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On Randers metrics of isotropic S-curvature I1

By GUOJUN YANG (Chengdu)

Abstract. We have classified all Randers metrics of isotropic S-curvature when
their Riemann metrics from navigation problem are locally conformally flat. In this
paper, we study Randers metrics of isotropic S-curvature and constant S-curvature on
product manifolds by navigation method, in which the corresponding Riemann product
metrics from navigation problem are generally not locally conformally flat.

1. Introduction

In Finsler geometry, the S-curvature was originally introduced for the volume
comparison theorem ([7]), and it is a non-Riemannian quantity, that is, S = 0
for Riemannian metrics. Recent studies show that the S-curvature plays a very
important role in Finsler geometry (cf. [2], [3], [5], [8], [10], [12]). For a Finsler
manifold (M, F), the flag curvature K = K(P,y) is an important Riemannian
quantity, where P C T, M is a tangent plane and y € P is a non-zero vector. It is
an analogue of the sectional curvature for a Riemann manifold. A Finsler metric
F is of scalar flag curvature if K = K(z,y) is independent of P for any non-zero
vector y € P. F is of constant flag curvature if K = constant. The flag curvature
and the S-curvature are closely related ([3]).

A Randers metric is a Finsler metric in the form F' = « + 3, where a =
Vaij(z)yyd is Riemannian and 8 = b;(z)y’ is a 1-form with ||3||, < 1. A Randers
metric F = « + § naturally arises from the navigation problem on a Rieman
manifold (M,h) under an external force field W = W? 8‘;. Then F can be
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expressed as ([9])

\/h(ﬂﬂvy)2 = [hl@, Wa)2h(z,9)* = (y, Wa)3 ] {y, Wa)n 1
1 — h(x, W,)? 1= (e, W) .

According to [4] and [11], a Randers metric F' is of isotropic S-curvature
S = (n+ 1)c(z)F if and only if

Wi,j + Wj,i = —4C(5€)hij, (2)

F =

where the covariant derivative W; ; is taken with respect to h, and W; := h;, W".

It is proved that a Randers metric of isotropic S-curvature is of scalar flag
curvature if and only if the Riemann metric h is of isotropic sectional curvature
([5]). This leads to the classification of Randers metrics of isotropic S-curvature
and scalar flag curvature for n > 2 ([5], [10]). On the other hand, it is known that
a Randers metric F is of constant flag curvature if and only if F' is of constant
S-curvature and h is of constant sectional curvature, which gives the classification
of Randers metrics of constant flag curvature ([2]).

Further the present author in [12] classifies all Randers metrics of isotropic
S-curvature when their h’s are locally conformally flat. In particular, all two-
dimensional Randers metrics of isotropic S-curvature are classified. The class in
[12] (the dimensions n > 2) includes all Randers metrics of scalar flag curvature
and isotropic S-curvature.

Then a natural question arises: are there any Randers metrics of isotropic
S-curvature if the Riemann metric & is not locally conformally flat? Our main
results are the following Theorem 1.1 and Theorem 1.2

Before stating our main results, we make some conventions in the following
discussions. Let M and M be two manifolds with the dimensions m and m
respectively. Let n = m + m and {(z,Z)} be a local coordinate on the product
manifold M x M. In a tensor, the indices i, j, k run from 1 to m, and the indices
&, m, v run from m + 1 to n.

Theorem 1.1. Let F' = a + 8 be an n-dimensional Randers metric de-
termined by the navigation data (h,W) on a product manifold M x M with
h = VH2+ H?, where (M,H) and (M,H) are locally conformally flat Ri-
emann manifolds, and W = W (x,T) is a vector field on M x M. Locally put
H;j(z) = e’®§;; and ﬁgn(f) = ¢?@§g,. Then we have

(i) (m > 2, m > 2) F is of isotropic S-curvature if and only if the following hold

(for arbitrarily fixed i, j and &, n):

owi oW

. oWt Wi

ort Ozl

(Vi,J), 3)
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owes oW owes oW
= = 4
oW ~OW¢ &
4 — = 2 =27 3
¢’ 57e +e B 0, T+ W0y T+ Weaoe, (5)
where o}, = %,55 = %, T = 7(2,7) = %‘fcﬁi (not summed) and T =

