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On categories of ordered sets with a closure operator

By JOSEF ŠLAPAL (Brno)

Abstract. We define and study two categories of partially ordered sets endowed

with a closure operator. The first category has order-preserving and continuous maps

as morphisms and it is shown to be concretely isomorphic to a category of ordered

sets endowed with a compatible preorder. The second category has closed maps as

morphisms and it is proved to be cartesian closed. Consequences of these results for

categories of closure spaces and, in particular, of topological spaces are discussed.

1. Introduction and preliminaries

Closure operators that are not additive in general occur in many branches

of mathematics, in particular in algebra (algebraic closure operators) and in geo-

metry (convex hulls). They are closely related to (complete) lattices as has already

been known for quite a long time - see the pioneering book [3] by G. Birkhoff

(and, for more details, see [8]). For this reason, such closure operators were stu-

died by many authors including W. Sierpiński, whose book [13] was among the

first to deal with the topic. From the categorical point of view, they were in-

vestigated, for instance, in [4], [5] and [6]. Non-additive closure operators have

numerous applications also in other disciplines such as informatics (data analysis

and knowledge representation – see [9]), formal logic (see [11]), physics (quantum

mechanics – see [2] and [12]), etc. In these applications, the closure operators are

even non-grounded.
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Closure operators are usually understood to be maps from the Boolean al-

gebra given by the power-set of an underlying set into itself. But in set-theory

and algebra, more general closure operators are often used that are defined to

be maps from a given partially ordered set into itself (for example, every Galois

connection between partially ordered sets gives rise to such closure operators).

In this note, we study two categories of certain partially ordered sets endowed

with a closure operator. The first category is defined to have order-preserving

and continuous maps as morphisms. We show that this category is isomorphic

to a category of ordered sets endowed with a compatible preorder whose mor-

phisms are maps which preserve both the order and the compatible preorder.

The restrictions of this isomorphism to the full subcategory given by ordered sets

with grounded closure operators and to that given by ordered sets with additive

closure operators are discussed. As a consequence, we obtain a category of sets

endowed with a preorder on the corresponding power set which is isomorphic to

the category Top of topological spaces and continuous maps. The second category

under investigation has also certain ordered sets with a closure operator as ob-

jects but its morphisms are closed maps. This category, into which the category

of topological spaces and closed maps between the corresponding power-sets may

be fully embedded, is proved to be cartesian closed.

Definition 1.1. Let X = (X,≤) be a partially ordered set. A closure operator

on X is any map u : X → X which fulfills the following three axioms:

(i) for all x ∈ X, x ≤ u(x) (extensiveness),

(ii) for all x, y ∈ X, x ≤ y ⇒ u(x) ≤ u(y) (monotonicity),

(iii) for all x ∈ X, u(u(x)) = u(x) (idempotency).

If u is a closure operator on a partially ordered set X, then the pair (X,u)

is called a closure system. An element x ∈ X is said to be closed in (X,u) if

u(x) = x. We distinguish between the concept of closure systems and that of

closure spaces: By a closure space we understand, as usual, a pair (X,u) where

X is a (generally non-ordered) set and u is a closure operator on the Boolean

algebra 2X = (2X ,⊆) where 2X denotes the power-set of X.

A closure operator u on a partially ordered set X and the closure system

(X,u) are called

(iv) grounded if X has a least element 0 and u(0) = 0,

(v) additive if X is a join-semilattice and u(x∨ y) = u(x)∨ u(y) for all x, y ∈ X.

Throughout the paper, partial orders on generally different sets will usually
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be denoted by the same symbol ≤. This will cause no confusion as it will always

be clear which partially ordered set is considered.

The well-known concepts of continuous and closed maps are transferred from

the classical closure operators to our more general setting as follows:

Definition 1.2. Let (X,u) and (Y, v) be closure systems and f : X → Y be a

map. Then f is said to be

(a) a continuous map from (X,u) into (Y, v) if f(u(x)) ≤ v(f(x)) for every

x ∈ X,

(b) a closed map from (X,u) into (Y, v) if f(x) is closed in (Y, v) whenever x is

closed in (X,u).

