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Asymptotic stability of differential equations with several delays

By CHUHUA JIN (Guangdong) and JIAOWAN LUO (Guangdong)

Abstract. The linear scalar differential equation with several delays

x′(t) = −
N∑
i=1

bi(t)x(t− τi(t))

is investigated, where bi(t) ∈ C(R+, R) and τi(t) ∈ C(R+, R+) for i = 1, 2, . . . , N . Using

fixed point theory, some new conditions for asymptotic stability of the zero solution are

established. For N = 1, our theory improves the results in the earlier publications. For

N = 2, two examples, which the results in the literature can not be applied to, are given

to show the feasibility and effectiveness of our result.

1. Introduction

In this paper we consider the linear differential equation with several delays

of the form

x′(t) = −
N∑

i=1

bi(t)x(t− τi(t)), (1.1)

where bi ∈ C(R+, R) and τi ∈ C(R+, R+) with t − τi(t) → ∞ as t → ∞ for

i = 1, 2, . . . , N , R+ = [0,+∞). When N = 1 and N = 2, τ1 = 0, equation (1.1)

reduces to

x′(t) = −b(t)x(t− τ(t)) (1.2)
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and

x′(t) = −b1(t)x(t)− b2(t)x(t− τ(t)), (1.3)

respectively.

Equation (1.2), as well as more general cases, has been studied by many

authors. Yorke [14] showed the following well-known result: If there are two

positive numbers β and q such that

0 < b(t) ≤ β, τ(t) ≤ q, and βq <
3

2
, (1.4)

then the trivial solution of (1.2) is uniformly stable. Yoneyama [12] generalized

condition (1.4) to

inf
t≥0

∫ t+q

t

b(s)ds > 0, τ(t) ≤ q, and sup
t≥0

∫ t+q

t

b(s)ds <
3

2
. (1.5)

Krisztin [8] extended the Yorke’s theorem and obtained that if bi : R
+ → R+ is

continuous, bi(t) ≤ βi, and τi : R
+ → [0, qi] is continuous for i = 1, 2, . . . , N , then

the zero solution of (1.1) is uniformly stable if ΣN
i=1βiqi ≤ 1, and is uniformly

asymptotically stable if ΣN
i=1βiqi < 1.

Under conditions that b(t) ≥ 0 and τ(t) is bounded, Yoneyama [13] also

gave a generalization of the result of Yorke [14] and showed that if

λ = supt≥0

∫ t

t−τ(t)
b(s)ds < 3

2 and µ = inft≥0

∫ t

t−τ(t)
b(s)ds > 0, then the zero so-

lution of (1.2) is uniformly asymptotically stable, Yoneyama [11] showed that in

case
∫ t

t−τ(t)
b(s)ds → 0 as t → ∞, the zero solution of x′(t) = −b(t)f(x(t− τ(t)))

is uniformly stable, and Hara et al. [6] showed that if supt≥0

∫ t

t−τ(t)
b(s)ds < 1

and
∫ t

0
b(s)ds = ∞, then the zero solution of (1.2) is uniformly stable and asymp-

totically stable. Furthermore, Muroya [9] told us that inft≥0

∫ t

t−τ(t)
b(s)ds > 0

is usually not an essential condition for the zero solution of (1.2) to be asympto-

tically stable.

All the above mentioned papers usually require that the delays be bounded.

However, in a paper by Graef et al. [5], boundedness and stability are obtained

without asking that τ(t) be bounded. We state their theorem for equation (1.2).

Theorem A ([5]). Suppose that b(t) ≥ 0 for t ≥ 0, t− τ(t) → ∞ as t → ∞
and

lim sup
t→∞

∫ t

t−τ(t)

b(s)ds = µ < 1. (1.6)

Then the zero solution of (1.2) is asymptotically stable if and only if
∞∫
0

b(s)ds=∞.
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Note that the sign condition b(t) ≥ 0 is required by Theorem A. Burton

[3] eliminated this condition for the case τ(t) = r, a constant, by applying fixed

point theory with an appropriate mapping function. It has been shown that

many problems encountered in the study of stability by means of Lyapunov’s

direct method can be solved by using fixed point theory, see [2], [4].

