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On a class of locally dually flat Finsler metrics
of isotropic flag curvature

By QIAOLING XIA (Hangzhou)

Abstract. In this paper, we characterize a class of locally dually flat («, 8) metrics
F=a+eB+ k%Q defined by a Riemannian metric a and a non-zero 1-form [, where €
and k are non-zero constants. As an application, we prove that there is no locally dually
flat metric in the form F' = a + €8 + k%Q (e 20, kK #0, 8 # 0) with isotropic S-
curvature unless it is Minkowskian. Moreover, we prove that if F' = « + €8 + k%
(e #0, k # 0, B # 0) is locally dually flat, then it is locally projectively flat if and
only if it is of constant flag curvature, and there is no locally dually flat metrics in the
form F = a+ €8 + k% (e #0, k # 0, B # 0) of isotropic flag curvature unless it is
Minkowskian.

1. Introduction

Locally dually flat Finsler metrics are studied in information geometry and
the notion of locally dually flat Finsler metrics is introduced in ([Sh1]). A Finsler
metric F' = F(z,y) on an n-dimensional manifold M is called locally dually flat
if at every point there is a coordinate system (%) in which the spray coefficients

are in the following form

. 1 ..
GZ = —§gleyj, (1'1)

where H = H(x,y) is a local scalar function on the tangent bundle TM of M.
Such a coordinate system is called an adapted coordinate system. In [Shl], the
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author proved that a Finsler metric F' = F(z,y) on an open subset Y C R" is
dually flat if and only if it satisfies the following PDE

[F?] ey — 2[F?]0 = 0. (1.2)

In this case, H = —%[FQ]mmym. Locally dually flat Finsler metrics are studied in
Finsler information geometry in [Sh1]. Recently, the classification of locally dually
flat Randers metrics with almost isotropic flag curvature is given in [CSZ].

It is known that a Riemannian metric F' = \/g;;(x)y*y! is locally dually flat
if and only if in an adapted coordinate system,

%
95 = 9zidwi (),

where ¢ = ¢(z) is a C* function ([AN], [Sh1]). The first example of non-Rieman-
nian dually flat metrics is the Funk metric given as follows (cf. [Sh1], [CSZ]):

V= 2Py + (2,9)? | (2.y)
1— |x|? 1— =2

F= (1.3)

This metric is defined on the unit ball B® € R"™ and is a Randers metric with
1

constant flag curvature K = —7. This is only known example of locally dually
flat metrics with non-zero constant flag curvature up to a normalization. These
facts inspire us to consider a class of (a, ) metrics on M, which is expressed in
the following form

52

F=a+ef+k—, (1.4)

«a
where o = \/a;;y'y7 is a Riemannian metric, 8 = b;y* is a non-zero 1-form with
b=5(z)|la < bo for and z € M, €, k are non-zero constants such that

a?+eaf+kB2>0, o +2kb%a® —3kB% >0, ’g‘ < b <by. (1.5)

These metrics have been extensively studied (cf. [Shl], [SY] and references the-
rein). We firstly give an equivalent characterization (Theorem 3.1) of locally dually
flat metrics (1.4) and give some applications. As one of applications of Theorem
3.1, we prove that if 3 is parallel with respect to «, then F' = a+¢8+ k’%Q (e £ 0,
k # 0, 8 # 0) is locally dually flat if and only if « is flat. In this case, F' is
Minkowskian.

The S-curvature S is an important non-Riemannian quantity in Finsler geo-
metry ([CS], [Sh4], [ChS]). A Finsler metric F is said to be of isotropic S-
curvature if S = (n + 1)c(z)F, where ¢(z) is a scalar function on M. Another
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application of Theorem 3.1 shows there is no locally dually flat Finsler metric
F=a+ef+ k%z (e #0, kK #0, 8 # 0) with isotropic S-curvature unless it is
Minkowskian.

Let’s recall another notion of locally projectively flat Finsler metrics. A Fins-
ler metric F' = F(z,y) is called locally projectively flat if at every point there is
a coordinate system (z%) in which all geodesics are straight lines, or equivalently,
the spray coefficients are in the following form

G' = Py, (1.6)
where P = P(x,y) is a local scalar function. Locally projectively flat metrics
have been studied extensively (see [Sh2], [Sh3], [LS], [SY], etc. and the references
therein). In [CSZ], authors proved that every dually flat and projectively flat
metric on an open subset I/ in R™ must be either a Minkowski metric or a Funk
metric after a normalization. A natural question is when a dually flat metric on U
is projectively flat. For the metric in the form (1.4), if it is locally dually flat, then
it is projectively flat if and only if it is of constant flag curvature (Theorem 4.1).

