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Identification of almost unstable Hawkes processes

By VILMOS PROKAJ (Budapest) and BALÁZS TORMA (Budapest)

Abstract. Self-exciting point processes, also called Hawkes processes are widely

used to model credit events (defaults) on bond markets in financial mathematics. This

is a point process whose intensity is defined via a feedback mechanism where the input is

the past of the point process itself. The identification (calibration) of Hawkes processes

is a hot research area. In this paper we consider Hawkes processes in which the feedback

path is defined by a finite dimensional linear system. This feedback system admits a

stationary solution, i.e. stable, if the integral of the impulse response function of the

feedback path is strictly less than one. In this paper we calculate the limit distribution

of the appropriately rescaled state process from which we conclude that the intensity

process has a diffusion limit. Simulation results for the standard Hawkes process are

also presented.

1. Introduction

The Hawkes process (N(t))t∈R is a self-exciting point process. Its intensity

λ depends on the past of the process through the formula

λ(t) = m+

∫

(−∞,t)

g(t− u)dN(u), (1)

where m ≥ 0 and g : [0,∞) → [0,∞).

A necessary condition for (1) to have a stationary solution with λ(t) ∈ L1 is

that
∫ ∞

0

g(u)du < 1. (2)
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This condition is sufficient for the existence of a stationary process with the

structure given above, see [5].

In this paper we consider a class of Hawkes processes, proposed in [4]. In

this model the intensity λ satisfies the linear state equations

dx(t) = −Ax(t)dt + bdN(t), (3)

λ(t) = cTx(t−) +m. (4)

with a matrix A, and vectors b, c, such that the system’s impulse response is

non-negative, i.e.

g(u) = cT e−Aub ≥ 0, for all u ≥ 0. (5)

The sample path of the state process x is right continuous with left limits. The

left limit at a given time t is denoted by x(t−).

It is easy to see that Condition (2) and (5) allow us to consider only stable

matrices as −A, without loss of generality. The stability condition (2)

cTA−1b < 1. (6)

Concerning the expected value of the intensity one can easily see that the intensity

process is transient if (6) does not hold.

In this paper, our attention is focused on the identifiability of nearly unstable

models. That is, we take a parameter sequence (An, bn, cn) satisfying (5) and (6)

such that

(An, bn, cn) → (A, b, c) as n → ∞,

where

cTA−1b = 1, (7)

and we analyze the limiting behaviour of the state process. This is a first step in

understanding the behaviour of the Fisher information matrix near the boundary

of the stability domain.

From the above it is clear that we only have to deal with parameters (A, b, c)

from a rather limited set, even when we consider boundary points of the domain

of stability. So our working assumption throughout the paper is the following.

Assumption 1.

(i) The real part of any eigenvalue of A is strictly positive,

(ii) g(u)= cT e−Aub≥ 0 for all u ≥ 0,

(iii)
∫ ∞

0

g(u)du = cTA−1b ≤ 1.
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We use the term feasible parameter for (A, b, c) satisfying Assumption 1.

The log-likelihood of the observation (N(t))0≤t≤T can be written as

LT (ϑ) =

∫ T

0

−λ̂(t)dt+

∫ T

0

ln λ̂(t)dN(t)

where λ̂(t) = λ̂(t, ϑ) is the solution of (3)–(4) with the observed point process

N(t) and parameter vector ϑ, see e.g. in [2]. The Fisher information contained in

the observation of (N(t))0≤t≤T is

IT (ϑ) = E
[

− ∂2
ϑLT (ϑ)

]

= E

[

∫ T

0

∂2
ϑλ̂(t)dt−

∫ T

0

∂2
ϑ ln λ̂(t)dN(t)

]

.

It follows from the martingale property of dN(t)−λ(t)dt, that for a non-negative

predictable process C

E

[∫

C(t)dN(t)

]

=

∫

E [C(t)λ(t)] dt. (8)

For details we refer the reader to the book of Brémaud [1].

By (8) the Fisher information contained in the observation can be written as

IT (ϑ) =

∫ T

0

E

[

(∂ϑλ̂(t))(∂ϑλ̂(t))
T

λ̂2(t)
λ(t)

]

dt. (9)

Here we assume that the initial state x(0) is known, therefore λ̂(t) = λ(t) when ϑ

is the true parameter. From identity (9) and the ergodicity we can see that IT /T

has a limit, which we call the time-normalized Fisher information and denote by

I(ϑ), i.e.

I(ϑ) = E

[

λϑλ
T
ϑ

λ

]

,

where the expectation is taken with respect to the stationary distribution and

λϑ stands for the derivative ∂ϑλ̂. Recall that λϑ(t) is the derivative of the cal-

culated intensity. So if we form the extended system x̄ = (x, xϑ)
T where xϑ is

the derivative of the state vector with respect to the parameters, then λϑ can be

calculated from x̄ with a linear transformation or, in other words, with a read-out

matrix C, i.e. λϑ = Cx̄. The extended state vector fulfills a linear state equation

similar to (3)–(4) driven by the same point process N . It is easy to see that the

parameter, say (Ā, b̄, c̄) appearing in the extended state equation is feasible if the

parameter for the original system (A, b, c) were feasible. Moreover, extending the



106 Vilmos Prokaj and Balázs Torma

state does not affect the stability, i.e., the extended system admits a stationary

solution provided that the original system does so. For the simplest case, the

standard Hawkes process, see Proposition 17 below.

Thus, in order to understand the limiting behaviour of the time-normalized

Fisher information, first we need to understand the limiting behaviour of the

stationary system defined by the equations (3)–(4). In this paper we examine

this question, by showing that the appropriately rescaled state process converges

in law in the Skorohod space DRd [0,∞).