Theorem B ([3]). Suppose that τ(t) = r and there exists a constant α < 1

such that
∫ t

t−r

|b(s+ r)|ds+
∫ t

0

|b(s+ r)|e−
∫ t
s
b(u+r)du

∫ s

s−r

|b(u+ r)|duds ≤ α (1.7)

for all t ≥ 0 and
∫∞
0

b(s)ds = ∞. Then for every continuous initial function

ψ : [−r, 0] → R, the solution x(t) = x(t, 0, ψ) of (1.2) is bounded and tends to

zero as t → ∞.

Zhang [16] generalized Theorem B to (1.1) for unbounded τi(t)
,s and showed

that
∫∞
0

b(s)ds = ∞ is a necessary condition for asymptotic stability.

Theorem C ([16]). Suppose that τi is differentiable, the inverse function

gi(t) of t− τi(t) exists, and there exists a constant α ∈ (0, 1) such that for t ≥ 0,

lim inf
t→∞

∫ t

0

Q(s)ds > −∞, (1.8)

N∑

i=1

[ ∫ t

t−τi(t)

|bi(gi(s))|ds+
∫ t

0

e−
∫ t
s
Q(u)du|Q(s)|

∫ s

s−τi(s)

|bi(gi(v))|dvds

+

∫ t

0

e−
∫ t
s
Q(u)du|bi(s)| |τ ′i(s)|ds

]
≤ α. (1.9)

Then the zero solution of (1.1) is asymptotically stable if and only if

∫ t

0

Q(s))ds → ∞ as t → ∞, (1.10)

where Q(t) :=
∑N

i=1 bi(gi(t)).

Jin and Luo [7] generalized and improved Theorems B and C for (1.2).

Raffoul [10] investigated equation (1.3) and obtained

Theorem D ([10]). Suppose that there exists a constant α ∈ (0, 1) such

that for t ≥ 0 ∫ t

0

b1(s)ds → ∞ as t → ∞, (1.11)
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and ∫ t

0

e−
∫ t
s
b1(u)du|b2(s)|ds ≤ α. (1.12)

Then every solution x(t) = x(t, 0, ψ) of (1.3) with small continuous initial function

ψ(t), is bounded and tends to zero as t → ∞.

Moreover, Zhang [15] showed that if (1.12) holds, (1.11) is a necessary con-

dition for asymptotic stability for (1.3).

For more 100 years, Lyapunov’s direct method has been the main tool for

investigating stability properties of ordinary, functional and partial differential

equations. Yet, there is a large set of problems for which it has been ineffective.

The purpose of this paper is to establish some new asymptotic stability conditions

for (1.1) by fixed-point methods. These conditions do not require the boundedness

of delays τi(t), nor do they ask for a fixed sign on the coefficient functions bi(t).

Our theory improves the results in [5]–[7] for (1.2). Two examples are presented

to show that our result is stronger than those in [3], [10], [15], [16].

2. Main results

Let C(S1, S2) denote the set of all continuous functions φ : S1 → S2. Define

mi(θ) = inf{s − τi(s) : s ≥ θ}, m̃(θ) = min{mi(θ) : 1 ≤ i ≤ N}, and C̃(θ) =

C([m̃(θ), θ], R) with the supremum norm || · ||.
For each (t0, φ) ∈ R+× C̃(t0), a solution of (1.1) through (t0, φ) is a continu-

ous function x : [m̃(t0), t0 + α) → Rn for some positive constant α > 0 such that

x(t) satisfies (1.1) on [t0, t0 + α) and x(s) = φ(s) for s ∈ [m̃(t0), t0]. We denote

such a solution by x(t) = x(t, t0, φ). For each (t0, φ) ∈ R+ × C̃(t0), there exists a

unique solution x(t) = x(t, t0, φ) of (1.1) defined on [t0,+∞). Stability definitions

may be found in [1], for example.