Remark 1.3. One can easily see that:

(a) A composition g ◦f of two continuous maps f and g between closure systems

is continuous whenever g is order-preserving.

(b) An order-preserving map f : (X,u) → (Y, v) is closed if and only if f(u(x)) ≥
v(f(x)) for every x ∈ X. Thus, among the order-preserving maps, maps

which are both continuous and closed coincide with the closure preserving

maps, i.e., maps f : (X,u) → (Y, v) with f(u(x)) = v(f(x)) for every x ∈ X.

(c) Every order-preserving and continuous map f : (X,u) → (Y, v) has the

property that, for every x ∈ X, f(u(x)) = f(x) whenever f(x) is closed.

We will use some basic topological, category-theoretical and lattice-theoreti-

cal concepts only - for their definitions see e.g. [7], [1] and [10], respectively. Let

us just note here that, by a complete join-semilattice (complete meet-semilattice),

we mean an ordered set in which each nonempty subset has a join (meet).

2. A category of closure systems with order-preserving continuous

maps as morphisms

We denote by Cont the category whose objects are the closure systems (X,u)

such that X = (X,≤) is a complete join-semilattice and whose morphisms are

maps that are both order-preserving and continuous.

Definition 2.1. Let X = (X,≤) be a partially ordered set that is a complete

join-semilattice. A preorder ρ on the set X is said to be compatible (with the

partial order ≤) and the pair (X, ρ) is said to be a preordered complete join-

semilattice if the following two axioms are satisfied:
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(1) For all x, y ∈ X, x ≤ y ⇒ xρy.

(2) If xi ∈ X for every i ∈ I (I 6= ∅ a set) and x ∈ X, then
∨{xi; i ∈ I}ρx

whenever xiρx for every i ∈ I.

We denote by Copo the category whose objects are the preordered complete

join-semilattices (X, ρ) and whose morphisms are the maps that preserve both

the partial order and the compatible preorder.

We will need the following

Lemma 2.2. Let (X, ρ) be a preordered complete join-semilattice, X =

(X,≤). Then every equivalence class of ρ ∩ ρ−1 has a greatest element (with

respect to ≤).

Proof. Let A be an arbitrary equivalence class of ρ ∩ ρ−1 and let x ∈ A

be an element. By the axiom (2) of Definition 2.1,
∨
Aρx. Conversely, since

x ≤ ∨
A, we have xρ

∨
A by the axiom (1) of Definition 2.1. Thus,

∨
A ∈ A,

which proves the statement. ¤

Remark 2.3. It can easily be seen that the greatest element of an equivalence

class from Lemma 2.2 equals the greatest element of the set {x ∈ X; xρy} where

y is an arbitrary element of the class.

Given a closure system (X,u), we denote by ρu the preorder on X defined

by ρu = {(x, y) ∈ X2; x ≤ u(y)}. We put F (X,u) = (X, ρu) for every object

(X,u) of Cont and Ff = f for every morphism f in Cont.

Theorem 2.4. F is a concrete isomorphism of Cont onto Copo.

Proof. If (X,u) is an object of Cont, then (X, ρu) is clearly a preordered

complete join-semilattice, hence an object of Copo. Let f : (X,u) → (Y, v) be a

morphism in Cont and let x, y ∈ X, xρuy. Then x ≤ u(y), which implies f(x) ≤
f(u(y)) ≤ v(f(y)). Thus, f(x)ρvf(y), which means that f : (X, ρu) → (Y, ρv) is

a morphism in Copo. Therefore, F : Cont → Copo is a (faithful) functor.

Let f : (X, ρu) → (Y, ρv) be a morphism in Copo and let x ∈ X. Then u(x) ≤
u(x) implies u(x)ρux and, consequently, f(u(x))ρvf(x). This yields f(u(x)) ≤
v(f(x)) so that f : (X,u) → (Y, v) is a morphism in Cont. We have shown that

the functor F is full.