T(x,2) = %—Vg: (not summed). In this case, the isotropic S-curvature S =
(n+ 1)e(x, T)F is determined by

o(@,F) = _i 2 (2,7) + Whoy] = —i [27(F, 2) + W&y, (6)

(ii) (m >3, m > 3) F is of isotropic S-curvature if and only if

Wi = —2(\@) + (a(@),2)) 2" + |2|?a’ (@) + q},(T)2" + b'(2), (7)

Wé = —2(X(z) + (a(x), 7))7 + 7% (2) + & (2)27 + b (), (8)

where A(Z) and () are scalar functions, a(%), b(%), a(z) and b(z) are vectors
and the matrices (¢! (%)) and (¢5(x)) are skew-symmetric, and these functions
satisfy (5). In this case, the isotropic S-curvature S = (n + 1)c(z,Z)F is
determined by (6) with ¢(x,T) given by

o(@,F) = A@) + (a(@), z) — iWkak — @) + @), F) - iwﬁag. )

Theorem 1.1 is similar to Theorem 1.1 in [12], and their proofs are also
similar.

In general, the product of two locally conformally flat Riemann metrics are
not locally conformally flat (Lemma 2.1). So by Theorem 1.1, it is possible to
construct Randers metrics of isotropic S-curvature with h being not locally con-
formally flat. We will show such class of Randers metrics in the following The-
orem 1.2 by assuming H and H are of constant sectional curvature.

In Theorem 1.1, if the vector field W satisfies W8 = Wi(z), W¢& = W(%),
then the S-curvature must be a constant, that is, ¢(z,Z) = constant in (6). In
Section 5, we will construct, in every dimension n > 3, examples of constant
S-curvature with the corresponding Riemann metrics h’s being not locally con-
formally flat.

Theorem 1.2. Let F' = a + 8 be an n-dimensional Randers metric de-
termined by the navigation data (h,W) on a product manifold M x M with
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h =/ H?+ H?, where (M, H) and (M, H) are two Riemann manifolds of cons-
tant sectional curvatures py and po respectively, and W = W (x,T) is a vector
field on M x M. Locally put H;;(z) = e’®)6;; and He, (%) = €®®dg,. with

4 4

CrmEpe @=L Epe 10)

o(x) =lIn

Suppose m > 3,m > 3. Then F' is of isotropic S-curvature if and only if one of
the following cases holds:

(i) ju1 = o = 0, and
WP = —2(\ + (a,u))uP + |ul?a? + qPu” + bP, (11)

where u := (x,T), A is a constant number, a € R™ and b € R™ are constant
vectors and (¢P) is a constant skew-symmetric matrix (1 < p, r <n). In this
case, the isotropic S-curvature S = (n + 1)c(u)F is given by

c(u) = A+ (a,u). (12)
(ii) p:=pm = —p2 # 0, and
; w(L+ plz?) ; 2vpi L ik
1 _ )9 St Sl bl VA 7 1— 7 7 1
W= 2 T -l (L ) b, (13)
Wé = —z{w e §>}5€+(1+u|5|2)§€ + @ (14)
1+ plzf? ’ T

where k is a constant number, # € R™ and 0 € R™ are constant vectors,
and (gj,) and (¢§) are constant skew-symmetric matrices. In this case, the
isotropic S-curvature S = (n + 1)c(xz, T)F is given by

R = plz)(A + plz?)

0 E) = T UYL = 17 1)
(iil) p:=p1 = —p2/2 # 0 (or similarly p:= ps = —p1/2 #0), and
W= —2{% - u(@,@}xi + (1= plz?)0" + gja*, (16)

L p( A pla )T
(1 + plz[?)
+ (142070 + 77, (17)

Wé = —2(2uf — T, 7)7¢
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where T € R™ is a constant vector, and the meanings of 0, 5, (qh), (ME;) are re-

ferred to case (ib). In this case, the isotropic S-curvature S = (n+1)c(x, T)F

is given by
~ (1 — plz*)(T, 7)
clxz,r) = —. 18
(0 = T3 uaP)(1 - 2ulaP) ()
(iv) g1 # —pa, oo # —p2/2, prn # —2p2, 1 # 0, pg # 0, and
W' =2p(0, 2)x" + (1 = |z*)0" + gja®, (19)
W = 205(0, %) + (1 — pa7]*)6° + 3537, (20)

where the meanings of 0, 0, (q1), (¢5) are referred to case (ib). In this case,
the isotropic S-curvature S = 0.