Theorem 2.1. Suppose that there exist a constant α ∈ (0, 1) and functions

τ0 ∈ C(R+, R+) with t − τ0(t) → ∞ as t → ∞, h ∈ C([m0(0),∞), R), where

m0(θ) = inf{s− τ0(s) : s ≥ θ}, such that for t ≥ 0,

(i) lim inf
t→∞

∫ t

0

h(s)ds > −∞,

(ii)

∫ t

t−τ0(t)

|h(s)|ds+
∫ t

0

e−
∫ t
s
h(u)du|h(s)|

∫ s

s−τ0(s)

|h(v)|dvds



Asymptotic stability of differential equations with several delays 93

+

∫ t

0

e−
∫ t
s
h(u)du

∣∣∣∣h(s− τ0(s))(1− τ ′0(s))−
N∑

k=1

bk(s)

∣∣∣∣ds

+

N∑

k=1

∫ t

0

e−
∫ t
s
h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)|dv
∣∣∣∣ds ≤ α.

where bi(t) is well-defined and continuous in [m(0),∞) (m(θ) = min{mi(θ) :

0 ≤ i ≤ N}) for i = 1, 2, . . . , N .

Then the zero solution of (1.1) is asymptotically stable if and only if

(iii)

∫ t

0

h(s)ds → ∞ as t → ∞.

Proof. First, suppose that (iii) holds. For each t0 ≥ 0, we set

K = sup
t≥0

{e−
∫ t
0
h(s)ds}. (2.1)

and define C(t0) = C([m(t0), t0], R) with the supremum norm ‖ ·‖. Let φ ∈ C(t0)

be fixed and define

S = {x ∈ C([m(t0),∞), R) : x(t) → 0 as t → ∞, x(s) = φ(s) for s ∈ [m(t0), t0]}.

Then S is a complete metric space with metric ρ(x, y) = supt≥t0{|x(t)− y(t)|}.
Rewrite (1.1) in the following form:

x′(t) = −
N∑

k=1

bk(t)x(t− τ0(t))−
N∑

k=1

bk(t)

∫ t−τ1(t)

t−τ0(t)

x′(s)ds

−
N∑

k=2

bk(t)

∫ t−τ2(t)

t−τ1(t)

x′(s)ds− · · · − bN (t)

∫ t−τN (t)

t−τN−1(t)

x′(s)ds

= −
N∑

k=1

bk(t)x(t− τ0(t))−
N∑

k=1

N∑

j=k

bj(t)

∫ t−τk(t)

t−τk−1(t)

N∑

i=1

bi(s)x(s− τi(s))ds.

Multiplying both sides of (2.2) by e
∫ t
0
h(s)ds and integrating from t0 to t, we obtain

x(t) = φ(t0)e
− ∫ t

t0
h(s)ds −

∫ t

t0

e−
∫ t
s
h(u)du

N∑

k=1

bk(s)x(s− τ0(s))ds

+

∫ t

t0

e−
∫ t
s
h(u)duh(s)x(s)ds−

N∑

k=1

∫ t

t0

e−
∫ t
s
h(u)du

N∑

j=k

bj(s)
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×
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

bi(v)x(v − τi(v))dvds. (2.2)

Then an integration by parts yields the following integral equation

x(t) =

(
φ(t0)−

∫ t0

t0−τ0(t0)

h(s)φ(s)ds

)
e
− ∫ t

t0
h(u)du

+

∫ t

t−τ0(t)

h(s)x(s)ds

−
∫ t

t0

e−
∫ t
s
h(u)duh(s)

∫ s

s−τ0(s)

h(v)x(v)dvds

+

∫ t

t0

e−
∫ t
s
h(u)du

{
h(s− τ0(s))(1− τ ′0(s))−

N∑

k=1

bk(s)

}
x(s− τ0(s))ds

−
N∑

k=1

∫ t

t0

e−
∫ t
s
h(u)du

N∑

j=k

bj(s)

∫ s−τk(s)

s−τk−1(s)

N∑

i=1

bi(v)x(v − τi(v))dvds. (2.3)

Use (2.3) to define the operator P : S → S by (Px)(t) = φ(t) for t ∈ [m(t0), t0]

and

(Px)(t) =

(
φ(t0)−

∫ t0

t0−τ0(t0)

h(s)φ(s)ds

)
e
− ∫ t

t0
h(u)du

+

∫ t

t−τ0(t)

h(s)x(s)ds

−
∫ t

t0

e−
∫ t
s
h(u)duh(s)