At this point we have to mention the similarities to branching processes with

immigration. Our stability condition, that is in the average, one event “genera-

tes” strictly less than one direct descendant event, corresponds to the condition of

subcriticality for the branching process, i.e. the expectation of the offspring distri-

bution is strictly less than one. For the critical case, when the average number of

offsprings is exactly one, the rescaled branching process has a limiting law similar

to the one that we obtain in Theorem 2, see [12]. In the nearly critical case, after

rescaling the sequence of branching processes with immigration approaching criti-

cality a diffusion limit is obtained in [11]. This is extended to multitype branching

processes with immigration in [6]. In both cases the diffusion limit is the same as

in our Theorem 2. Our result for the non-dominating part of the state process,

that is Theorem 4 below, is probably simpler then the corresponding fluctuation

limit theorem for branching processes with immigration, cf. [7, Theorem 2.4].

For Hawkes processes, the “fluctuation limit” is a time-homogeneous diffusion

process, actually it is a random multiple of an Orstein–Uhlenbeck process, while

for branching processes it is a time-inhomogeneous process of Orstein–Uhlenbeck

type.

1.1. Notation. kerA and imA denotes the kernel and the range of a linear map-

ping A, respectively. As usual, I stands for the identity matrix. An idempotent

linear mapping P , i.e., P = P 2 is called a projection onto imP along the subspace

kerP . We use |v| for the Euclidean norm of the vector v and |A| for the operator
norm of the linear mapping A. The Skorohod space is denoted by DRd [0,∞), for

details see [3]. Convergence in law of processes is meant in this space.

2. Motivation

In [4] a recursive algorithm was proposed for the identification of standard

Hawkes processes. Under general conditions the asymptotic accuracy of the iden-

tification is determined by the time-normalized Fisher information.
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In the standard case, (3)–(4) reduces to

dλ(t) = −a(λ(t)−m)dt+ σdN(t)

where a, σ = bc and m are positive real parameters. In this model the parameter

vector is ϑ = (a, σ,m). For the standard Hawkes process the stability condition

simplifies to σ < a. Notice, that the value ofm does not play any role in the stabi-

lity condition. Moreover, easy calculation shows that the time-normalized Fisher

information with respect to m tends to zero if a− σ → 0 with m fixed. For this

reason we exclude m from the analysis, except for some numerical investigations.

Figure 1 illustrates the effect of approaching criticality. The value of σ = 0.3

and m = 0.1 is kept fixed. On the left hand side of Figure 1, a = 0.35, while on

the right it is a = σ + 10−6.

Figure 1. Intensity in the stable (left) and the nearly unstable (right) case.

The density of events and also E [λ] is much larger when the parametriza-

tion is close to the boundary of the stability domain, i.e., when a − σ is small.

Moreover, the nearly unstable intensity process shows diffusion characteristics.

Let us now turn to the time-normalized Fisher information with respect to

the parameter a, i.e.,

I(a) = E

[

λ2
a

λ

]

.

To evaluate I(a) the joint law of λa and λ is needed. In Figure 2 the scatter

plot of λa against λ is shown with decreasing decay factor a, where a = 1 is

the critical value. We can see that the cloud gets narrower as a gets closer to 1.
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This indicates an increasing correlation between λ and λa. It is easy to calculate

the correlation coefficient, which indeed tends to −1 as a goes to 1. Comparing

the expected values of λ and λa one can see that they have the same order of

magnitude. Then, at least at a heuristic level, we can expect that λ2
a/λ ≈ λ

and I(a) ≈ E [λ] for a − σ ≈ 0. This shows that the time-normalized Fisher

information I(a) goes to infinity as a approaches the critical value. This finding

is made precise below in Theorem 19.

Figure 2. λa vs. λ in a standard Hawkes model with σ = m = 1.

In a similar manner one easily finds that λa ≈ λσ ≈ λ ≈ (a − σ)−1. Thus,

the rescaled Fisher information matrix with respect to parameters a and σ has

the form

lim
a−σ→0

(a− σ)I(a, σ) = vvT

where v is a vector with non-zero elements.

Next, we present a simulation experiment, in which ϑ = (a, σ,m) includes m

also, since in practice one can not avoid the estimation ofm. The time-normalized

Fisher information matrix is approximated with a time average

Î(ϑ) =
1

T

∫ T

0

∂ϑλ̂(t, ϑ)∂ϑλ̂(t, ϑ)
T

λ̂(t, ϑ)
dt

for T large in a long simulation of the standard Hawkes process. We keep the

parameters σ = 0.3 and m = 0.1 fixed. Figure 3 shows the diagonal elements

of this empirical matrix as a approaches σ from above. The Fisher information
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with respect to parameters a and σ is a decreasing function of a− σ, while Î(m)

is increasing. The graph of Î(m) in accordance with the simple analytical result

mentioned above, namely that I(m) tends to zero as a− σ → 0 with m fixed.

Figure 3. Diagonals of the empirical Fisher information matrix in the

standard Hawkes case.

From a practical point of view the inverse of the Fisher information matrix

I−1(ϑ) is even more important then I(ϑ) itself, since I−1(ϑ) indicates the accuracy

of parameter estimation. For example, in the standard Hawkes model asymptotic

normality holds for the maximum likelihood estimator, see [9]. The asymptotic

covariance matrix is I−1(ϑ). Note also that in the standard Hawkes case the

overparametrization issue is resolved by introducing σ = bc.

The inverse of the Fisher information matrix with a = 0.312, its eigenvalues

z and the condition number κ are

Î−1(a, σ,m) =







0.8737 0.8134 0.2007

0.8134 0.8059 0.1188

0.2007 0.1188 0.6605






, z =







0.0210

0.6156

1.7034






, κ = 81.11.