(v) p1 =0, p2 # 0 (or similarly yi» = 0, pu1 # 0), and
Wi =giz" + 0, (21)

W = 201(@, HF + (1 palFP)EE + ET, (22)

where the meanings of 0, (q},), (¢5) are referred to case (ib), and & € R™ are
constant vectors. In this case, the isotropic S-curvature S = 0.

Theorem 1.2(i) was obtained in [10], since the Riemann metric h is flat when
1 = po = 0. By Lemma 2.1(iii), the Riemann metrics h’s in cases (iii), (iv) and
(v) are not locally conformally flat.

In Theorem 1.2, if g = pg # 0, then h is not of constant sectional curvature,
but it is an Einstein metric. So for m > 2 and m > 2, if y3 = ps # 0 in
Theorem 1.2, then the Randers metrics are not of scalar flag curvature by [5], but
they are Einstein metrics by [1] and [6].

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M with (x%,y")
the standard local coordinate system in T'M, then for any y # 0, the mat-
rix g;; = [F?,:,; is positive definite in our consideration. The Hausdorff-
Busemann volume form dV = op(z)dz A ... A dz™ is defined by

o) = Vol(B™)
T Nol {(y) € Rr(F(yi 52

2) <1}
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The Finsler metric F' induces a vector field G = 3* 9 _ 9@t 2 on TM defined

by

Ox’ oyt

Gl = igil{[FQ]wkyl (@, y)y* = [F?a(z,9)}-

Then the S-curvature is defined by

gm0

S is said to be isotropic if there is a scalar function ¢(z) on M such that

S=(n+1)c(z)F.

If ¢(zx) is a constant, then we call F' is of constant S-curvature.

For the discussions in this paper, we need the following result about the

direct product of two Riemann metrics on a product manifold.

Lemma 2.1. Let (h, M X M) be an n-dimensional Riemann manifold with

h := V/H? + H?, where (H,M) and (H, M) are two Riemann manifolds with
the dimensions m(> 2) and m(> 1) respectively. Suppose (H,M) is locally

conformally flat.

(i)

If h is locally conformally flat, then H is of isotropic sectional curvature pu(zx),
and

F(@) =~ — (), (23)
where p(Z) is the scalar curvature of H. If further m > 2, then p(z) and
p(Z) are constant.

If m = 1, then h is locally conformally flat if and only if H is of constant
sectional curvature.

If i > 2 and H is locally conformally flat, then h is locally conformally
flat if and only if H and H are of constant sectional curvatures p and ji
respectively satisfying u + g = 0.

PROOF. (i) Assume H and h are locally conformally flat. If m > 3, then for

1 <1,7,k,1 < m, we respectively have

Cil = R;'j + 0l Lij + Hij Lj, — 64 Ly — Hip Lk = 0, (24)
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where C and C are the Weyl conformal curvature tensors of H and h respectively,

R, is the curvature tensor of h (R;; = R;",;), and
L= ——Ry— P Hy, LF=H"L;, p=HIR;
T m -2 2m—-1)(m-2)""" " 7
- 1 ] ~ ~
Lij=——Ri— pPEp Hy, LF=H"*L,.

m4+m—2"7"2m+m—1)(m+m—2)
By (24) and (25) we have

8Ly + Hy; LY — 64 Ly — Hyy LY = 6L Li; + Hy L} — 0" Ly, — Hy L. (26)
Contracting (26) in k and [ gives

mp — (m—1)p

Rij:m(m+m_1)

H;;. (27)
By (27), H is an Einstein metric. Thus H is of constant sectional curvature p
since H is locally conformally flat.

We further prove that, in case of m > 2, if H is of sectional curvature u(zx),
then (25) is equivalent to (23). Suppose H is of sectional curvature u(x), then we
have
R'ji = p(Hid; — Hyj0L), Ry =(m—1)uHy;,  p=m(m—1)u.

(3

Therefore we have
Cige = [m(m — 1) + p] (Hird; — Hi;},).
Thus (25) is equivalent to (23).

(iii) Since m > 2 and H and H are locally conformally flat, by case (i), H
and H are of constant sectional curvatures p and p respectively, provided that
h is locally conformally flat. Then (23) implies that 4+ @ = 0. The converse is
easily verified by the last conclusion in the proof of case (i).