∫ s

s−τ0(s)

h(v)x(v)dvds

+

∫ t

t0

e−
∫ t
s
h(u)du

{
h(s− τ0(s))(1− τ ′0(s))−

N∑

k=1

bk(s)

}
x(s− τ0(s))ds

−
N∑

k=1

∫ t

t0

e−
∫ t
s
h(u)du

N∑

j=k

bj(s)

∫ s−τk(s)

s−τk−1(s)

N∑

i=1

bi(v)x(v − τi(v))dvds (2.4)

for t ≥ t0. It is clear that (Px) ∈ C([m(t0),∞), R). Now consider the asymptotic

behavior of each of the above terms as t → ∞. The first term tends to 0 by

(ii). Because x(t) → 0 as t → ∞, the same is true of the second term. Next

we will prove that last term I5 in (2.4) approaches to zero. Since x(t) → 0 and

t− τi(t) → ∞ as t → ∞, for each ε > 0, there exist T1, T2 > 0 such that s ≥ T1

implies s − τi(s)) > T2 and v ≥ T2 implies |x(v − τi(v))| < ε for i = 1, 2, . . . , N .

Thus, for t ≥ T1,

|I5| =
∣∣∣∣

N∑

k=1

∫ t

t0

e−
∫ t
s
h(u)du

N∑

j=k

bj(s)

∫ s−τk(s)

s−τk−1(s)

N∑

i=1

bi(v)x(v − τi(v))dvds

∣∣∣∣
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≤
N∑

k=1

∫ T1

t0

e−
∫ t
s
h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)| |x(v − τi(v))|dv
∣∣∣∣ds

+

N∑

k=1

∫ t

T1

e−
∫ t
s
h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)||x(v − τi(v))|dv
∣∣∣∣ds

≤ sup
σ≥m(t0)

|x(σ)|
N∑

k=1

∫ T1

t0

e−
∫ t
s
h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)|dv
∣∣∣∣ds

+ ε

N∑

k=1

∫ t

T1

e−
∫ t
s
h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)|dv
∣∣∣∣ds.

By (iii), there exists T3 > T1 such that t ≥ T3 implies

sup
σ≥m(t0)

|x(σ)|
N∑

k=1

∫ T1

t0

e−
∫ t
s
h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)|dv
∣∣∣∣ds

= sup
σ≥m(t0)

|x(σ)|e−
∫ t
T1

h(u)du
N∑

k=1

∫ T1

t0

e−
∫ T1
s

h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣

×
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)|dv
∣∣∣∣ds < ε.

Apply (ii) to obtain |I5| ≤ ε + αε < 2ε. Thus, I5 → 0 as t → ∞. Similarly, we

can show that the rest of the terms in (2.4) approach zero as t → ∞. This yields

(Px)(t) → 0 as t → ∞, and hence Px ∈ S. Also, by (ii), P is a contraction

mapping with contraction constant α. By the Contraction Mapping Principle,

P has a unique fixed point x in S which is a solution of (1.1) agreeing with the

initial function φ(s) on [m(t0), t0] and x(t) = x(t, t0, φ) → 0 as t → ∞.

In order to obtain the asymptotic stability, we need to prove that the zero

solution of (1.1) is stable. Let ε > 0 be given and choose δ > 0(δ < ε) satisfying

2δKe
∫ t0
0 h(u)du + αε < ε. If x(t) = x(t, t0, φ) is a solution of (1.1) with ‖φ‖ < δ,

then x(t) = (Px)(t) defined in (2.4). We claim that |x(t)| < ε for all t ≥ t0.