The main purpose of this paper is to classify locally dually flat metrics in
the form (1.4) with isotropic flag curvature. We prove that there exists no locally
dually flat metric in the form (1.4) of isotropic flag curvature (especially constant
flag curvature) unless it is Minkowskian (Theorem 4.2).

This paper is arranged as follows. Firstly we give an introduction of locally
dually flat («, 8) metric in §2. In §3, we obtain an equivalent characterization for
locally dually flat Finsler metric with the form (1.4) (see Theorem 3.1) and give
some applications of Theorem 3.1. Finally, in §4, we prove that if the metric (1.4)
is locally dually flat, then it is projectively flat if and only if it is of constant flag
curvature (see Theorem 4.1). Moreover, we prove that the metric (1.4) is a locally
dually flat metric of isotropic flag curvature if and only if €2 = 4k, « is flat and 8

is parallel with respect to . In this case, F' is locally isometric to a Minkowski

(Iy\ixl/ﬁbiy‘)z
y

are constants(see Theorem 4.2).

metric F = , where | - | is Euclidean metric in R™ and b;(1 <14 < n)

In the following, we will use Einstein sum convention.

2. (o, B)-metrics

Let M be an n-dimensional smooth manifold. We denote by 7'M the tangent
bundle of M and by (z,y) = (2%, %") the local coordinates on the tangent bundle
TM. A Finsler manifold (M, F) is a smooth manifold equipped with a function
F :TM — [0,00), which has the following properties
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(i) Regularity: F' is smooth in TM \ {0}.

(ii) Positively homogeneity: F(x,Ay) = AF(z,y), for A > 0.
(iii) Strong convexity: the Hessian matrix of F2, (g;;(z,y)) := %(%), is
positive definite on TM \ {0}. We call F' and the tensor g;; the Finsler metric
and the fundamental tensor of M respectively.

In Finsler geometry, (o, 8)-metric is a class of important Finsler metric. By
definition, an («, §)-metric is expressed as the following form,

F =a¢(s), s:=-—, (2.1)

where o = y/a;;(z)y'y? is a Riemannian metric and 8 = b;(z)y" is a 1-form.
¢ = ¢(s) is a C*° positive function on an open interval (—bg, by) satisfying

$(s) — s¢'(s) + (b = 5%)¢"(s) > 0, |s| < b < bo, (2.2)

where b := ||f(x)||a- It is known that F' = a¢(s) is a Finsler metric if and only
if [|8(2)||la < bo for any x € M ([CS]). In particular, if ¢(s) =1+ s, then (a, 5)-
metric is a Randers metric. If ¢(s) = 1+es+ks?, then (a, B)-metric is exactly the
metric in the form (1.4). Let G*(x,y) and G° (x,y) denote the spray coefficients
of F and «, respectively. To express formulae for the spray coefficients G* of F
in terms of o and 3, we need to introduce some notations. Let b;;; be a covariant
derivative of b; with respect to a. Denote

1 1
Tij = i(bi;j +bj4),  Sij = §(bi;j —bj.i), (2.3)
Sij = aihshj7 Sj = bisij = Si]‘bi7 Ty = Tz‘jbi, (24)
ro 1= rjyj, Sp i= sjyj, 700 1= rijyiyj. (2.5)

Thus we have the following

Lemma 2.1 ([CS]). The spray coefficients G* are related to G%, by

G’ =Gl +aQs"y + 6 (—2aQs + Too)ygl + W (—2aQso + ro0)b’, (2.6)
where
(b/
- = 2.7
i @1)
o P’ (¢ —s¢") _
R [y ) ) B 29
S ¢ (2.9)

2[(¢ — s¢') + (b* — s%)¢"]’

here b' := a"b; and b := a'b;b; = b;l’.