Let (X,u), (Y, v) be objects of Cont such that F (X,u) = F (Y, v), i.e., such

that ρu = ρv. Then, for arbitrary x, y ∈ X, we have x ≤ u(y) ⇔ x ≤ v(y).

Consequently, u(y) = v(y) for every y ∈ X. Therefore, F is injective on objects.

Let (X, ρ) be an object of Copo. By Lemma 2.2, for every x ∈ X, there exists

a greatest element uρ(x) of the equivalence class of ρ ∩ ρ−1 containing x. Then,
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clearly, x ≤ uρ(x) and uρ(uρ(x)) = uρ(x). Let x, y ∈ X, x ≤ y. Then x ≤ uρ(y)

and we have uρ(x)ρxρuρ(y). Consequently, uρ(x)ρuρ(y). Since uρ(y)ρuρ(y) and

uρ(y) ≤ uρ(x) ∨ uρ(y), we get uρ(y)ρ(uρ(x) ∨ uρ(y))ρuρ(y). Therefore, uρ(y) =

uρ(uρ(y)) = uρ(uρ(x) ∨ uρ(y)). Thus, uρ(x) ≤ uρ(x) ∨ uρ(y) ≤ uρ(uρ(x) ∨ uρ(y))

implies uρ(x) ≤ uρ(y). We have proved that uρ is a closure operator on X, i.e.,

that (X,uρ) is an object of Cont. Let x, y ∈ X and suppose that xρuρ
y. Then

x ≤ uρ(y). It follows that uρ(x) ≤ uρ(y), hence uρ(x)ρuρ(y). Since xρuρ(x)

and uρ(y)ρy, we have xρy. Conversely, let xρy. Then yρy and y ≤ x ∨ y imply

yρ(x ∨ y)ρy. This yields uρ(y) = uρ(x ∨ y). Thus, x ≤ x ∨ y ≤ uρ(x ∨ y) implies

x ≤ uρ(y). Therefore, xρuρy. We have shown that F is surjective on objects.

The proof is complete. ¤

Recall [3] that a lattice is said to be atomistic if each of its elements is a join

of atoms.

Proposition 2.5. Let (X,u) be a closure system where X has a least ele-

ment 0. Then

(a) (X,u) is grounded if and only if, for every x ∈ X, xρu0 ⇒ x = 0;

(b) if X is a distributive atomistic lattice, then (X,u) is additive if and only if,

for every x, y ∈ X and every atom a ∈ X, aρu(x ∨ y) ⇔ aρux or aρuy.

Proof. Statement (a) is obvious. LetX = (X,≤) be a distributive atomistic

lattice and let x, y ∈ X. Then u(x ∨ y) = u(x) ∨ u(y) is equivalent to a ≤
u(x ∨ y) ⇔ a ≤ (u(x) ∨ u(y)) for every atom a ∈ X, which is equivalent to

aρu(x∨ y) ⇔ a∧ (u(x)∨u(y)) = a for every atom a ∈ X. Clearly, for every atom

a ∈ X, we have a ∧ (u(x) ∨ u(y)) = a ⇔ (a ∧ u(x)) ∨ (a ∧ u(y)) = a ⇔ (a ≤ u(x)

or a ≤ u(y)) ⇔ (aρux or aρuy). This proves statement (b). ¤

Example 2.6. a) Let ContCl denote the category whose objects are the clos-

ure spaces and whose morphisms are the usual continuous maps, i.e., the maps

f : (X,u) → (Y, v) with f(u(A)) ⊆ v(f(A)) whenever A ⊆ X. Then there

is an embedding G : ContCl → Cont given by G(X,u) = (2X , u) for every

object (X,u) of ContCl and Gf = f̄ : (2X , u) → (2Y , v) for every morphism

f : (X,u) → (Y, v) in ContCl where f̄ denotes the lifting (extension) of f to the

corresponding power-sets. Thus, by Theorem 2.4, F ◦ G : ContCl → Copo is

an embedding too. The objects of the category F ◦G(ContCl) are precisely the

preordered sets (2X , ρ), X a set, satisfying the following two conditions:

(1’) For all A,B ⊆ X, A ⊆ B ⇒ AρB.