Notice that |x(s)| < ε on [m(t0), t0]. If there exists t∗ > t0 such that |x(t∗)| = ε

and |x(s)| < ε for m(t0) ≤ s < t∗, then it follows from (2.4) that

|x(t∗)| = ‖φ‖
(
1 +

∫ t0

t0−τ0(t0)

|h(s)|ds
)
e
− ∫ t∗

t0
h(u)du

+ ε

∫ t∗

t∗−τ0(t∗)
|h(s)|ds

+ ε

∫ t∗

t0

e−
∫ t∗
s

h(u)du|h(s)|
∫ s

s−τ0(s)

|h(v)|dvds
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+ ε

∫ t∗

t0

e−
∫ t∗
s

h(u)du

∣∣∣∣h(s− τ0(s))(1− τ ′0(s))−
N∑

k=1

bk(s)

∣∣∣∣ds

+ ε

N∑

k=1

∫ t∗

t0

e−
∫ t∗
s

h(u)du

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)|dv
∣∣∣∣ds

≤ 2δKe
∫ t0
0 h(u)du + αε < ε, (2.5)

which contradicts the definition of t∗. Thus |x(t)| < ε for all t ≥ t0, and the

zero solution of (1.1) is stable. This shows that the zero solution of (1.1) is

asymptotically stable if (iii) holds.

Conversely, suppose (iii) fails. Then by (i) there exists a sequence {tn}, tn →
∞ as n → ∞ such that limn→∞

∫ tn
0

h(u)du = l for some l ∈ R. We may also

choose a positive constant J satisfying

−J ≤
∫ tn

0

h(s)ds ≤ J

for all n ≥ 1. Let

ω(s) = |h(s)|
∫ s

s−τ0(s)

|h(v)|dv +
∣∣∣∣h(s− τ0(s))(1− τ ′0(s))−

N∑

k=1

bk(s)

∣∣∣∣

+

N∑

k=1

∣∣∣∣
N∑

j=k

bj(s)

∣∣∣∣
∣∣∣∣
∫ s−τk(s)

s−τk−1(s)

N∑

i=1

|bi(v)|dv
∣∣∣∣

for all s ≥ 0. By (ii), we have

∫ tn

0

e−
∫ tn
s

h(u)duω(s)ds ≤ α,

which leads to ∫ tn

0

e
∫ s
0
h(u)duω(s)ds ≤ αe

∫ tn
0

h(u)du ≤ eJ .

The sequence {∫ tn
0

e
∫ s
0
h(u)duω(s)ds} is bounded, so there exists a convergent sub-

sequence. For brevity in notation, we may assume

lim
n→∞

∫ tn

0

e
∫ s
0
h(u)duω(s)ds = γ

for some γ ∈ R+ and choose a positive integer k̄ so large that

∫ tn

tk̄

e
∫ s
0
h(u)duω(s)ds < δ0/4K
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for all n ≥ k̄, where δ0 > 0 satisfies 2δ0KeJ + α < 1.

By (i), K in (2.1) is well defined. We now consider the solution x(t) =

x(t, tk̄, φ) of (1.1) with φ(tk̄) = δ0 and |φ(s)| ≤ δ0 for s ≤ tk̄. An argument

similar to that in (2.5) shows |x(t)| ≤ 1 for t ≥ tk̄. We may choose φ so that

φ(tk̄)−
∫ tk̄

tk̄−τ0(tk̄)

h(s)φ(s)ds ≥ 1

2
δ0.

It follows from (2.4) with x(t) = (Px)(t) that for n ≥ tk̄,

∣∣∣∣x(tn)−
∫ tn

tn−τ0(tn)

h(s)x(s)ds

∣∣∣∣ ≥
1

2
δ0e

− ∫ tn
tk̄

h(u)du −
∫ tn

tk̄

e−
∫ tn
s

h(u)duω(s)ds

=
1

2
δ0e

− ∫ tn
tk̄

h(u)du − e−
∫ tn
0

h(u)du

∫ tn

tk̄

e
∫ s
0
h(u)duω(s)ds

= e
− ∫ tn

t
k̄

h(u)du
(
1

2
δ0 − e−

∫ tk̄
0 h(u)du

∫ tn

tk̄

e
∫ s
0
h(u)duω(s)ds

)

≥ e
− ∫ tn

tk̄
h(u)du

(
1

2
δ0 −K

∫ tn

tk̄

e
∫ s
0
h(u)duω(s)ds

)

≥ 1

4
δ0e

− ∫ tn
t
k̄

h(u)du ≥ 1

4
δ0e

−2J > 0. (2.6)