On a class of locally dually flat Finsler metrics. . . 173

From (1.2), we can prove the following

Lemma 2.2. An (a, 8)-metric F = a¢(s), where s = g, is dually flat on an
open subset U C R" if and only if

oG™ oOG™
2a2amlGZL + Q(3s10 — T‘zo)a3_ QQ(ymay‘l)‘—f— aQbmay‘l)‘> + Qa(roo + 20, G2y
o ¢/2+ ¢¢// m 7
+12Q(ym G )+ 20— 50) (argo+ 2(bma — sym )Go) | (aby— sy;) =0,  (2.10)

where r;g 1= mjyj, Si0 1= sijyj and y; := aijyj.
ProOOF. By direct computation, F' is dually flat on U if and only if
@ (Qpryy™ — 200) + By, (ary®) + 020 (sry* — 254,)
+ 2a¢¢’(ayzsxkyk + syzamkyk) + az((b'z + (ZSQSH)(Sxkyk)Syl =0. (2.11)

On the other hand,

190G 2
Qgt = — = Ym, aackyk = *Gzyma ap = &7 (212>
a Oyt @ a
1 mo 1 oGy aby — sy
Sy = Ebm”y + ?(abm — SYm) oy Syl = (2.13)
k_ Too | 2 m
. =2 4 = (abp — sym)GT, 2.14
ot = 22 = (b, — syim) (214)
2 1 0G™
k _ 2 m e}
gkt Y — 2000 = g(amla —Ymy)Go — aTylymv (2.15)
k o To0 2 4yl m
Spkytl — 28, = gy + 510~ J(abm — SYm)G0
2 ab; — s
+ ) <ylbm - lizylym - Saml) GZL
a? \ a «

1.1 oG™
Putting (2.12)—(2.16) into (2.11) and noting by, y™ = ro; + so; yields

20(¢ — 5¢' )2, G + ¢ (3510 — 710)°

oGy oGy
=026 (6= 5 )ym 5 -+ a0bn 5|+ 90/ alron + 2m Gy

+200'ymGo' + (67 + 66") (aroo + 2(abm — sym) G (aby — sy1) = 0.

This completes the proof. ([
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3. Locally dually flat Finsler metrics F = o + €3 + k'%z

In the following, we consider a class of special («, 3)-metrics on a manifold
M™ defined by the following form

F = ag¢(s), P(s) =1+ es + ks?, (3.1)
that is,
52
F:a+e[3+kz, (3.2)

where €, k are constants, a = /a;;(z)y’y? is a Riemannian metric and 3 = b;(x)y"
is a 1-form on M. From (2.2), we have

I+es+ks® >0, 1+2kb*—3ks®>>0, |[s|<b<by. (3.3)

F is a Finsler metric if and only if 8 satisfies that b = ||3(z)||o < by for any
x € M. From (3.1) and Lemma 2.2, we can prove the following

Theorem 3.1. Let F = a+¢ef+ k‘%z be a Finsler metric on a manifold M,
where o = \/W is a Riemannian metric, 3 = b;(x)y’ is a non-zero 1-form
and €, k are non-zero constants. Then F' is locally dually flat if and only if in an
adapted coordinate system, « and [ satisfy

oo = 5108 — (6)a?), (3.4
510 = 5 (300 — b, (3.5)
Gl = %(oﬁel + 260y, (3.6)

where 0 := 0;(z)y’ is a 1-form on M and 6' := a'™8,),.

ProOF. If (3.4)-(3.6) hold, the locally dually flatness of F follows from
Lemma 2.2 directly. Conversely, since ¢(s) = 1 + es + ks?, equation (2.10) is
reduced to the following equation:
oG oG
oyt oy
+Bargy+{2Bym G+ Clarge+ 2(bma — sym )G} aby — sy;)=0, (3.7)

24020, G™ + 2Ba(by, Gy, + Ba® (3s10 — 110) — Ay, Ba’b,,

where
A(s) := ¢p(¢p — 5¢') = 1 + es — eks® — k?s?,

B(s) := ¢¢' = e + (¢* + 2k)s + 3kes® + 2k*s>,
C(s) == ¢'* + ¢p¢"" = €* + 2k + 6eks + 6k?s>.

Multiplying (3.7) by o* and rewriting this equation as a polynomial in «, noting
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e # 0, then the sum of odd power and even power of « are zero respectively.
Dividing both sides of the former by «, one get

oG
(3510 — T — bmay?‘>a6 + [(613551 +y1)(roo + 20, GY)

m

+ 3]{:52 (3510 — 70 — 8 . oG ]oz4

) + 2(yme)bl + QﬂamlG ﬂym a i
+ [ — 3k (roo + 2bm G )yr — 2B(3kBb + y1) (ym G — 2kB>anm Gy

oG
+ kB3, oy ]a + 6kB3y Gy = 0, (3.8)

|:(€2 + 2k)(ro0 + 20, G™)by 4 (€2 + 2k)5(3310 — T — m gy

> + 2amlG

— Ym aa i :| 6 + |:6k‘2ﬁ2(7“00 + QmeZZ)bl + 2]4:2,63 (3810 — 70 — agl ):l Oé4

+ { — 4k2B3(roo + 2bmG™ )y — 8K B3 (y G™)by — 2k2 B4y G™

+k264

oG™
5y ]a + 8k2B* (Y G™ )y = 0. (3.9)