(ii) Suppose m = 1 and h is locally conformally flat. If m > 3, then by case
(i) H is of constant sectional curvature. If m = 2, then H is of sectional curvature
wu(x). Since h is locally conformally flat, we have

Lijx = Lik,j, (28)

where the derivative

“ " is taken with respect to h. Now it is easily seen that
L;; = Sp(z)H;;. Plug this into (28) and we get p,H;; = p ;H;r,, which implies

that u(x) = constant. O
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3. Proof of Theorem 1.1

This proof is similar to that of a theorem in [12].

(i) First suppose that F'=« 40 is of isotropic S-curvature S = (n+1)c(x, T)F.
Let 't be the Levi-Civita connection coefficients of the Rieman metric h, where
the indices r, s, t run from 1 to n(= m + m). It is easily seen that T'L, = 0 if
among the indices r, s, t, one runs from 1 to m and another runs from m+1 to n.
In other cases we have

1 , do(x)
Ffj(a:) = 5(01‘5;-6 —|—(‘fj(5£C — 0%07)), (Ui T T or ) )

~ 1 _ ~ ~ . 0oz
Iy, (@) = 5(055,7 + G0 — 3,67, (05 = 3;‘5)> .

We see that (2) is equivalent to

oW, W, o
B + 3:1:5 - (Uin +o;W; — WkO'k(Sij) = —de(x, T)e dijs (29)
oWe oW, _ _ .
o T et — Wy + 5, We = W5, 0g,) = —delw, )70, (30)
oW, oW
= = (. 1
oz " om0 (31)

Note that W = e W;, W& = e~ 7W. Then it is easy to verify that (29), (30)
and (31) are equivalent respectively to the following

oWt oW

— _ k NS -
507 T ot = ~(Whok +4de(z, 7))y, (32)
owe oW _ .
T+ age =~ (V7% + del@ 7)o, (3
JOWE _oWE
oxs te oxt 0 39

So by (32), (33) and (34) and for arbitrarily fixed ¢, j and &, n we have

oW Wi oW oW

ozl + ort 0 (vi#j), ox? Oz’ (v4,4),
OWeé  awWn owe  own
LOW' S OWE

¢ o TC ou
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By (32) and (33) we get
21 + Wkoy, = 27 + W7o,.

Thus we obtain (3), (4) and (5).

Conversely, suppose that the vector field W satisfies (3), (4) and (5). Then
by (3) and (4), there are two scalar functions 7(z, ) and 7(z, ) defined by
oW’ o~ owe
o TR
where the indices 7, £ are arbitrarily fixed. Now by (5), we define a scalar function

—lr W) = 27+ 75,

T(2,T) =

c(z,T) =

It is easy to verify that for arbitrary indices i, j and £, 7, the formulas (32),
(33) and (34) hold. Thus (2) holds. This shows that the Randers metric F is of
isotropic S-curvature.

By the proof above, we have seen that the isotropic S-curvature
S = (n+ 1)c(z,x)F is given by (6).

(ii) For arbitrarily fixed , let F} = F|(Z) be a Randers metric determined
by the navigation data (H,{W'}) and for arbitrarily fixed x, let Fy = Fy(x)
be another Randers metric determined by the navigation data (ﬁ ,{W¢}). Then
by (3), (4) and Theorem 1.1 in [12], we see that F} is of isotropic S-curvature
S = (m+1)c(x,7)Fy and F is also of isotropic S-curvature S = (m+1)c(x, T) Fs.
Then by Theorem 1.1 in [12], we obtain the expressions of W*, W¢ given by (7),
(8) in case of m > 3, m > 3. Finally by the item (i), the functions in (7) and (8)
satisfy (5), and this establishes (9). O

4. Proof of Theorem 1.2

To prove Theorem 1.2, we first state the following lemma, whose proof is
elementary.