On the other hand, if the zero solution of (1.1) is asymptotically stable, then

x(t) = x(t, tk̄, φ) → 0 as t → ∞. Since tn − τ(tn) → ∞ as n → ∞ and (ii) holds,

we have

x(tn)−
∫ tn

tn−τ0(tn)

h(s)x(s)ds → 0 as n → ∞

which contradicts (2.6). Hence condition (iii) is necessary for the asymptotic

stability of the zero solution of (1.1). The proof is complete. ¤

Corollary 2.2. Suppose that there exist a constant α ∈ (0, 1) and functions

τ0 ∈ C(R+, R+) with t − τ0(t) → ∞ as t → ∞, h ∈ C([m0(0),∞), R) such that

for t ≥ 0

(i) lim inf
t→∞

∫ t

0

h(s)ds > −∞,

(ii)

∫ t

t−τ0(t)

|h(s)|ds+
∫ t

0

e−
∫ t
s
h(u)du|h(s)|

∫ s

s−τ0(s)

|h(v)|dvds
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+

∫ t

0

e−
∫ t
s
h(u)du

∣∣∣∣h(s− τ0(s))(1− τ ′0(s))− b(s)

∣∣∣∣ds

+

∫ t

0

e−
∫ t
s
h(u)du|b(s)|

∣∣∣∣
∫ s−τ(s)

s−τ0(s)

|b(v)|dv
∣∣∣∣ds ≤ α.

Then the zero solution of (1.2) is asymptotically stable if and only if

∫ t

0

h(s)ds → ∞ as t → ∞.

Remark 2.3. It follows from the first part of the proof of Theorem 2.1 that

the zero solution of (1.1) is stable under (i) and (ii). Moreover, Theorem 2.1 still

holds if (ii) is satisfied for t ≥ tσ for some tσ ≥ R+.

Remark 2.4. When b(t) ≥ 0, we choose τ0(t) ≡ 0 and h(t) ≡ b(t), Corol-

lary 2.2 reduces to Theorem A. Thus, the condition b(t) ≥ 0 is eliminated and

hence, Corollary 2.2 improves Theorem A.

Remark 2.5. We choose τ0(t) ≡ τ(t), Corollary 2.2 reduces to the result of [7]

for (1.2).

Remark 2.6. For two functions τ0 and h(t) being introduced, our result is

stronger than those in [3,10,15,16], See Examples 3.1 and 3.2.

3. Examples

Example 3.1. Consider the scalar equation with two delays

x′(t) = −b1(t)x(t− τ1(t))− b2(t)x(t− τ2(t)), (3.1)

where τ1(t) = 0.15t, τ2(t) = 0.28t, and b1(t) =
1.55

0.85t+1 , b2(t) =
0.45

0.72t+1 . Following

the notation in Theorem C, we have b1(g1(t)) =
1.55
t+1 , b2(g2(t)) =

0.45
t+1 . Thus, as

t → ∞,

∫ t

t−τ1(t)

|b1(g1(s))|ds =
∫ t

0.85t

1.55

s+ 1
ds

= 1.55 ln
t+ 1

0.85t+ 1
−→ −1.55 ln 0.85 = 0.2519,

∫ t

t−τ2(t)

|b2(g2(s))|ds =
∫ t

0.72t

0.45

s+ 1
ds
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= 0.45 ln
t+ 1

0.72t+ 1
−→ −0.45 ln 0.72 = 0.1478,

∫ t

0

e−
∫ t
s
Q(u)du|Q(s)|

∫ s

s−τ1(s)

|b1(g1(v))|dvds −→ 0.2519,

∫ t

0

e−
∫ t
s
Q(u)du|Q(s)|

∫ s

s−τ2(s)

|b2(g2(v))|dvds −→ 0.1478,

∫ t

0

e−
∫ t
s
Q(u)du|b1(s)| |τ ′1(s)|ds

=

∫ t

0

e−
∫ t
s

2
u+1du

1.55× 0.15

0.85s+ 1
ds −→ 1.55× 0.15

2× 0.85
= 0.1368.