The parameters a and σ can be estimated by the maximum likelihood method

approximately equally accurately, the estimation errors with respect to these two

parameters are highly correlated in this nearly unstable case (the correlation co-

efficient is 0.9694). Moreover, the condition number is moderately high indicating
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that standard iterative numerical procedures are applicable for maximum likeli-

hood estimation of ϑ in this model.

In Figure 4 the trace of Î−1(ϑ) is shown. Theoretical considerations imply

that Tr
(

I−1(ϑ)
)

should first decrease and then go to infinity as ϑ approaches

criticality with m fixed. The curve confirms decreasing but it is incomplete on

the left due to the immense computational burden arising very close to criticality.

Figure 4. The trace of the empirical asymptotic covariance matrix in

the standard Hawkes case.

3. Limit theorems

Theorem 2. Let (An, bn, cn), n ≥ 1 and (A, b, c) be feasible parameters,

with cTnA
−1
n bn < 1 and cTA−1b = 1. Assume that (An, bn, cn) → (A, b, c) and

denote (xn(t))t≥0 the stationary solution of (3)–(4) with parameter (An, bn, cn).

Let x̄n(t) = xn(αnt)/αn, where αn = (1− cTnA
−1
n bn)

−1. Then,

x̄n
D→ y(1)A−1b

where (y(1)(t))t≥0 is the stationary solution of

dy(1)(t) = −a(y(1)(t)−m)dt+ a
√

y(1)(t)dW (t), (10)

with a = (cTA−2b)−1 > 0 and W is a standard one dimensional Wiener process.

Note, that the normalizing constant α−1
n = 1 − cTnA

−1
n bn is the distance of

the integrated impulse response to the critical value 1.

Corollary 3. Under the assumptions of Theorem 2 the rescaled (stationary)

intensity process λ̄n(t) = λ(αnt)/αn converges in distribution to the stationary

diffusion process defined by (10).

Note, that since a,m > 0, the equation for y(1)(t) is just the Cox–Ingersoll–

Ross (CIR) model for short rate. Its stationary distribution is known to be the

Γ-law. With the specific parameters its mean is m and variance is ma/2.
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Theorem 2 states that when xn is almost unstable then there is a one-

dimensional dominating part of xn. We will see below that this is due to the

spectral properties of the matrix Dn = −An + bnc
T
n , namely, that for large n

the matrix Dn has a unique small eigenvalue zn. Moreover, ker(Dn − znI) and

im(Dn−znI) are direct summands for n large. This makes it possible to define Pn

the projection onto ker(Dn−znI) along the subspace im(Dn−znI). Using Pn we

can express the dominating part of xn as Pnxn. The next statement is about the

small, non-dominating part of xn. With a different scaling, and without speeding

up the time it has a limit in distribution as well.

Theorem 4. Under the assumptions of Theorem 2

α−1/2
n

(

(I − Pn)xn,
√

λn

)

D→
(

y(2),
√
λ
)

,

where the process λ has constant sample path, i.e., λ(t) = λ(0)
d
=y(1)(0) and y(2)

is the stationary solution with values in imD of the SDE

dy(2)(t) = Dy(2)dt+ (I − P )b
√
λdW ′(t), (11)

where W ′ is a standard one-dimensional Wiener-process, D = −A + bcT and P

is the projection onto kerD along the subspace imD.

The process y(2)/
√
λ is a centered Gaussian process, actually it is a multi-

dimensional Orstein–Uhlenbeck process. The covariance of the stationary solu-

tion is

Cov(y(2)(0)/
√
λ) =

∫ ∞

0

eDs(I − P )bbT (I − PT )eD
T sds.

4. Proofs

4.1. Some linear algebra. First, we investigate the properties ofD = −A+bcT

for a feasible parameter (A, b, c). We denote the spectrum of a matrix A by sp (A).

Proposition 5. Under Assumption 1 the real parts of non-zero eigenvalues

of D = −A + bcT are strictly negative. Moreover if cTA−1b < 1 then D is

invertible.

Proof. According to Lemma 20, if D − zI is singular then either −A− zI

is singular or cT (A+ zI)−1b = 1. Thus, we have

sp (D) ⊆ sp (−A) ∪
{

z ∈ C : cT (A+ zI)−1b = 1
}

.
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sp (−A) contains eigenvalues with negative real parts by (i) of Assumption 1.

Now let z = x+ iy with x ≥ 0, y 6= 0. Then

ℜcT (A+ zI)−1b =

∫ ∞

0

cT e−Asbℜe−zsds

=

∫ ∞

0

cT e−Asbe−xs cos(ys)ds < cTA−1b ≤ 1.

That is, cT (A + zI)−1b 6= 1, which is also true for z = 0 if cTA−1b < 1. Hence

the statement follows. �

Proposition 6. Under Assumption 1 if cTA−1b = 1 then D = −A+ bcT is

singular, and the multiplicity of zero in the spectrum is one, i.e. kerD and imD

are direct summands, with dimkerD = 1.

Proof. DA−1b = 0 so D is singular and it can be seen from

0 = Dv = −Av + (cT v)b

that any eigenvector with eigenvalue 0 has to be a multiple of A−1b. It remains

to show that A−1b /∈ imD. Note, that by Assumption 1 (i)

A−n =

∫ ∞

0

sn−1

(n− 1)!
exp {− sA} ds, for n ≥ 1.

So we get that

cTA−1A−1b = cTA−2b =

∫ ∞

0

scT e−Asbds > 0.

On the other hand

cTA−1Du = −cTu+ cTA−1bcTu = 0.

Hence A−1b /∈ imD and the proof is complete. �

The projection P onto kerD along imD can be given explicitly. Put

Pv =
cTA−1v

cTA−2b
A−1b.