Lemma 4.1. Define f : R™ +— R™ and g : R™ — R™ which satisfy
(f(2),7) = (9(F),z).
Then f(x) and g(Z) can be expressed as
f(x) = Az, ¢(Z) = Bz,

where A, B are two matrices with B = transpose(A).
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Now we begin to prove Theorem 1.2.
Assume that F' is of isotropic S-curvature. Since m > 3, m > 3, by The-
orem 1.1(ii), the vector field W is given by (7) and (8), which satisfies (5). In the

following we will use (5) to determine p1, po, A(Z), A(z), a(Z), a(x), ¢.(T), ?]2(3:),
b(%) and b(x) in (7) and (8).
Now plug (7), (8) and (10) into (9) or the second formula of (5), and we get

o ADO e + (p@,5) _ M) el + (),
COETAE T ewee W

where
P(F) = b(E) +0@), ) = pable) +x).
Put x =0, or £ = 0 in (35) and we respectively obtain

Lo l#f) H (L) 5 0 mlef) § (T)
. [EEE

AGE) = NES

where £ := A(0) = A(0) is a constant number, and T := p(0), T := p(0) are
constant vectors. Then plug (36) into (35) and we obtain

where
F@) = (1 + mlal*)p@) — (1= 2T, (38)
F@) = (14 po|Z?)p(Z) = (1 = po|Z|*)T. (39)

Then by (37) and Lemma 4.1, we have

f@) =A%, f(z) = Az,

where A = (AZ),/T = (KZY) are two matrices with A = transpose(A). Again by
(38) and (39) we get

(1 — p|z)T + Az
1+ plzf?

— |72 Az
o(@) = LT EAT 5y

L+ po|zf?

(40)

By (35), (36) and (40), the isotropic S-curvature S = (n+1)c(x, ) F is determined
by
oz, ) = — (41)
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Y1:= I'i(l - N1|-'L'|2)(1 - M2|§5‘2) + (1 —M1‘$|2)<T, 55> +(1- M2|il2)<Ta J}> + <Ax7‘%>’

Yo 1= (14 ) (1 + p2l7]?).

By (40), we have

By (36), we have

By (42), we have

oA

ozt
N =2 (25 + (T, )z’ + (1 + pa|z?) T
ort ’

a(X)

a(z) =

(1 — po|2)T + A% _
Crpappe M

(1—mle)T + Ax =
1+M1‘x|2 _/’(’Qb(x)

 —2ua(2k + (T, 7)) + (1 + po|7[?) T

(1 + po|z[?)?

(1 + plz[?)?

)

dai  —2up(2T7 + ALE)FE + AL(L+ pol@?)
9 (1+ pal22)? e
dgas —2p1 (2T¢ + ASak)at + AS(1 + | z]?) B Zj
ort (14 uq|z|?)? xt
By (7) and (8) we have
ow' O Oa ‘ ,0a"  dqi ,  Ob
o (855 +<a%f’”>>x Tl gm T e T o
OWe ox  oa oat O abe
_ =\ 5 42l vy o 90
Oz’ ((%ci * <8xi’x>>x * 2] G R

Now plug (43)—(48) into the first formula of (5) and we can get

—ﬁwmaw

ob bt
2 ~12\2 ~12 2\2
- {(1—u1x| )(1+ p2lz]?) ﬁﬂl—mlxl )14 pa|z]?) W}

dq,

ozt

95¢

k 2)\2 q"/'wy
+ (1 + -

x ( /1,1|£L’| ) lx }

(42)
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- {2(1 + Mfﬁ)%%ﬁﬂ 201+ )2 gz;: sz}
= {8(p1 + p2)r + 421 + p2)(T, )
+4(p1 + 202)(T, x) + 4 + p2) (Az, ) pa'3¢
—2{1+ (2p1 + p2) TP} T2" — 2{1 + (u1 + 2u0) |2} 77
— 2{1+ (p1 + p2)|TP ALk 2t — 2{1 + (11 + po)|z[*} AT 275E
+ (1+ o) AL + (14 pua ][] A5 (49)

Put © =0 and Z = 0 in (49) respectively. We have

0zt (14 pofz]2)?’ dxt (14 mlaf2)?’

where we define
Vs i= —QL 77 — (1 — po|Z|?) Bl — 2ue BLZV 3¢ + 24T 2736 + 21776 — |72 AS
&y 3 ¥ ¥ i
Y, = —kaxk - (1- u1|x|2)Bf — 2ulB£mka§i + 2Aixkxi 12Tyt — |x|2gi,

i g5 3 O Bi b e o
ng = %(O% Qik T o€ (0)7 Bg = ozt (0), Bz T %(0)