∫ t

0

e−
∫ t
s
Q(u)du|b2(s)| |τ ′2(s)|ds

=

∫ t

0

e−
∫ t
s

2
u+1du

0.45× 0.28

0.72s+ 1
ds −→ 0.45× 0.28

2× 0.72
= 0.0875.

Thus, we have

lim
t→∞

2∑

j=1

{∫ t

t−τj(t)

|bj(gj(s))|ds+
∫ t

0

e−
∫ t
s
Q(u)du|Q(s)|

∫ s

s−τj(s)

|bj(gj(v))|dvds

+

∫ t

0

e−
∫ t
s
Q(u)du|bj(s)| |τ ′j(s)|ds

}
= 1.0237.

Thus there exists some t0 > 0 such that t ≥ t0,

2∑

j=1

{∫ t

t−τj(t)

|bj(gj(s))|ds+
∫ t

0

e−
∫ t
s
Q(u)du|Q(s)|

∫ s

s−τj(s)

|bj(gj(v))|dvds

+

∫ t

0

e−
∫ t
s
Q(u)du|bj(s)| |τ ′j(s)|ds

}
> 1.02.

This implies that condition (1.9) does not hold. Thus, Theorem C cannot be

applied to equation (3.1).

However, choosing τ0(t) = τ1(t) = 0.15t and h(t) = 2.3
t+1 , we have

∫ t

t−τ0(t)

|h(s)|ds =
∫ t

0.85t

2.3

s+ 1
ds = 2.3 ln

t+ 1

0.85t+ 1
< 0.3738,

∫ t

0

e−
∫ t
s
h(u)du|h(s)|

∫ s

s−τ0(s)

|h(v)|dvds < 0.3738,
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∫ t

0

e−
∫ t
s
h(u)du|h(s− τ0(s))(1− τ ′0(s))− b1(s)− b2(s)|ds

=

∫ t

0

e−
∫ t
s

2.3
u+1du

(
0.45

0.72s+ 1
− 0.405

0.85s+ 1

)
ds

=

∫ t

0

e−
∫ t
s

2.3
u+1du

0.0909s+ 0.045

(0.72s+ 1)(0.85s+ 1)
ds

≤ 0.0909

0.72

∫ t

0

e−
∫ t
s

2.3
u+1du × 1

0.85s+ 1
ds ≤ 0.0909

2.3× 0.72× 0.85
< 0.0646.

Notice that

∣∣∣∣
∫ t−τ2(t)

t−τ1(t)

(|b1(s)|+ |b2(s)|)ds
∣∣∣∣ =

∫ 0.85s

0.72s

(
1.55

0.85s+ 1
+

0.45

0.72s+ 1

)
ds

≤
(
1.55

0.85
+

0.45

0.72

)
ln

0.85

0.72
< 0.4065,

so

∫ t

0

e−
∫ t
s
h(u)du|b2(s)|

∣∣∣∣
∫ s−τ2(s)

s−τ1(s)

(|b1(v)|+ |b2(v)|)dv
∣∣∣∣ds

≤ 0.4065

∫ t

0

e−
∫ t
s

2.3
u+1du

0.45

0.72s+ 1
ds ≤ 0.45× 0.4065

2.3× 0.72
< 0.1105.

Let α := 0.3738 + 0.3738 + 0.0646 + 0.1105 = 0.9227 < 1, then the zero solution

of (3.1) is asymptotically stable by Theorem 2.1.

Example 3.2. Consider the following equation

x′(t) = −b1(t)x(t)− b2(t)x(t− τ(t)), (3.2)

where τ(t) = 0.14t, b1(t) =
0.84

0.87t+1 , b2(t) =
0.84

0.86t+1 . Obviously,

lim
t→∞

∫ t

0

e−
∫ t
s
b1(u)du|b2(s)|ds = 0.87

0.86
,

hence there exists some t0 > 0 such that t ≥ t0,

∫ t

0

e−
∫ t
s
b1(u)du|b2(s)|ds > 1.