P = P 2 and imP = kerD is clear, hence it is enough to show that for any v, we

have v − Pv ∈ imD. Now, take

u = (cTA−1v)A−2b− (cTA−2b)A−1v.

Then, cTu = 0 so

Du = −Au = (cTA−2b)v − (cTA−1v)A−1b = (cTA−2b)(v − Pv).

Note also, that Pb = aA−1b, where a−1 = cTA−2b > 0, since cTA−1b = 1.
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Corollary 7. Assume that ϑn = (An, bn, cn), n ≥ 1 and ϑ = (A, b, c) are

feasible parameters, with cTnA
−1
n bn < 1 and cTA−1b = 1, and ϑn → ϑ.

Then, there is a positive constant γ, such that for n large enough

sp(Dn) ∩ {z ∈ C : ℜz < −γ} = {zn} .

Moreover, ker(Dn−znI) and im(Dn−znI) are direct summands with dimker(Dn−
znI) = 1, and we have limn→∞ zn = 0.

Proof. Since Dn → D and the spectrum is continuous in the Hausdorff

distance, we have sp(Dn) → sp(D). By Proposition 6 the matrix D is singular

and by Proposition 5 there is a γ > 0 such that each nonzero eigenvalue lies in the

half plane {z ∈ C : ℜz < −2γ}. With this choice we can define the projection

onto the kernel of D along imD with the Cauchy integral formula

P =
1

2πi

∮

|z|=γ

(zI −D)−1dz.

At this point we used that kerD and imD are direct summands.

Since the inversion is continuous and Dn → D we have that

Pn =
1

2πi

∮

|z|=γ

(zI −Dn)
−1dz → P.

Observe that Pn is a projection, that is P 2
n = Pn.

For a projection P we have Tr (P ) = dim imP . This can be easily seen by

taking first a complete orthonormed system in the range of P and extending it to

a basis of the whole space. Calculating the trace in this basis gives immediately

that dim imP = Tr (P ).

By the continuity of the trace, Tr (Pn) = dim imPn → 1, so if n is large

enough then dim imPn = 1. Since Pn is the projection onto the root space
∑

k≥1, |z|<γ ker(Dn − zI)k we have that imPn = ker(Dn − znI) and PnDn =

znPn with some zn ∈ C. Then,
∑

k≥1 ker(Dn − znI)
k = ker(Dn − znI) and

im(Dn − znI) ∩ ker(Dn − znI) = {0}. This easily gives that they are direct

summands.

To see that limn→∞ zn = 0, note that sp(Dn) → sp(D) ∋ 0, and zn is the

only element of sp(Dn) in the ball |z | < γ. The rest of the statement follows from

the fact that sp(D) \ {0} ⊂ {z ∈ C : ℜz < −2γ}. �

Proposition 8. With the notations of Corollary 7 we have

lim
n→∞

zn

1− cTnA
−1
n bn

= − 1

cTA−2b
.
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Proof. Let vn ∈ ker(Dn − znI) = imPn so that cTnvn = 1. Such a norma-

lization is possible, since cTA−1b = 1, A−1b ∈ imP and Pn → P . It also follows

that vn → A−1b. The matrix Dn is invertible by Proposition 5 and

cTnD
−1
n vn =

1

zn
cTnvn =

1

zn
.

Using Lemma 20 we can write D−1
n as

D−1
n = −A−1

n − A−1
n bnc

T
nA

−1
n

1− cTnA
−1
n bn

.

Thus, with αn = (1− cTnA
−1
n bn)

−1 we have that αn → ∞ and

1

αnzn
=

1

αn
cTnD

−1
n vn = − 1

αn
cTnA

−1
n vn − (cTnA

−1
n bn)c

T
nA

−1
n vn.

Here the first term goes to zero, since cTnA
−1
n vn → cTA−2b . In the second term

cTnA
−1
n bn → cTA−1b = 1. So taking n → ∞ gives the statement. �

Corollary 9. With the notations of Corollary 7

lim sup
n→∞

sup
t≥0

e
at

2αn

∣

∣eDnt
∣

∣ < ∞,

where a = (cTA−2b)−1 and αn = (1− cTnA
−1
n bn)

−1.

Proof. Since Pn → P there are positive constants L1, L2 such that the

sequence of norms |x|n = |Pnx|+ |(I − Pn)x| satisfy

L1 |x| ≤ |x|n ≤ L2 |x| .
On the other hand

∣

∣eDntPnx
∣

∣ = eℜznt |Pnx| ,
∣

∣eDnt(I − Pn)x
∣

∣ ≦ Le−γt/2 |(I − Pn)x| ,

where γ is from Corollary 7 and L is the constant from Proposition 21. As zn → 0,

for large n the first term will be dominant and we obtain the statement, since

limn→∞ ℜznαn = −a by Proposition 8. �
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4.2. Proof of Theorem 2. We use the following convention: overbar indicates

that the process is obtained with rescaling both the space and time coordinates

with 1/αn, e.g. λ̄n = λn(αnt)/αn, upper indexes (1) and (2) indicate that we

have applied the projection Pn and (I − Pn), respectively.

We can write the system in the following form:

dxn(t) = Dnxn(t)dt+ bn (dMn(t) +mdt) , (12)

λn(t) = cTnxn(t−) +m, (13)

where Mn is a martingale. Actually dMn(t) = dNn(t) − λn(t)dt. This implies

that the quadratic variation process d[Mn]t = dNn(t) = dMn(t) + λn(t)dt. The

conditional quadratic variation is d 〈Mn〉t = λn(t)dt. For details of the calculus

used, see [10]. Then the rescaled system has the form:

dx̄n(t) = αnDnx̄n(t)dt + bn
(

dM̄n(t) +mdt
)

, (14)

λ̄n(t) = cTn x̄n(t−) +
m

αn
, (15)

where M̄n is a martingale with d
〈

M̄n

〉

t
= λ̄n(t)dt.

