 be local generalized derived cones to X1, resp. to X2 at x. If C1 and C2

are not separable, then

Cl(C1 ∩ C2) = (Cl(C1)) ∩ (Cl(C2)) ⊂ Qx(X1 ∩X2).

We recall also the following easy corollary of the theorem on separation of

two convex sets.

Lemma 2.2 ([17]). Let C ⊂ Rn be a convex cone, and let h(.) : Rn → R
be sublinear (i.e., positively homogeneous and subadditive). If h(.) satisfies the

condition h(v) ≥ 0 ∀ v ∈ C, then there exists q ∈ C+ such that 〈q, v〉 ≤ h(v)

∀ v ∈ Rn.

For a mapping g(.) : X ⊂ Rn → R which is not differentiable, the classical

(Fréchet) derivative is replaced by some generalized directional derivatives. We

recall only the upper right-contingent derivative, defined by

DKg(x; v) = lim sup
(θ,w)→(0+,v)

g(x+ θw)− g(x)

θ
, v ∈ KxX

and in the case when g(.) is locally-Lipschitz at x ∈ int(X) by Clarke’s generalized

directional derivative, defined by:

DCg(x; v) = lim sup
(y,θ)→(x,0+)

g(y + θv)− g(y)

θ
, v ∈ Rn.

The result in the next section will be expressed in terms of the Clarke gene-

ralized gradient, defined by

∂Cg(x) = {q ∈ Rn; 〈q, v〉 ≤ DCg(x; v) ∀ v ∈ Rn}.

Corresponding to each type of tangent cone, say τxX, one may introduce a

set-valued directional derivative of a multifunction G(.) : X ⊂ Rn → P(Rn) (in

particular of a single-valued mapping) at a point (x, y) ∈ Graph(G) as follows

τyG(x, v) = {w ∈ Rn; (v, w) ∈ τ(x,y) Graph(G)}, v ∈ τxX.

Let A : Rn → P(Rn) be a set-valued map. A is called closed (respectively,

convex) process if Graph(A(.)) is a closed (respectively, convex) cone. The adjoint

process A∗ : Rn → P(Rn) of the closed convex process A is defined by

A∗(p) = {q ∈ Rn; 〈q, v〉 ≤ 〈p, v′〉 ∀ (v, v′) ∈ GraphA(.)}.
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For other properties of closed convex processes we refer to [1].

In what follows we are concerned with the discrete inclusion

xi ∈ Fi(xi−1), i = 1, 2, . . . , N, x0 ∈ K0, (2.1)

where Fi : Rn → P(Rn), i = 1, 2, . . . , N and K0 ⊆ Rn.

Denote by SF the solution set of inclusion (2.1), i.e.

SF := {x = (x0, x1, . . . , xN ); x is a solution of (2.1)}.
and by RN

F := {xN ; x ∈ SF } the reachable set of inclusion (2.1).

In the sequel we assume the following hypotheses.

Hypothesis 2.1. i) K0 ⊂ Rn is a compact convex set and Ki ⊂ Rn,

i = 1, . . . , N are closed sets.

ii) The values of Fi(.) are compact convex, ∀i ∈ {1, . . . , N} and there exists

L > 0 such that Fi(.) is Lipschitz with the Lipschitz constant L,

∀i ∈ {1, . . . , N}.
Consider x = (x0, x1, . . . , xN ) ∈ R(N+1)n a solution of (2.1). We wish to

linearize Fi(.) and Ki along x.s

Consider Ai : Rn → P(Rn), i = 1, 2, . . . , N a family of closed convex proces-

ses such that

Ai(v) ⊂ QxiFi(xi−1; v), ∀v ∈ Rn, ∀i ∈ {1, . . . , N}. (2.2)

Note that if Fi are expressed in the parametrized form

Fi(x) =
⋃

ui∈Ui

fi(x, ui) ∀x ∈ Rn, i = 1, . . . , N

and fi(., u) is differentiable ∀u ∈ Ui, i = 1, . . . , N then one may take Ai(v) =
∂fi
∂x (xi−1, ui)v, i = 1, . . . , N , where u = (u1, u2, . . . , uN ) is a control corresponding

to solution x.

Let C0 be a local generalized derived cone to K0 at x0. To problem (2.1) we

associate the linearized problem

wi ∈ Ai(wi−1), i = 1, 2, . . . , N, w0 ∈ C0. (2.3)

If K0 is convex as in Hypotheses 2.1 then as (local) generalized derived cone to

K0 at x0 we take

C0 = Cl{t(y − x0); y ∈ K0, t ≥ 0}, (2.4)

the tangent cone in the sense of Convex Analysis to K0 at x0.

Denote by SA the solution set of inclusion (2.3).

A characterization of the positive dual of the solution set of problem (2.3) is

obtained in [27].