This implies that condition (1.12) does not hold. Thus, Theorem D cannot be

applied to equation (3.2).
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However, choosing τ0(t) = 0.13t and h(t) = 1.92
t+1 , by calculation similar to

Example 3.1, we have

∫ t

t−τ0(t)

|h(s)|ds+
∫ t

0

e−
∫ t
s
h(u)du|h(s)|

∫ s

s−τ0(s)

|h(v)|dvds

+

∫ t

0

e−
∫ t
s
h(u)du

∣∣h(s− τ0(s))(1− τ ′0(s))− b1(s)− b2(s)
∣∣ds

+

∫ t

0

e−
∫ t
s
h(u)du|b1(s) + b2(s)|

∣∣∣∣
∫ s

s−τ0(s)

(|b1(v)|+ |b2(v)|
)
dv

∣∣∣∣ds

+

∫ t

0

e−
∫ t
s
h(u)du|b2(s)|

∣∣∣∣
∫ s−τ(s)

s

(|b1(v)|+ |b2(v)|
)
dv

∣∣∣∣∣ds < 0.9913,

then the zero solution of (3.2) is asymptotically stable by Theorem 2.1.

Acknowledgement. The authors are grateful to the referees for their valuable

suggestions and comments.

References

[1] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential
Equations, Academic Press, New York, 1985.

[2] T. A. Burton and T. Furumochi, Krasnoselskii’s fixed point theorem and stability, Non-
linear Anal. 49 (2002), 445–454.

[3] T. A. Burton, Stability by fixed point theory or Liapunov’s theory: a comparison, Fixed
Point Theory 4 (2003), 15–32.

[4] T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations,
Dover Publications, New York, 2006.

[5] J. R. Graef, C. Qian and B. Zhang, Asymptotic behavior of solutions of differential
equations with variable delays, Proc. London Math. Soc. 81 (2000), 72–92.

[6] T. Hara, T. Yoneyama and R. Miyazaki, Some refinements of Razumikhin’s method and
their applications, Funkcial. Ekvac. 35 (1992), 279–305.

[7] C. H. Jin and J. W. Luo, Fixed points and stability in neutral differential equations with
variable delays, Proc. Amer. Math. Soc. 136 (2008), 809–818.

[8] T. Krisztin, On the stability properties for one dimensional functional equations, Funkcial.
Ekvac. 34 (1991), 241–256.

[9] Y. Muroya, On Yoneyama’s 3
2

stability theorems for one-dimensional delay differential

equations, J. Math. Anal. Appl. 247 (2000), 314–322.

[10] Y. N. Raffoul, Stability in neutral nonlinear differential equations with functional delays
using fixed-point theory, Math. Comput. Modelling 40 (2004), 691–700.

[11] T. Yoneyama, On the stability for the delay-differential equation
x′(t) = −a(t)f(x(t− r(t))), J. Math. Anal. Appl. 120 (1986), 271–275.



102 Chuhua Jin and Jiaowan Luo : Asymptotic stability of differential. . .

[12] T. Yoneyama, On the 3
2
stability theorem for one-dimensional functional delay-differential

equations, J. Math. Anal. Appl. 125 (1987), 161–173.

[13] T. Yoneyama, The 3
2

stability theorem for one-dimensional delay-differential equations

with unbounded delay, J. Math. Anal. Appl. 165 (1992), 133–143.

[14] J. A. Yorke, Asymptotic stability for one-dimensional functional differential-delay equa-
tions, J. Differential Equations 7 (1970), 189–202.

[15] B. Zhang, Contraction mapping and stability in a delay-differential equation, Dynam.
Systems and Appl. 4 (2004), 183–190.

[16] B. Zhang, Fixed points and stability in differential equations with variable delays, Nonli-
near Anal. 63 (2005), e233–e242.

CHUHUA JIN

FACULTY OF APPLIED MATHEMATICS

GUANGDONG UNIVERSITY OF TECHNOLOGY

GUANGZHOU, GUANGDONG 510006

P.R. CHINA

E-mail: jinchuhua@tom.com

JIAOWAN LUO

SCHOOL OF MATHEMATICS

AND INFORMATION SCIENCE

GUANGZHOU UNIVERSITY

GUANGZHOU, GUANGDONG 510006

P.R. CHINA

E-mail: mathluo@yahoo.com

(Received March 12, 2009; revised June 2, 2010)