The stationarity of the system implies that there is no change in the expected

value of xn(t) and λn(t), i.e.,

0 = DnE [xn(t)] + bnm,

0 = −AnE [xn(t)] + bnE [λn(t)] .

This implies bnE [λn(t)] = −AnD
−1
n bnm. Easy calculation gives that D−1

n bn =

−αnA
−1
n bn, hence E [λn(t)] = mαn, and E

[

λ̄n(t)
]

= m for all t ≥ 0 and each n.

We decompose x̄n into two components x̄
(1)
n = Pnx̄n and x̄

(2)
n = (I − Pn)x̄n

and show that x̄
(2)
n

p→ 0 while x̄
(1)
n has the limit indicated in Theorem 2. Before

doing so, we prove a useful moment estimation for the stationary solution of

(3)–(4). It will be proved by induction on the exponent. The induction step is

formulated in the next Proposition.

Proposition 10. Assume that x is a stationary solution of

dx(t) = Dx(t)dt+ b (dM(t) +mdt) .

where M is a martingale, with d[M ]t = dM(t) + λ(t)dt and d 〈M 〉t = λ(t)dt.

Let p = 2k with some positive integer k and assume that there are C,L > 1,
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0 < γ ≤ 1 such that E
[

λp/2(t)
]

≤ C for all and t ≥ 0, and
∣

∣eDt
∣

∣ ≤ Le−γt. Then,

there is a constant c′p depending on p only such that

E [|x(t)|p ] ≤ c′pC

(

L2 |b|2
γ

)p/2

+
1

2

(

2mL |b|
γ

)p

.

Proof. The solution x can be given with the following formula

x(t) = eDtx(0) +

∫ t

0

eD(t−s)b(dM(s) +mds).

Then

E
[

∣

∣x(t)− eDtx(0)
∣

∣

p
]

≤ 2p−1E

[

∣

∣

∣

∣

∫ t

0

eD(t−s)bdM(s)

∣

∣

∣

∣

p
]

+ 2p−1mp

(∫ t

0

∣

∣

∣eD(t−s)b
∣

∣

∣ ds

)p

.

The second term can be estimated obviously with (2mL |b| /γ)p/2. For the first

term we use the Burkholder-Davis-Gundy inequality, see [10, Theorem 48 of Chap-

ter IV],

E

[

∣

∣

∣

∣

∫ t

0

eD(t−s)bdM(s)

∣

∣

∣

∣

p
]

≤ cpE

[

(∫ t

0

∣

∣

∣eD(t−s)b
∣

∣

∣

2

d[M ](s)

)p/2
]

≤ 2p/2−1cp

{

E

[

(∫ t

0

∣

∣

∣eD(t−s)b
∣

∣

∣

2

dM(s)

)p/2
]

+E

[

(∫ t

0

∣

∣

∣eD(t−s)b
∣

∣

∣

2

λ(s)ds

)p/2
]}

.

For the first term in the curly bracket we can write a similar estimation, and

iteration of this procedure yields

E

[

∣

∣

∣

∣

∫ t

0

eD(t−s)bdM(s)

∣

∣

∣

∣

p
]

≤
k
∑

i=1

E





(∫ t

0

∣

∣

∣eD(t−s)b
∣

∣

∣

2i

λ(s)ds

)2k−i




i−1
∏

j=0

c2k−j22
k−j−1

.

Applying Hölder inequality we can estimate each term and we get a constant c′p
depending only on p such that

2p−1E

[

∣

∣

∣

∣

∫ t

0

eD(t−s)bdM(s)

∣

∣

∣

∣

p
]

≤ c′pC

(

L2 |b|2
γ

)p/2

.
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Now we can use the fact that the process is stationary and eDtx(0)
p→ 0 as t → ∞.

Thus
∣

∣x(t)− eDtx(0)
∣

∣

p D→ |x(0)|p , as t → ∞

and the result follows. �

Corollary 11. For p ≥ 1 we have

lim sup
n→∞

1

αp
n
sup
t≥0

E [|xn(t)|p ] < ∞. (16)

Proof. Let n0 so large that for n > n0 we have
∣

∣etDn

∣

∣ ≤ Le−γt/αn for all

t ≥ 0, where γ > 0 and L ≥ 1 not depending on n. This choice is possible by

Corollary 9.

We prove (16) for p = 2k, with induction on k. For k = 1, i.e., p = 2

(16) follows from Proposition 10. Assume that (16) holds for p/2 = 2k−1. Then

E
[

λ
p/2
n (t)

]

< Cα
p/2
n with some C ≥ 1 and we apply Proposition 10 to obtain

(16) for p. �

Corollary 12. For p ≥ 1 we have

lim sup
n→∞

1

αp
n
sup
t≥0

E [λp
n(t)] < ∞. �

Corollary 13. For p ≥ 1 we have

lim sup
n→∞

1

α
p/2
n

sup
t≥0

E
[∣

∣

∣x(2)
n (t)

∣

∣

∣

p]

< ∞.