On the maximum principle for discrete inclusions with constraints 7

Lemma 2.3 ([27]). Assume that Hypotheses 2.1 is satisfied. Then, one has

S+
A = {w = (w0, w1, . . . , wN ); ∃p = (p0, p1, . . . , pN ) ∈ R(N+1)n with p0 ∈ C+

0 ,

p0 ∈ A∗
1(p1) + w0, p1 ∈ A∗

2(p2) + w1, . . . , pN−1 ∈ A∗
N (pN )

+ wN−1, pN = wN}.

3. The main results

We prove first that the solution set SA of the variational inclusion (2.3) is a

generalized derived cone to SF at x = (x0, x1, . . . , xN ).

Theorem 3.1. Assume that Hypothesis 2.1 is satisfied and let C0 be a

generalized derived cone to K0 at x0.

Then SA is a generalized derived cone to SF at x.

Proof. In view of Definition 2.1, let ε > 0 and {v1, . . . , vm} ⊂ SA; vi =

(vi0, v
i
1, . . . , v

i
N ), i = 1, . . . ,m.

Since {v10 , v20 , . . . , vm0 } ⊂ C0 and C0 is a generalized derived cone to K0 at

x0, there exist r0ε > 0 and the continuous mappings ρ0(ε, r, .) : [0, 1]m → Rn,

r ∈ [0, r0ε) such that

a0(ε, r, s) := x0 + r

[ m∑

i=1

siv
i
0 + ρ0(ε, r, s)

]
∈ K0,

‖ρ0(ε, r, s)‖ ≤ ε, ∀ε > 0, r ∈ [0, r0ε), s ∈ [0, 1]m

Further on, for any s = (s1, . . . , sm) ∈ [0, 1]m we denote

v(ε, r, s) := r

m∑

j=1

sjvj , y(ε, r, s) = x+ v(ε, r, s).

For x = (x0, x1, . . . , xN ) ∈ Rn × Rn × · · · × Rn we define

F (x) = (K0, F1(x0), F2(x1), . . . , FN (xN−1)).

From the compactness ofK0 and the fact that the values of Fi(.), i = 1, . . . , N

are compact there exists a mapping γ(.) = (γ0(.), . . . , γN (.)) : R(N+1)n → SF

satisfying

‖x0 − γ0(x)‖ = d(x0,K0),

‖xi − γi(x)‖ = d(xi, Fi(γi−1(x))), i = 1, . . . , N.
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Moreover, by convexity of K0 and of the values of Fi(.), the mapping γ(.) is

continuous.

On the other hand, from the lipschitzianity of Fi(.) we have for any

i = 1, . . . , N

‖xi − γi(x)‖ = d(xi, Fi(γi−1(x))) ≤ d(xi, Fi(xi−1))

+ L‖xi−1 − γi−1(x)‖ ≤ d(x, F (x)) + L‖xi−1 − γi−1(x)‖.
Thus, there exists M > 0 depending only on L and N such that

‖x− γ(x)‖ ≤ Md(x, F (x)), ∀x ∈ R(N+1)n.

We define a(ε, r, s) = γ(y(ε, r, s)) and

ρ(ε, r, s) :=
a(ε, r, s)− x

r
−

m∑

j=1

sjvj , , r ∈ [0, r0ε), s ∈ [0, 1]m.

From the continuity of γ(.) we deduce the continuity of ρ(ε, r, .).

Since Ai(.), i = 1, . . . , N are convex process and

vki ∈ Ai(v
k
i−1), i = 1, . . . , N, k = 1, . . . ,m

it follows that

v(ε, 1, s)i ∈ Ai(v(ε, 1, s)i−1) ⊂ QxiFi(xi−1; v(ε, 1, s)i−1), i = 1, . . . , N

and taking into account the characterization of the quasitangent derivative of

lipschitzian set-valued maps (e.g., [1]) we obtain that

lim
h→0+

1

h
d(xi + hv(ε, 1, s)i, Fi(xi−1 + hv(ε, 1, s)i−1)) = 0, i = 1, . . . , N.

Therefore, for ε > 0 there exist riε > 0, i = 1, . . . , N such that if r ∈ [0, riε)

1

r
d(xi + v(ε, r, s)i, Fi(xi−1 + v(ε, r, s)i−1)) < ε.

It remains to take rε := min{riε, i = 0, 1, . . . , N} and note that

‖ρ(ε, r, s)‖ =
1

r
‖a(ε, r, s)− y(ε, r, s)‖ =

1

r
‖γ(y(ε, r, s))− y(ε, r, s)‖

≤ M

r
d(y(ε, r, s), F (y(ε, r, s))) ≤ M‖ρ0(ε, r, s)‖

+M

N∑

j=1

1

r
d(y(ε, r, s)j , Fj(y(ε, r, s)j−1)) ≤ M(N + 1)ε. ¤
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We are able to prove our main result in which we obtain necessary optimality

condition for a solution x = (x0, x1, . . . , xN ) to problem (1.1)–(1.3) in the form

of maximum principle.

