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On some fixed point theorems on expansion mappings

By ADRIAN CONSTANTIN (Timişoara)

Abstract. In this note we give a unified approach to some fixed point theorems
on expansion mappings.

1. Some recent papers [4,5,6,7,9] are concerned with fixed point the-
orems of expansion mappings on complete metric spaces.

Then purpose of this paper is to unify all these results giving a unified
approach to fixed point theorems on expansion mappings. We will prove
some common fixed point theorems for two expansion type mappings and
as corollaries of our theorems we will obtain some results from [4,5,6,7,9].

2. In order to generalize the Banach fixed point theorem many authors
[2,3,8] have introduced several generalized contractions. Many fixed point
theorems on expansion mappings are duals of some results on contractive
mappings [4,5].

We remind that in [2] Delbosco considered the set G of all continuous
functions g : [0,∞)3 → [0,∞) satisfying the conditions:

(i) g(1, 1, 1) = h < 1;
(ii) if u, v ∈ [0,∞) are such that u ≤ g(v, v, u) or u ≤ g(u, v, v) or

u ≤ g(v, u, v) then u ≤ hv;
in order to give a unified approach for contractive mappings:

Theorem A [2]. Let S and T be two mappings of a complete metric
space (X, d) into itself satisfying the inequality

d(Sx, Ty) ≤ g(d(x, y), d(x, Sx), d(y, Ty))

for all x, y ∈ X, where g ∈ G. Then S and T have a unique common fixed
point.
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We introduce now two classes of functions:
Definition 1. Let ξ be the class of all continuous functions g : [0,∞)3→

[0,∞) with the property that there exists h > 1 such that if u, v ∈ (0,∞)
satisfy

u ≥ g(v, u, v) or u ≥ g(v, v, u)

then u ≥ hv.

Definition 2. Let ξ′ be the subclass of ξ consisting of the functions
g ∈ ξ satisfying the additional condition: if x ∈ [0,∞) satisfies

min{g(x, x, 0), g(x, 0, x)} = 0

then x = 0.
We see that ξ′ is a proper subclass of ξ since the function g : [0,∞)3 →

[0,∞), g(x1, x2, x3) = 2 min{x1, x2, x3} belongs to the class ξ but does
not belong to the class ξ′. However, the class ξ′ is not empty (we can
see this observing that the function g : [0,∞)3 → [0,∞), g(x1, x2, x3) =
1
2 (x1 + x2 + x3) belongs to ξ′).

The consideration of the class ξ′ was suggested by the following ob-
servation: consider the dual set G′ of Delbosco’s set G. The set G′ is that
of all continuous functions g : [0,∞)3 → [0,∞) satisfying the conditions:

(i)′ g(1, 1, 1) = h > 1;
(ii)′ if u, v ∈ [0,∞) are such that u ≥ g(v, v, u) or u ≥ g(u, v, v) or

u ≥ g(v, u, v) then u ≥ hv. We observe that G′ ⊂ ξ′.

3. In this section we will prove the main results of the note:

Theorem 1. Let (X, d) be a complete metric space and let T, S : X →
X be surjective continuous mappings. If there exists a g ∈ ξ′ such that

d(Sx, Ty) ≥ g(d(x, y), d(x, Sx), d(y, Ty))

for all x, y ∈ X with x 6= y, then S and T have a common fixed point.

Proof. Let x0 ∈ X. We define the sequence {xn} as follows:

x0 = Sx1, x1 = Tx2, . . . , x2n = Sx2n+1, x2n+1 = Tx2n+2, . . .

(this construction is possible because S and T are surjective mappings).
Suppose that for some n ≥ 0 we have x2n=x2n+1. For x2n+1 6=x2n+2

we would obtain from the hypothesis that

0 = d(x2n, x2n+1) = d(Sx2n+1, Tx2n+2) ≥
≥ g(d(x2n+1, x2n+2), d(x2n+1, Sx2n+1), , d(x2n+2, Tx2n+2)) =

= g(d(x2n+1, x2n+2), 0, d(x2n+1, x2n+2)),
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thus d(x2n+1, x2n+2) = 0 since g ∈ ξ′. This is a contradiction. In a
similar way we prove that if there is a k ≥ 0 with x2k+1 = x2k+2, then
x2k+1 = x2k+2 = x2k+3. Thus we have that if the sequence {xn} has two
consecutive terms equal, then S and T have a common fixed point.

Suppose now that x2n 6= x2n+1 and x2n+1 6= x2n+2 for all n ≥ 0. We
obtain by the hypothesis that

d(x2n, x2n+1) = d(Sx2n+1, Tx2n+2) ≥
≥ g(d(x2n+1, x2n+2), d(x2n+1, Sx2n+1), d(x2n+2, Tx2n+2)) =

= g(d(x2n+1 + x2n+2), d(x2n, x2n+1), d(x2n+1, x2n+2)),

thus d(x2n, x2n+1) ≥ hd(x2n+1, x2n+2).
Similarly, we prove that d(x2n+1, x2n+2) ≥ h d(x2n+2, x2n+3).
Since h > 1 we deduce that {xn} is a Cauchy sequence in X. Thus

(X being a complete metric space) we have that there exists lim
n→∞

xn =
x ∈ X. From the relations x2n = Sx2n+1, x2n+1 = Tx2n+2 we obtain that
x = Sx = Tx since S and T are continuous. This completes the proof of
Theorem 1.