Proof. x
(2)
n is the stationary solution of

dx̄(2)
n (t) = D′

nx̄
(2)
n (t)dt+ b(2)n (dMn(t) +mdt) ,

where b
(2)
n = (I −Pn)bn. The linear mapping D′

n = Dn|kerPn
is considered as the

homomorphism of kerPn. By Corollary 7 and Proposition 21, there is a L, γ > 0

such that for sufficiently large n we have
∣

∣

∣eD
′

nt
∣

∣

∣ ≤ Le−γt. Now the statement

follows from the application of Proposition 10 and Corollary 12. �

Next, we prove that the growth rate of supt≤T

∣

∣x(2)(t)
∣

∣

2
/αn is not greater

then T 1/2.
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Proposition 14. There is K > 0 such that for sufficiently large n and for

an arbitrary stopping time τ we have

E

[

∣

∣

∣x(2)
n (τ ∧ T )

∣

∣

∣

4
]

≤ K2α2
n(1 + T ), (17)

E

[

sup
t≤T

∣

∣

∣x(2)
n (t)

∣

∣

∣

2
]

≤ 2Kαn(1 + T )1/2. (18)

Proof. (17) implies (18) with the usual argument. Indeed, let τu = inf{t >
0 : |x(2)(t)|2 > u}. Since x(2) is right continuous we have

E

[

sup
t≤T

∣

∣

∣
x(2)
n (t)

∣

∣

∣

2
]

=

∫ ∞

0

P

[

sup
t≤T

∣

∣

∣
x(2)
n (t)

∣

∣

∣

2

> u

]

du

≤ v +

∫ ∞

v

E

[

∣

∣

∣x
(2)
n (T ∧ τu)

∣

∣

∣

4
]

u2
du ≤ v +

K2α2
n(1 + T )

v
.

Taking infimum in v > 0 we get the upper bound in (18).

Next we prove (17). To simplify the notation we drop the index n and the

superscript (2), we also assume that n is sufficiently large, thus we can apply the

previous results.

Let V (t) = |x(t)|2. The dynamics of V is

V (t) = V (0) +

∫ t

0

2xT (s−)dx(s) +
∑

0≤s≤t

∆V (s)− 2xT (s−)∆x(s),

The jumps of V and x come from the point process N(t), so we have that

∆V (s)− 2xT (s−)∆x(s) = bT bdN(s) = |b|2 (dM(s) + λ(s)ds) .

Thus,

V (t) = V (0) +

∫ t

0

2xT (s)Dx(s) + |b|2 λ(s)ds +
∫ t

0

2xT (s−)b+ |b|2 dM(s).

Denote the coefficients of ds and dM(s) by

β(s) = 2xT (s)Dx(s) + |b|2 λ(s),

σ(s) = xT (s−)b+ |b|2 .
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Then |β(s)| ≤ C1V (s) and σ2(s) ≤ C2(1 + V (s)) with some positive constants

C1, C2.

For V 2(t) we obtain

V 2(t) = V 2(0) +

∫ t

0

V (s−)dV (s) +
∑

0≤s≤t

(∆V (s))2. (19)

Here ∆V (s) = (2xT (s−)b+ |b|2)dN(s) = σ(s)dN(s), hence

(∆V (s))2 = σ2(s)(dM(s) + λ(s)ds).

Hence we obtain that

V 2(t) = V 2(0) +

∫ t

0

V (s)β(s) + σ2(s)λ(s)ds +

∫ t

0

V (s−)σ(s) + σ2(s)dM(s).

The last term is a local martingale. Let τ be a stopping time reducing the last

term to a martingale and T > 0. Then

E
[

V 2(T ∧ τ)
]

= E
[

V 2(0)
]

+

∫ T

0

E
[

χ
(s≤τ)

(

V (s)β(s) + σ2(s)λ(s)
)]

ds.

Now using the moment estimates from Corollary 11 and 12 for λ(s) and V (s) =

|x(s)|2 we obtain that

E
[

V 2(T ∧ τ)
]

≤ (1 + T )α2C,

where C depends only on the values supt E [V (t)] /α, supt E
[

V 2(t)
]

/α2 and

supt E
[

λ2(t)
]

/α2, which are uniformly bounded for large n. For general stopping

time we can use the usual localization argument and the Fatou lemma to obtain

the statement. �

Corollary 15. For each T > 0

sup
t≤T

∣

∣

∣
x̄(2)
n (t)

∣

∣

∣

p→ 0

Proof. For n large enough we have

E

[

sup
t≤T

∣

∣

∣x̄(2)
n (t)

∣

∣

∣

2
]

= E

[

sup
t≤αnT

1

α2
n

∣

∣

∣x(2)
n (t)

∣

∣

∣

2
]

≤ 2K(1 + Tαn)
1/2

αn
→ 0,

where K is a finite constant from Proposition 14. �
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Proposition 16. Write the one-dimensional process x̄
(1)
n (t) as yn(t)vn where

vn ∈ imPn is such that cTnvn = 1, i.e. yn(t) = cTn x̄
(1)
n (t). Then, yn

D→ y(1), where

y(1) is the stationary solution of (10).

Proof. We use a result from the book of Ethier and Kurtz, see [3, The-

orem 4.1 of Chapter 7 pp. 354], which we recall for reader’s convenience in the

appendix, see Theorem 22.

We check the condition of this theorem. Observe that by (14)

dyn(t) = αnznyn(t)dt+ βnmdt+ βndMn(t),

where znPn = DnPn, Mn is a martingale with

d 〈Mn〉t = λ̄n(t)dt =

(

yn(t) +
cTx

(2)
n (αnt) +m

αn

)

dt

and βn = cTnPnbn. From Proposition 8 we know that αnzn → −a as n → ∞.

Also βn → a, since βn = cTnPnbn → cTPb = cTaA−1b = a.

The jump size of yn and Mn is uniformly bounded by βn/αn and 1/αn,

respectively, so condition (24) and (25) is obvious.

The drift of y(t) is given by −a(y −m). To check (26) we need that

sup
t≤T∧τr

n

∫ t

0

αnznyn(s) + βnm+ a(yn(s)−m)ds
p→ 0

for all T, r > 0, where τrn = inf {t > 0 : |yn(t)|∨|yn(t−)| > r}. Since αnzn → −a

and βn → a this is obvious.