Theorem 3.2. Let x = (x0, x1, . . . , xN ) ∈ R(N+1)n be an optimal solution

to problem (1.1)–(1.3), assume that Hypothesis 2.1 is satisfied, let C0 be defined

as in (2.4) and let g(.) : Rn → R be a locally Lipschitz function.

Then, for any local generalized derived cone Ci to Ki at xi, i = 1, . . . , N

there exist λ ∈ {0, 1}, (p0, p1, . . . , pN ) ∈ R(N+1)n and (η1, . . . , ηN ) ∈ RNn such

that

p0 ∈ C+
0 , p0 ∈ A∗

1(p1), p1 ∈ A∗
2(p2) + η1, . . . ,

pN−2 ∈ A∗
N−1(pN−1) + ηN−2, pN−1 ∈ A∗

N (pN ) + ηN−1,
(3.1)

ηi ∈ C−
i , i = 0, 1, . . . , N − 1, (3.2)

pN ∈ λ∂Cg(xN ) + C−
N , (3.3)

〈−pi, xi〉 = max{〈−pi, v〉; v ∈ Fi(xi−1)}, i = 1, . . . , N, (3.4)

λ+

N∑

i=0

‖pi‖+
N∑

i=1

‖ηi‖ > 0. (3.5)

Proof. Consider the set-valued map Bi(.) : Rn → P(Rn) i = 1, 2, . . . , N

defined by

Bi(y) = cl(Ai(y) +
⋃
t>0

1

t
(Fi(xi−1)− xi)).

Then, by Proposition 3.5 in [14], {Bi}i=1,...,N is a family of closed convex

processes satisfying (2.2), Ai ⊂ Bi and, moreover

B∗
i (y) = {

{
A∗

i (y) if 〈−y, xi〉 = max{〈−y, v〉; v ∈ Fi(xi−1)},
∅ otherwise.

(3.6)

Therefore, it what follows Ai will be replaced by Bi.

Set

C = Rn × C1 × · · · × CN

and

γ(x) = xN ∀ x = (x0, x1, . . . , xN ) ∈ R(N+1)n.
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We have two cases.

Case 1. C and SB are separable. Then there exists q ∈ R(N+1)n\{0} such

that

〈q, c〉 ≤ 0 ≤ 〈q, a〉 ∀ c ∈ C, a ∈ SB ,

It means that q ∈ C− ∩ S+
B . On one hand, from q ∈ C− it follows that q =

(0, η1, . . . , ηN ) with ηi ∈ C−
i , i = 0, 1, . . . , N .

On the other hand, q ∈ S+
B and taking into account Lemma 2.3 there exists

(p0, p1, . . . , pN ) ∈ R(N+1)n such that

p0 ∈ C+
0 , p0 ∈ B∗

1(p1), p1 ∈ B∗
2(p2) + η1, . . . ,

pN−2 ∈B∗
N−1(pN−1)+ ηN−2, pN−1 ∈B∗

N (pN )+ ηN−1, pN = ηN ∈C−
N (3.7)

From (3.6) and (3.7) it follows the adjoint inclusions (3.1) and the maximum

conditions (3.4). It is enough to take λ = 0 and to note that the non triviality

condition (3.5) holds true in this case. Indeed, if
∑N

i=1 ‖ηi‖ = 0 then it follows

that q = 0, which is a contradiction.

Case 2. C and SB are not separable. In this case (e.g., [2]) (SB ∩ C)+ =

S+
B + C+.

Since, by Theorem 3.1, SB is a generalized derived cone to SF at x (and thus

a local generalized derived cone) and, obviously, C is a local generalized derived

cone to Rn ×K1 × · · · ×KN at x we apply Lemma 2.1 and we deduce that

SB ∩ C ⊂ Qx(SF ∩K).

From the definition of quasitangent cone we have that if v = (v0, v1, . . . , vN ) ∈
Qx(SF ∩ K) then vN ∈ QxN

(RN
F ∩ KN ). We have g(xN ) = min{g(x) : x ∈

KN ∩RN
F } and from definitions it follows (e.g., Proposition 4.1 in [19])

DCg(xN ; v) ≥ DKg(xN ; v) ≥ 0 ∀v ∈ QxN (KN ∩RN
F ).

Therefore,

DCg(xN ; v) ≥ 0, ∀v ∈ γ(SB ∩ C).
We apply Lemma 2.2 with h(.) = DCg(xN , .) and we find that there exists

α ∈ ∂Cg(xN ))∩[γ(SB∩C)]+ = ∂Cg(xN )∩γ∗−1([SB∩C]+) = ∂Cg(xN ))∩γ∗−1(S+
B+

C+).