Plugging (50) into (49) gives
90t
{<1 e e 4 (14 el qW}
= {8(u1 + p2)k + 4(2p1 + p2)(T, T) + Ay + 2012)(T, )
+4((p1 + p2)(Ax, 7) }z':cg —2(2p1 + )| EPTE 2" — 2(pq + 2p0) |2 |PT 3¢
— 2(p + p2) T Afab e’ — 2 + o) 2P ALETE 4 (14 pio| )] AL
+ (14 mlzP)FPA] - QLE — Q5a* — (1 — wol7)) B
— (1= |z} BS — 2us BI777° — 2y Bpak o', (51)

Contracting (51) with 2% and ¢ yields

{(11 + p12) (Az, T) + 221 + p2)(T, T) +2(p11 + 202)(T, ) + 8(p1 + o) ] |7
+ (|2 + [21*)(Az, Z) + (p2|Z*BE + m|2*Bf)3%a" — 2u0|7* B 772
- 2,ul|:v|2B,§:ck§5 - @275755301' - kaxkzifg - (éz + B2’ =0, (52)
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where we have used the skew-symmetry of the matrices (¢}) and (fﬁ/) The coef-
ficients of every order in (52) must be zero. As for the orders six, five, three and
two, we have

(11 + p2)A =0, (2p1 + p2)€ =0, (11 + 2p2)n =0, (53)
Q=0 Q=0  Bi+Bi=0. (54)
The terms of order four in (52) can be simplified to
8(pr + p2)klz |7 + ((Az — p1 B, 7)) x> + (AT — o BZ, 2)) |7 (55)
By (55) we have
(m1+p2)k =0, A—mB=0, A—B=0, (56)
where the matrices B := (B%) and B := (Eé) By (53), (54) and (56), we get (51)

simplified to

/\f
9q; 2 O,
— (L TPt — (14 PP S
=2{( |:1:|2 + 72 A8 — Afakat — AV}
Differentiating (57) by z* and then putting x = 0, we have

oq) 1 O*¢,
076 (14 pol|z)?)? 0zioxk

(0)3. (58)

Similarly, differentiating (57) by 7 and then putting = 0, we have

ot 1 92qi
T _ 9 (0)zk. (59)
ot (14 p1|x|?)? OxtdzY
”
By (58) and (59), we see that S2 are symmetric in the indices i, k, and ZZZ are

symmetric in the indices &, ~. Then by the skew symmetry of the matrices (q}c)
and (q5), we see that
dqp _, 0% _
ox¢ 7 Ozt
which imply that the matrices (g} (%)) and (g5 (x)) are constant matrices. Again
by (60) and (57) we get

(60)

A=A=o. (61)
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Then by (54), (56) and (61) we conclude that j, B =0, usB = 0; and B = B =0
if (111)%+ (p2)? # 0. Now by this fact, (54) and (61), we can solve the differential
equations (50). We can obtain

, ~T a2 (1 + po|Z|?)| + 0%, if po #0,
bi(3) = /<[ 2+ ',)] ’ (62)
ZPT — Bi3Y + o, if pp =0,

where (0%) and (w?) are constant vectors. Similarly, we have

N —T¢ 1+ pa|z|?)] + 65, if 0,
) ~/[m( pa )] p # (63)
|z|>T¢ — B,ﬁxk + &t if p; =0,

where (6¢) and (&%) are constant vectors. By (53), (56) and (61) we have

(2u1 +p2)T =0, (1 +2p2)T =0, (p1 + p2)s =0,
A=A=0, yB=0,uB=0.

Therefore, we have the following different cases:
ia) py = pe =0, A=A=0.

ib) jy =—ps #0, T=T=0, A=A=0, B=B=0.

(ic) pp = —p2/2#0, k=0, T=0, A=A=0, B=DB=0.

id) pg=—p1/240, k=0, T=0, A=A=0, B=B=0.
)

A=A=0, B=B=0.
(f) p1 =0, e #0, k=0, T=T=0, A=A=0, B=B=0.
(ig) p1 #0, p2 =0, k=0, T=T=0, A=A=0, B=B=0.