We need a similar relation for the diffusion term as well, see assumption (27)

below. The quadratic variation of y is a2y(t)dt so we need that

sup
t≤T∧τr

n

∫ t

0

(cTnPbn)
2

(

yn(s) +
cTx

(2)
n (tαn) +m

αn

)

− a2yn(s)ds
p→ 0

for all T, r > 0. This is also obvious, since cTnPbn → a, and by Corollary 13

E

[

∣

∣

∣x
(2)
n (t)

∣

∣

∣

2
]

/αn is uniformly bounded in n and t.

Now, take a subsequence, say (yn′), such that (yn′(0)) is convergent in distri-

bution. For this subsequence we can apply Theorem 22 to see that yn′

D→ y. The

process yn is stationary for each n, then so is the limit, hence y is the stationary

solution of (10).

It follows now easily, that yn
D→ y, since by the tightness of {yn(0) : n ≥ 1}

each subsequence has a sub-subsequence which is convergent in distribution, and

as we see, each such convergent subsequence has the same limit, namely the

stationary solution of (10). This proves the statement. �
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4.3. Proof of Theorem 4. It remains to prove the convergence of

(

1√
αn

(I − Pn)xn,
1

αn
λn

)

.

The proof goes along the same line as for x̄ and, as before, we denote (I −Pn)xn

by x
(2)
n .

First we show that λn(t)/αn has a constant limit, by showing that (λn(t)−
λn(0))/αn → 0 uniformly on compact intervals in probability. Fix T > 0 and

write

1

αn
sup
t≤T

|λn(t)− λn(0)|

≤ 1

αn

∫ T

0

∣

∣cTnDnxn(s)
∣

∣ ds+
1

αn

∣

∣cT b
∣

∣ sup
t≤T

|M(t)|+
∣

∣cT bmT
∣

∣

αn
. (20)

It is enough to show that all the three terms on the right hand side go to zero in

probability. It is clear for the last term as αn → ∞. For the second term we can

use the Doob inequality and the fact that E [λn(t)/αn ] is bounded uniformly for

large n. Finally, the first term can be split into a sum

∣

∣cTnDnxn(s)
∣

∣ ≤
∣

∣cTnDnPnxn(s)
∣

∣ +
∣

∣cTnDn(I − Pn)xn(s)
∣

∣

≤ |zn |
∣

∣cTn
∣

∣ |xn(s)|+
∣

∣cTnDn

∣

∣

∣

∣

∣
x(2)
n (s)

∣

∣

∣
.

Taking expectation and using Proposition 8, Corollary 11 and 13 we obtain

E
[∣

∣cTnDnxn(s)
∣

∣

]

≤ C(1 + α1/2
n )

with some finite C. This proves that the first term on the right hand side of (20)

goes to zero in probability as well.

Next we check the conditions of Theorem 22 for α
−1/2
n (I − Pn)xn. The as-

ymptotic continuity follows from the fact that the jump size goes to zero uniformly

in t. The processes An, Bn are given by the identities

An(t) =

∫ t

0

(I − Pn)bb
T (I − Pn)

Tλn(s)ds,

Bn(t) =

∫ t

0

Dnx
(2)(s)ds.
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For the limit diffusion we have that β(y) = Dy and σ(y) = (I −P )bbT (I −P )Tλ.

We have to check Condition (26) and (27), i.e.

sup
t≤T∧τr

n

∣

∣

∣

∣

∣

∫ t

0

(Dn −D)
x
(2)
n (s)

α
1/2
n

ds

∣

∣

∣

∣

∣

p→ 0

and

sup
t≤T∧τr

n

∣

∣

∣

∣

∫ t

0

(

(I − Pn)bnb
T
n (I − Pn)

T − (I − P )bbT (I − P )T
) λn(s)

αn
ds

∣

∣

∣

∣

p→ 0.

Both follow from the facts that E
[

α
−1/2
n |x(2)

n (t)|
]

and E [λn(t)/αn ] are uniformly

bounded in n and t and

(Dn −D) → 0,

(I − Pn)bnb
T
n (I − Pn)

T − (I − P )bbT (I − P )T → 0.

The proof of Theorem 4 is completed in the same way as it was done for

Theorem 2 using the fact that our processes are stationary and α
−1/2
n x

(2)
n (0) is

tight.

5. Additional results for standard Hawkes process

In this section we focus on the simplest case, when x is scalar-valued. We

call the intensity process generated by the one-dimensional model the standard

Hawkes process. In this case (3)–(4) reduces to

dλ(t) = −a(λ(t)−m)dt+ σdN(t) (21)

where a, m, σ are positive real parameters. In this model the parameter vector is

ϑT = (a, σ,m). In the standard Hawkes model the stability condition simplifies

to σ < a. As indicated in the introduction, the extended system has a linear state

space dynamics. The next Proposition shows this for this simplest case. Recall

that λ(0) is assumed to be known.

Proposition 17. Let x(t) = (λ(t)−m,λa(t), λσ(t))
T , where λ satisfies (21).

Then,

dx(t) = −Ax(t)dt+ bdNt,

where

A =







a 0 0

1 a 0

0 0 a






, b =







σ

0

1






. �
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For the standard Hawkes process with parameter a > 0 we can give rather

precise estimation for the Fisher information. This is based on the identities given

in the next statement.

Proposition 18. Consider the stationary point process given in (21) with

m = σ > 0. Then, for any k, l ∈ Z, k ≥ 0 we have λk
a(λ−m)l ∈ L1(Ω) and

E
[

λk
aλ

l+1
]

= (a(k + l) +m)E
[

λk
a(λ −m)l

]

+ kE
[

λk−1
a (λ−m)l+1

]

+E
[

λk
a(λ−m)l+1

]

. (22)

Proof. For k, l ∈ Z, k ≥ 0 and ε > 0, the integrability of λk
a(λ − m + ε)l

follows from Proposition 10.