Contracting (3.8) and (3.9) with o' yield

(350 — 7o — a(bg;a)bl) al + [ﬁ(ukb“‘ +5)bm Gl + B(6kb* + 1)rog

O(bmGY)

+ 3kp? (330 mro= Tt bl> + 20%y G — 5%#]

+ [ — 3k33r00 — 9kB3b,, G — 262 (3kb? + 1)y, G™ + kzﬁ?’(a?)bl} a?
+ 6kBYy,,G™ = 0, (3.10)

{(26%2 + 4kb? + 3)by, G + (€2 + 2k)b3roo

+ (€ +2k)B (350 — 70— AUCH) bl) ]
G
l

oyt
|:6k2ﬂ2b2(7”00 + 2b Gm) + 2k2ﬁ3 (380 — 79 — 8(

n G o

0y
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+ | = 4k Bro0 — 11K B0 GE — 8K B2y G + k2548(y§fa)

+ 8Kk% %y, G = 0. (3.11)

b a?

(3.10) x 4k — (3.11) x 3 and dividing by a? on both sides yields

A(ymG™
(a2 — kB?)(302 — kﬂ2)(y8yl)

I(bnGy)
oy!
= [(3¢® 4 2k)B(3s0 — 70) + 3(26%b* + 4kb* + 3)b,, G™ + 3(€? + 2k)b*rgo]a’

b+ o?B[(3¢® + 2k)a” — 6k* 57 b
— [4kB%(3kb? + 5)by G + 8kb? By G + 2k 3% (3K + 2)700
+ 6233350 — o)) + [3K% B4, G + 8k B3y G (3.12)

From (3.10),we get

IymGY) a(me;n)
Ba?(a? — kﬁ2)37yl e

+ [(12kb* 4 5) By, G + 20y, G + (6kb? + 1)Brog + 3kB%(3s0 — 70)]a*
[—3KkB3ro0 — 9kB30, G — 2(3kb* + 1)B2ym G a? + 6kBYy,,G™.  (3.13)

b+ a*(a® + 3kB%) bl = (359 — r0)a’

Since F is non-Riemannian, o + 3k6> # 0 and (3¢’ + 2k)a” — 6k*5> # 0,
(3.12) x a(a? 4 3kB2) — (3.13) x B[(3¢2 + 2k)a? — 6k%32] yields

oz2(a2 — k62)[(042 + le2)2 _ 62a2ﬂ2] %

Y

= D(b*a® — BH)[a*roo + 2020, G™ — 2By, G™],  (3.14)

b — 3b,G™

where D := (€ + 2k)a* — 3ke?a?B? + 6k3B*. Noting that
D = (2 +2k)[(® + kB%)? — 2a?B?] + (2 — 4k)[(€* + k)a?B* — kBY].  (3.15)
Case I: € = 4k.

In this case, D = 6k[(a® + kB?)? — 4ka?B?%] = 6k(a? — k3%)? # 0 and (3.14)
is reduced to the following

YmGY')

(
20 .2 2 l m
o (a® — kB%) . b — 3b, G

= 6k(b*a® — B*)[a*roo + 202D, G — 2By, G™].  (3.16)
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(1) If b? is not identically equal to 4, then (b*a? — 2), (a? — k3?) and o?
are all irreducible polynomials of (3*) and one of them is not divisible by another

one. Thus, there is a function o = o(z) on M such that

3(ymGZL)

oy b —3b,G™ = o (b?a? — ?), (3.17)
a’rop + 2020, G — 2y, G = %oﬂ(oﬂ — kpB?). (3.18)

From (3.18), we have
2BymG™ = [1"00 +2b, G — %(ofé’ - k@??)} a?. (3.19)

Since a? does not contain the factor 3, there exist a 1-form 6 := 6;3° on M such
that

ymGiy = 00, (3.20)
me—eﬁ—1 + -7 (a2 - kB?) (3.21)
mYa = 900 T op @ ' '
From (3.17), (3.20) and (3.21), we obtain
2,0 00 90 2009 O g o
Too = 39ﬂ 605 + 3(Ub + 01b")a”, (3.22)
INymGy') 2
oy O1a® + 20y, (3.23)
(b, G o
(ayl) =0,6+ 6b; — 1o + @(yl — kBby). (3.24)