Hence for some η ∈ C−, γ∗(α)+η ∈ S+
B . As in Case 1, η = (0, η1, . . . , ηN ) with

ηi ∈ C−
i , i = 0, 1, . . . , N . We apply again Lemma 2.3 to deduce the existence

of (p0, p1, . . . , pN ) ∈ R(N+1)n such that, if γ∗(α) + η = (w0, w1, . . . , wN ), one has

p0 ∈ C+
0 , p0 ∈ B∗

1(p1) + w0, p1 ∈ B∗
2(p2) + w1, . . . ,

pN−2 ∈ B∗
N−1(pN−1) + wN−2, pN−1 ∈ B∗

N (pN ) + wN−1, pN = wN .
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We have

〈γ∗(α) + η, x〉 = 〈w, x〉 ∀ x = (x0, x1, . . . , xN ) ∈ R(N+1)n.

If x ∈ R(N+1)n with x0 = x1 = · · · = xN−1 = 0 it follows that α+ ηN = wN .

Therefore pN = wN = α+ ηN ∈ ∂Cg(xN ) + C−
N . On the other hand

〈w − η, x〉 = 〈γ∗(α), x〉 = 〈α, γ(x)〉 = 〈α, xN 〉
∀ x = (x0, x1, . . . , xN ) ∈ R(N+1)n.

Since α = −ηN + wN it follows

〈w − η, x〉 = 〈wN − ηN , xN 〉 ∀ x = (x0, x1, . . . , xN ) ∈ R(N+1)n.

In particular, wi = ηi, i = 1, . . . , N − 1, w0 = 0.

The adjoint inclusion (3.1) and the maximum condition (3.4) follows as in

Case 1. It remains to take λ = 1 and the proof is complete. ¤

Remark 3.1. Several remarks are in order.

i) If in the above theorem we assume that g(.) is differentiable at xN , then

by a very slight modification of the proof, inclusion (3.3) can be replaced by

pN ∈ λ∇g(xN ) + C−
N .

ii) If in Theorem 3.2, Ci are local tents at Ki at xi then Theorem 3.2 yields

the main result in [11], namely Theorem 3.

iii) Theorem 3.2 extends the main results in [9], obtained for an optimization

problem with only end point constraints (i.e., Ki = Rn, i = 1, . . . , N − 1); result

obtained in terms of Hestenes’ derived cone to KN at xN .

iv) A result similar to that of Theorem 3.2 can be obtained without any

convexity assumptions in terms of the so-called limiting normal cones introduced

by B. Mordukhovich and subdifferentials by applying the generalized Lagrange

Multipler Rule as in [20].

In particular, when Fi are expressed in the parametrized form

Fi(xi−1) =
⋃

ui∈Ui

fi(xi−1, ui) ∀xi−1 ∈ Rn, i = 1, . . . , N,

i.e., inclusion (1.2) became the nonlinear discrete system

xi = fi(xi−1, ui), ui ∈ Ui, i = 1, . . . , N, x0 ∈ K0 (3.8)

taking Ai(v) =
∂fi
∂x (xi−1, ui)v, i = 1, . . . , N we obtain the following consequence

of Theorem 3.2.
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Corollary 3.1. Let Ui ⊂ Rn i = 1, . . . , N be compact set, let fi(., .) : Rn ×
Ui → Rn be such that fi(., ui) is differentiable and the multifunction Fi satisfy

Hypothesis 2.1, i = 1, . . . , N , let x = (x0, x1, . . . , xN ) ∈ R(N+1)n be an optimal

solution for problem (1.1), (3.8), (1.3) and u = (u1, u2, . . . , uN ) be a control

corresponding to solution x. Consider C0 defined in (2.4) and g(.) : Rn → R a

locally Lipschitz function.

Then, for any local generalized derived cone Ci to Ki at xi, i = 1, 2, . . . , N

there exist λ ∈ {0, 1}, (p0, p1, . . . , pN ) ∈ R(N+1)n and (η1, . . . , ηN ) ∈ RNn such

that

p0 ∈ C+
0 , p0 =

(
∂f1
∂x

(x0, u1)

)∗
(p1),

p1 =

(
∂fN
∂x

(xN−1, uN )

)∗
(p2) + η1, . . . pN−1 =

(
∂fN
∂x

(xN−1, uN )

)∗
(pN ) + ηN−1,

ηi ∈ C−
i , ∀i = 1, . . . , N − 1,

pN ∈ λ∂Cg(xN ) + C−
N ,

〈−pi, xi〉 = max{〈−pi, fi(xi−1, ui)〉, ui ∈ Ui}, i = 1, . . . , N,

λ+

N∑

i=0

‖pi‖+
N∑

i=1

‖ηi‖ > 0.
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