(2’) If Ai ⊆ X for every i ∈ I (I 6= ∅ a set) and A ⊆ X, then
⋃{Ai; i ∈ I}ρA

whenever AiρA for every i ∈ I.
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The morphisms in F ◦G(ContCl) are the preorder-preserving maps g : (2X , ρ) →
(2Y , σ) such that g = f̄ where f : X → Y is a map (i.e., such that g(A) is

a singleton whenever A is a singleton and g(
⋃

i∈I Ai) =
⋃

I∈I g(Ai) whenever

{Ai; i ∈ I} ⊆ 2X).

b) Let ContCl∗ denote the full subcategory of ContCl given by the objects

(X,u) of ContCl such that u is a grounded closure operator on 2X = (2X ,⊆).

Then the embedding of ContCl∗ into Copo obtained by restricting F ◦G coincides

with the embedding found in [15] by the help of results from [14].

c) Let Top denote the category of topological spaces and the usual continuous

maps, i.e, the full subcategory of ContCl given by the objects (X,u) of ContCl

such that u is a grounded and additive closure operator on 2X = (2X ,⊆). By

Proposition 2.5, the image of Top under the restriction of F ◦G to Top is the full

subcategory of F ◦G(ContCl) given by just the objects (2X , ρ) of F ◦G(ContCl)

that fulfill the following two conditions:

(3’) For every A ⊆ X, Aρ∅ ⇒ A = ∅.
(4’) For every x ∈ X and every A,B ⊆ X, {x}ρ(A ∪B) ⇔ {x}ρA or {x}ρB.

3. A category of closure systems with closed maps as morphisms

Recall [1] that a category C is cartesian closed if it has finite products and,

for any two objects A,B ∈ C, there exists an object BA in C and a morphism ev :

A×BA → B with the property that, for each morphism g : A×C → B in C, there

exists a unique morphism g∗ : C → BA such that ev ◦ (idA × g∗) = g. Cartesian

closed categories possess a well behaved operation of exponentiation of objects

and, therefore, have many useful applications. For instance, in computer science

they are used as models of important foundational programming languages, the

so-called typed lambda-calculi. Therefore, it is always a useful result to find a new

cartesian closed category. (Since Top is not cartesian closed, it is often replaced

by some of its full subcategories or supercategories that are cartesian closed.)

We denote by Clo the category whose objects are the closure systems (X,u)

such that, for every x ∈ X, the upper interval [x) in X is a complete meet-

semilattice and whose morphisms are the closed maps.

Remark 3.1. a) Let (X,≤) be a partially ordered set such that, for every

x ∈ X, the upper interval [x) in X is a complete meet-semilattice. Then there

is a one-to-one correspondence between the closure operators on the partially
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ordered set X and the subsets A ⊆ X satisfying the following condition:

(∗)
∧

(A ∩ [x)) ∈ A for every x ∈ X.

Indeed, such a correspondence is given by assigning to every closure operator u

on X the set of all closed elements in (X,u). The converse correspondence is

obtained by assigning to every subset A ⊆ X satisfying (∗) the closure operator

on X defined by u(x) =
∧
(A ∩ [x)) for every x ∈ X.

b) Observe that morphisms in Clo are not required to be order-preserving.

Therefore, objects (X,u) and (Y, v) may be isomorphic in Clo even if the partially

ordered sets X and Y are not isomorphic.

Theorem 3.2. Clo is a cartesian closed category.