Using (3.20)—(3.24), (3.8)—(3.9) become
38(a® — kB?)am G + 302 (a® + 3kB%)sio

1
+ B (2k962 — 2002 — gaaQﬁ + 21@063) y — 202B(a? + k%),

+ %oﬂ (20a2 + 6k05% — ko3 + ;aa2ﬂ> b =0, (3.25)
3(a? + kB%)(a® — kB*)amG™ + 6ka’B(3a + kB?)si0

+ (2k29ﬂ4 —oa*B + §k20[35 — 200t — k0a2B3>yl

—a?(a* + 6ka’B% + k266,

2
+a? (2]62963 + 6k0a’pB + oat — §k2064 + kaa2ﬁ2> b = 0. (3.26)
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Solving equations (3.25)—(3.26), we get

1 1
a4 G™ = 5(29 + 0By + g(al —ob)a?, (3.27)
— 10— o0) + — By — S opp (3.28)
S0 = 3 1 1 180420 Y 180 I- .
(3.28) implies
1 o
Sl = g(blﬁz — Oby) + @(—a%kbl + 20° Bbry — 28%yryr + ae® 7). (3.29)

Since sy is anti-symmetric with respect to [ and k, we have
alatbpby — &2 B(bpyr + biyr) + 26%yry — aa®B?) = 0. (3.30)
Contracting (3.30) with b* yields
o(b*a? — 26%)(a?b — By;) = 0. (3.31)

(3.31) implies
O'Oéle = Uﬂyl, (332)

because of (b%a? —243?) # 0. From (3.32), we have ab’a? = o382, which implies
o = 0, because of a not including the factor 5. Thus (3.22), (3.27) and (3.28)
imply (3.4),(3.5) and (3.6).

(2) If b? is equal to ¢ everywhere, then (3.16) is reduced to the following

0(2 a(ymGa )

% b — 3b, G| = 6k[aProo + 202b,n G — 2By, GT]. (3.33)

From (3.33), y,,G™ must be divisible by a?. Consequently, there is a 1-from

6 = 0;3° on M, such that
YmG™ = 0. (3.34)

Plugging (3.34) into (3.33) yields
1
b G = 1—5(90a2 + 1463 — 6r¢p), (3.35)
where 6y = 0;b'. Using (3.34)—(3.35), (3.8)—(3.9) are reduced to

1
38(a” — kﬁz)amlGZL + 302 (a® + 3kB%)s;9 — gaQ(az + 3kB%)ry
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1
+ 1f5[3(042 — 3kB%)ro0 — 48(8a% — 9kB?)0 — 12ka” B0y,

- %5025(29042 + 27kB%)0; + 135[9ka25r00 + 202 (40® + 9k32)0

+ 6ka’BOo)b; = 0, (3.36)
3(a? + kB?%)(a® — kB*)amG™ + 6ka’B(3a” + kB?)sio

- %koﬂﬂ(m? + kB*)ri0 — %[61@%%0 + (15a* — 19k284)0

1
+ 6ka?B(a® + kB)0o]yr — 1—5a2(15a4 + 84ka’3? + 13k%84)0,
2 2
+ R [3ko¢2(02 + kB%)roo + gka2ﬁ(21a2 + 5k32)0
+ 2ka’(a® + k52)90} b = 0. (3.37)

Solving (3.36) and (3.37), we get

m_ 2 2 2 2
amlGa = ?01 + m[(?ﬂfﬂ?‘oo + S« 0— 7kﬂ 0 + 2ka ﬁ@o)yl
— ka?(3roo + 20260y + 280)by]; (3.38)
16 14 2860 — 3rgo
S10 = 75710 ~ Rgbz + Eﬂgl + ez U (3.39)

From (3.39), we have

1
Sik = M{a4(3rlk + 14bi0; — 1665.b;) + aQ[(2ﬂ9 — 3roo)aik — 6rroy:
+ 20byy; + 2680,y1] — 2(286 — 3ro0)yryi - (3.40)

Using s; = —Sk;, we obtain

o (3ry, — Okby — O1by,) + & [(286 — 3roo)aik — 3(Troyi + Ti0Yk)
+ 0(bkyr + biyx) + BOryr + Oiyr)] — 2(2860 — 3roo)yryr = 0. (3.41)