Remark 1. If instead of g ∈ ξ′ we assume g ∈ ξ in Theorem 1 we
obtain that S or T has a fixed point.

Taking now g ∈ ξ of a particular form, we obtain some recent results
on fixed points of expansion mappings:

– if g(x1, x2, x3) =
√

k min{x1x2, x1x3, x2x3} where k > 1, we obtain
for S = T a result of Popa [7];

– if g(x1, x2, x3) =
√

k min{x2
2, x

2
3, x1x2, x1x3} where k > 1, we obtain

for S = T a fixed point theorem of Popa [7].

Theorem 2. Let (X, d) be a complete metric space and let T, S : X →
X be surjective mappings. If there exists a g ∈ ξ′ such that

d(Sx, Ty) ≥ g(d(x, y), d(x, Sx), d(y, Ty))

for all x, y ∈ X with x 6= y, then S and T have a common fixed point.

Proof. As in the proof of Theorem 1, we show that the sequence
{xn} defined recurrently by

x0 = Sx1, x1 = Tx2, . . . , x2n = Sx2n+1, x2n+1 = Tx2n+2, . . .

is a Cauchy sequence in X. Let x = lim
n→∞

xn.

Since S is onto, there exists a point y ∈ X such that Sy = x. If
y = x2n+2 for infinitely many n, we get y = x since lim

n→∞
xn = x, thus
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Sx = x. If y 6= x2n+2 for infinitely many n, we get

d(x, x2n+1) = d(Sy, Tx2n+2) ≥
≥ g(d(y, x2n+2), d(y, Sy), d(x2n+2, Tx2n+2)) =

= g(d(y, x2n+2), d(y, x), d(x2n+2, x2n+1)).

Letting n →∞, we obtain

0 ≥ g(d(x, y), d(x, y), 0),

thus x = y since g ∈ ξ′. It follows that Sx = x. Similarly we can prove
that Tx = x. This completes the proof of the theorem.

Taking g ∈ ξ′ of a particular form, we obtain several fixed point
theorems:

– if g(x1, x2, x3) = hx1 where h > 1, we obtain for S = T a theorem
of Gao, Iseki, Li, Wang [4] and a theorem of Gillespie and Williams
[5];

– if g(x1, x2, x3) = ax1 + bx2 + cx3 where a, b, c are non-negative reals
with a+b+c > 1, b < 1 and c < 1, we obtain a theorem of Taniguchi [9];

– if g(x1, x2, x3) =
√

ax2
1 + bx2

2 + cx2
3 where a, b, c are non-negative

reals with b < 1, c < 1 and a + b + c > 1, we obtain for S = T a result of
Popa [7];

– if g(x1, x2, x3) = k
x2

2 + x2
3 + x2x3

x2 + x3
for x2+x3 > 0 and g(x1, 0, 0) = 0

where k ∈ (
2
3 , 1

)
, we obtain for S = T a result of Popa [7].

Remark 2. The fixed point may be not unique in Theorem 1 and
Theorem 2. This can be seen letting Sx = Tx = x and considering g ∈ ξ′

g(x1, x2, x3) =
1
2
x1 + x2 + x3.

4. It is of interest to investigate the consistency with respect to our
recent result [1]. It is easy to see that if T : X → X is a bijection on a
complete metric space (X, d) which is an α-contraction then T−1 : X → X
is a 1

α -expansion.
The natural question arises whether a bijection satisfying the contrac-

tive conditions from [1] has the property that T−1 satisfies the expansive
conditions of the present paper. That this is not the case can be seen from
the following

Example. Let us consider

T : [0,∞) → [0,∞), Tx = ln(1 + x).
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Since

| ln(1 + x)− ln(1 + y)| ≤ ln(1 + |x− y|), x, y ∈ [0,∞),

we can apply the result of [1].

We will show that there is no g ∈ ξ such that T−1 satisfies the condi-
tions of Theorem 1 for this g ∈ ξ.

Suppose that there is a g ∈ ξ such that

|ex − ey| ≥ g(|x− y|, ex − x− 1, ey − y − 1)

for all x, y ∈ [0,∞), x 6= y. Taking y = ln(1 + x) we would get that

ex − x− 1 ≥ g(x− ln(1 + x), ex − x− 1, x− ln(1 + x))

and by the properties of g ∈ ξ we obtain the existence of a h > 1 such that

ex − x− 1 ≥ h(x− ln(1 + x)), x ∈ (0,∞),

which is in contradiction with

lim
x→0

ex − x− 1
x− ln(1 + x)

= 1.

We proved so that there exists no g ∈ ξ such that T−1 satisfies the condi-
tions of Theorem 1 for this g ∈ ξ.

Remark 3. It is easy to see that the result of [1] differs from the
present results by observing that in [1] the continuity condition is essential
whereas in Theorem 2 we do not require continuity conditions.
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