Proof. Clearly, given a family (Xi, ui), i ∈ I (I a set), of objects of Clo,

the object (
∏

I∈I Xi, u) with u the product of ui (and
∏

I∈I Xi the direct product

of the partially ordered sets Xi, i ∈ I) is a product of the family in Clo. Closed

elements in (
∏

I∈I Xi, u) are precisely the elements ϕ ∈ ∏
i∈I Xi with ϕ(i) closed

in (Xi, ui) for every i ∈ I. For any two objects A = (X,u) and B = (Y, v) of Clo,

put BA = (Y X , w) where Y X is the set of all maps of X into Y ordered point-wise

and w : Y X → Y X is the map given by w(f) =
∧{g ∈ Y X ; f ≤ g, g : (X,u) →

(Y, v) closed}. For every f ∈ Y X , the upper interval [f) in Y X is a complete

meet-semilattice (because, for every subset H ⊆ [f), (
∧H)(x) =

∧{h(x); h ∈ H}
where {h(x); h ∈ H} ⊆ [f(x)) for every x ∈ X). Denoting by G the set of all

closed maps of (X,u) into (Y, v), we get (
∧
(G∩[f))(x)) = (

∧{g(x); g ∈ G∩[f)}) ≤∧{(g(x)); g ∈ G ∩ [f)} =
∧{g(x); g ∈ G ∩ [f)} =

∧
(G ∩ [f))(x). Consequently,∧

(G ∩ [f)) ∈ G and, by Remark 3.1, w is a closure operator on Y X such that the

closed elements in (Y X , w) are precisely the closed maps of (X,u) into (Y, v). We

have shown that BA is an object of Clo.

Obviously, the evaluation map ev : A × BA → B (given by ev(x, f) = f(x)

whenever x ∈ X and f ∈ Y X) is closed. If C = (Z, p) is an object of Clo

and g : A × C → B is a closed map, then the map g∗ : C → BA given by

g∗(z)(x) = g(x, z) whenever z ∈ Z and x ∈ X is clearly closed too. Of course,

g∗ : C → BA is a unique morphism in Clo such that ev ◦ (idA × g∗) = g. This

proves the statement. ¤

Remark 3.3. a) It is evident that the full subcategory Clo∗ of Clo whose ob-

jects are the grounded objects of Clo is closed under both products and formation

of power-objects in Clo. Therefore, Clo∗ is cartesian closed too. But this is not

true for the full subcategory of Clo given by its additive objects.
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b) Of course, the category of closure spaces and the usual closed maps is not

cartesian closed neither is the category of closure spaces with continuous maps

nor is its full subcategory of grounded closure spaces. In [4], a cartesian closed

topological hull of this subcategory is constructed.

Example 3.4. Let CloSp denote the category whose objects are the closure

spaces and whose morphisms (X,u) → (Y, v) are the closed maps (2X , u) →
(2Y , v) between the corresponding closure systems. Then, putting H(X,u) =

(2X , u) for every object (X,u) of CloSp and Hf = f for every morphism f in

CloSp, we get a full embedding of CloSp into Clo. The full subcategoryH(CloSp)

of Clo is closed under products in Clo (because 2X × 2Y ∼= 2XtY ) and also

under the formation of power-objects (because (2Y )(2
X) ∼= 22

X×Y ). Therefore,

H(CloSp) is cartesian closed and so is CloSp. Observe that products in CloSp

are defined by (X,u) × (Y, v) = (X t Y, p) where p : 2XtY → 2XtY is given by

p(A) = u(A ∩X) t v(A ∩ Y ) whenever A ⊆ X t Y (here, t denotes coproduct,

i.e., disjoint union, in Set). Power-objects in CloSp are given by (Y, v)(X,u) =

(2X×Y,w) where w(B) =
⋂{C ⊆ 2X×Y ; B ⊆ C, A ⊆ X closed implies {y ∈ Y ;

(A, y) ∈ C} closed} whenever B ⊆ 2X × Y .

Of course, among the full subcategories of the cartesian closed category

CloSp, there is the one whose objects are exactly the topological spaces.

References
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