Write the dynamics of λk
a(t)(λ(t) −m+ ε)l = xk

2(t)(x1 + ε)l(t) using Propo-

sition 17 and the change of variable formula:

d(x1 + ε)l(t) = −al(x1 + ε)l−1(t)x1(t)dt

+
(

(x1(t−) + σ + ε)l − (x1(t−) + ε)l
)

dN(t),

dxk
2(t) = −kxk−1

2 (t) (x1(t) + ax2(t)) dt

d(x1(t) + ε)lxk
2(t) = (x1 + ε)l(t)dxk

2(t) + xk
2(t)d(x1 + ε)l(t)

Since the process (x1(t) + ε)lxk
2(t) is stationary and in L1 for all t we have that

the mean change is zero. Writing this out, but omitting the actual time t, we

obtain that

− kE
[

xk−1
2 x1(x1 + ε)l

]

− kaE
[

xk
2(x1 + ε)l

]

− laE
[

x1(x1 + ε)l−1xk
2

]

+E
[

xk
2(x1 + σ + ε)lλ

]

−E
[

xk
2(x1 + ε)lλ

]

= 0.

Rearranging and letting ε → 0+ gives the relation (22) by σ = m. For l ≥ 0 the

dominated convergence theorem, for l < 0 the Beppo–Levi theorem can be used

to see that we can take the limit inside the expectation.

For a given l, the integrability of λk
a(λ − m)l for all k ≥ 0 follows from

Proposition 10 if l ≥ 0, while for l < 0 from (22) by induction on −l. �

Theorem 19. In the model (21) with parameter a > 1 and fixed m = σ = 1,

we have
2

(a− 1)a(a+ 1)
− 1 < E

[

λ2
a

λ

]

<
2

(a− 1)a(a+ 1)
.
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Proof. By Proposition 18 with k = 2, l = −1 we have

E

[

λ2
a

λ− 1

]

= − 2

a+ 1
E [λa ] , E [λa ] = − 1

a(a− 1)
.

This gives the upper bound as λ2
a/λ < λ2

a/(λ− 1).

For the lower bound we apply Proposition 18 with k = 2, l = −2 and with

k = 1, l = −1:

E

[

λ2
a

λ

]

= E

[

λ2
a

(λ− 1)2

]

+ 2E

[

λa

λ− 1

]

+E

[

λ2
a

λ− 1

]

,

E [λa ] = E

[

λa

λ− 1

]

+ 1 +E [λa ] .

Thus E [λa/(λ− 1)] = −1 and

E

[

λ2
a

λ

]

= E

[

λ2
a

λ− 1

]

− 1 +D2

[

λa

λ− 1

]

≥ E

[

λ2
a

λ− 1

]

− 1. (23)

This proves the statement. �

6. Appendix

Lemma 20 (Sherman–Morrison). Let A be a matrix of dimension d× d, b

and c column vectors of dimension d. Then, the matrix

(

A+ bcT
)

is invertible if A is invertible and cTA−1b 6= −1, in which case we have

(

A+ bcT
)−1

= A−1 − A−1bcTA−1

1 + cTA−1b
.

Proposition 21 (Proposition A.2.1 of [8]). For a q × q matrix D denote

γ(D) = max {ℜz : z ∈ sp(D)}. Then, for t ≥ 0

∣

∣eDt
∣

∣ ≤ eγ(D)t



1 + 2 |D|
q−1
∑

j=1

(2t |D|)j
j!



 .

In particular, if D is a norm bounded collection of q × q matrices such that for

all D ∈ D we have γ(D) ≤ γ < 0 then there is a constant L such that

∣

∣eDt
∣

∣ ≤ Leγt/2, for all D ∈ D.



Hawkes process’s Fisher information 125

Next we state a useful result for the weak convergence of processes in a form

that is suitable for our purposes.

Theorem 22 (Theorem 4.1 of Chapter 7 in [3]). Assume that β, σ are con-

tinuous functions and the equation e(β, σ)

dy(t) = β(y(t))dt+ σ(y(t))dW (t)

has a solution, which is unique in law, i.e. the corresponding martingale problem

has a unique solution.

For n ≥ 1 let yn, Bn be processes with sample path in DRd [0,∞) and An =

(Ai,j
n ) be a symmetric d × d matrix valued process, such that An has positive

semidefinite increments and continuous sample path. Set

F
n
t = σ {yn(s), Bn(s), An(s) : s ≤ t}

and let Mn = yn −Bn and τrn = inf {t > 0 : |yn(t)| ∨ |yn(t−)| ≥ r}.
Suppose that

(i) Mn, MnM
T
n −An are Fn-local martingales,

(ii) for each r, T > 0

lim
n→∞

E

[

sup
t≤T∧τr

n

|yn(t)− yn(t−)|2
]

= 0, (24)

(iii) for each r, T > 0

lim
n→∞

E

[

sup
t≤T∧τr

n

|Bn(t)−Bn(t−)|2
]

= 0, (25)

(iv) for each r, T > 0

sup
t≤T∧τr

n

∣

∣

∣

∣

Bn(t)−
∫ t

0

β(Xn(s))ds

∣

∣

∣

∣

p→ 0, (26)

(v) for each r, T > 0

sup
t≤T∧τr

n

∣

∣

∣

∣

An(t)−
∫ t

0

σ(Xn(s))ds

∣

∣

∣

∣

p→ 0, (27)

(vi) yn(0)
D→ y(0).

Then yn
D→ y in DRd [0,∞), where y is the solution of e(β, σ) with initial

value y(0).
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