According to the above different cases, we get the corresponding S-curvature
from (41); and by plugging (36), (42), (60), (62) and (63) into (7) and (8), we can
obtain the expressions of W% and W¥. O

5. Randers metrics of constant S-curvature

In this section, we construct some Randers metrics of constant S-curvature
in every dimension n > 3, with the corresponding Riemann metrics h’s from the
navigation problem being not locally conformally flat.

First we show two results as follows:
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Theorem 5.1. Let F = a+f be a 3-dimensional Randers metric determined
by the navigation data (h, W) on R? x R! with

h= e ()2 + 2] + ()

where W = W (z!, 2% 22) is a vector field on R?> x R}'. Then F is of isotropic
S-curvature if and only if the following hold (i = 1,2):

owt  ow? owt  ow?

= = — 4
Ox? + ox! 0. Ox! Ox2’ (64)

oWt ows3 oWt do do ow?

o' - — ) 1 2 —9
95 " om0 Yo TWoam TWoam =2 ()

In this case, the isotropic S-curvature S = 4c(zt, 2%, 2®)F is determined by
ow'! do do 1oW?3
1,2 .3y _ _+ 1 2 __

ol x%,2°) = 426 +W61+W62 5 905 " (66)

In Theorem 5.1, if Wi = Wi(x!, 22) and W3 = W3(23), then the first formula
in (65) holds naturally and the S-curvature is constant given by (66). The proof
of Theorem 5.1 is similar to that of Theorem 1.1(i).

Theorem 5.2. Let F' = a + 8 be an n-dimensional Randers metric de-
termined by the navigation data (h,W) on a product manifold M x M with
h = VH?+ H?, where (M,H) and (M, H) are two Riemann manifolds and
W = (Wi(z), WE(T)) is a vector field on M x M. Let Fy be a Randers metric
determined by the navigation data (H,{W'}) and Fy be another Randers metric
determined by the navigation data (fl AWEY). If Fy and Fy are of constant S-
curvature with the same constant c, that is, S = (m+1)cF; and So = (m+1)cFy,
then F is also of constant S-curvature S = (n + 1)cF.

Theorem 5.2 is easily proved by (2). We omit the details. Now in the follo-
wing, we construct examples of constant S-curvature in every dimension n > 3.

Let F' = a4+ 3 be a 2-dimensional Randers metric determined by the navi-
gation data (h, W), where h;; = e"(z)éij with

o = Aijxixj + Blitl + 07 (67)

where the 2-order matrix (A;;) is symmetric, B is a constant vector and C is a

constant; and
Wl = —a12? + by, W? = ayz' + by, (68)



86 Guojun Yang

where ay, by, by are constant. It has been proved in [12] that, if the coefficients
in (67) and (68) satisfy

Ai2=0
a; =0 A = Ag
b1A11 + b2 A2 =0, or B, = *&An (69)
biA1z + b Az =0 “

B, = %Au

then F' is of constant S-curvature S = 3c¢F given by
1
c= _Z(blBl + b2 Bs). (70)

If further in (69), A11 + Aaa # 0, then h is not of constant sectional curvature.
Now Let F' = a + B be a 3-dimensional Randers metric determined by the
navigation data (h, W) on R? x R!, where h is defined by

h— \/62"[(y1)2 +(12)2] + (%)
with o = o (2!, 2?) being given by (67), and for the vector field
W= (Wl(xl,l‘Q), WQ(x17x2)7 WB(xS)),

W1 and W? are given by (68) satisfying (69) and A+ Age # 0, and W3 = —2ca3
with ¢ being given by (70). Then by Theorem 5.1, F' is of constant S-curvature
S = 4c¢F with h being not locally conformally flat by Lemma 2.1(ii).

By using the above 2-dimensional Randers metrics of constant S-curvature
and Theorem 5.2, we can construct a class of Randers metrics of constant S-
curvature in every dimension n > 4, with the corresponding Riemann metrics
h’s being not locally conformally flat. For details, we suppose in Theorem 5.2
that H and W!(2!, 22), W2(z!, 2?) are given by (67), (68) satisfying (69) and
A1 + Agg # 0, and let H and W¢ (Z) be arbitrarily given such that Fs is of
constant S-curvature Sq = (m + 1)cFy with ¢ given by (70), then F is of constant
S-curvature S = (n + 1)cF by Theorem 5.2, and the corresponding Riemann
metric h is not locally conformally flat by Lemma 2.1(i).
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