Since the first and second term in (3.41) include the factor a? respectively, there
is a function o(x) on M such that

Too = ;(9[3 —oa?). (3.42)
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Plugging (3.42) into (3.39), we get

Si0 = %(591 — 0by). (3.43)
By assumption that b% = %, we have

(D) b + b (B7) g1 = 0. (3.44)

Noting that (b;),x = bj., + %bi and (b7),x = b — %bi. Thus, (3.44) is
equivalent to
bj;kbj =0« (Tjk) + Sj;c)bj =0. (3.45)
From (3.42) and (3.43), we obtain 3(6obx —oby) = 0, which implies o = 6. Thus,
(3.4)—(3.6) follow from o = 6y, (3.42)—(3.43) and (3.38).
Case II: € # 4k.

From the definition of D, we have
D = (a® — kB?)[(€* 4 2k)a? — 2k(? — k)B?] — 2k* (€% — 4k)B™. (3.46)

Thus D is not divisible by (a? — k3?). D is also not divisible by [(a? + k3?)? —
€20 from (3.15) and a?. On the other hand, if b? is not identity equal to 7,
then (b%a? — 3?) can not divisible by o?, (o — k3?) and [(a? + k3%)? — e2a??].
Thus from (3.14), we have

O(ymGZ)
—7 a7t — 3b,,G™ =0, 4
By 3b,,G™ =0 (3.47)
o?roo + 2020, G™ — 28y, G™ = 0. (3.48)

If 2 = % everywhere, then by the same discussion as above, we still obtain (3.47)
and (3.48) from (3.14). Similarly, it follows from (3.47) and (3.48) that there exist
a 1-form 7 := 7;3° such that

Ym Gl =102, (3.49)
1
b Gl = 5[275 + (mbHa?), (3.50)
2
Too = 5[75 — (nbh)a?]. (3.51)
Similar to case I, we have
1
A G = §(oz27'l + 27yp), (3.52)
1
S0 = g(ﬁTl — Tbl). (353)

This completes the proof of theorem. (|
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Corollary 3.1. Let F = a+ ¢ + k%z be a Finsler metric on M as The-
orem 3.1. If B is paralle] with respect to «, then F' is locally dually flat if
and only if « is flat. In this case, F is locally isometric to a Minkowski metric
F(y) = |y| + ebiy’ + k% with zero flag curvature, where | - | is the Euclidean
metric on R™ and b;(1 <i < n) are constants.

PROOF. It is trivial for the proof of sufficient condition of locally dually flat
metric F' from Lemma 2.2. Conversely, assume [ is parallel with respect to «
and F'is dually flat. Then b;;; = 0. Thus s;9 = ;0 = 0. By Theorem 3.1, we have

B6" = 0t = (b;0")y, (3.54)
which implies 80 = (b;0%")a? and
i i L oopi 200 L o i i 2
G'=G,, = 3¢ 0" + 30y = ﬁa (0:0")y" + 39y = 6y’ (3.55)

Hence F' is both projectively flat metric and dually flat metric. By Proposition 2.6
in [CSZ], F is of constant flag curvature A. On the other hand, the flag curvature
of F'is given by

92 — exk yk

K:)\: F2

(3.56)
Thus (3.56) is equivalent to
Aot + (eAB? 4+ 2kNB% — 0% 4 0,1y%)a® + E2ABY + 2eA(a? + kB%)afB = 0. (3.57)

We must have 2eA(a? + k3%)3 = 0. Noting € # 0 and 8 # 0, So A = 0. Thus, it
follows O,xy* = 62 from (3.56).

Since F is a projectively flat metric with zero flag curvature, « is also pro-
jectively flat and of constant sectional curvature p by Beltrami theorem. We can
set

1 12 — 2
o= YOFHPP — e y)® (3.58)
1+ plaf?

where (,) is the standard Euclidean inner product on R™ and | - | is a norm with

respect to (,). By direct computation, we have
; wz,y)
G = —— . 3.59
T TTx a2’ (3.59)
From (3.55), we get

plz, y)
g—_ MUY 3.60
1+ plx|? (360)

Using 6,+y* = 02, we have p = 0 which implies a = |y|? is flat and b; is constant
because of b;;; = 0. O
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Before we give another corollary, we recall the following theorem.

Theorem 3.2 ([ChS]). Let F = a¢(s),s = g be an (a, 8) metric on M.
Suppose that ¢ # k1v/1 + kas? + k3s for any constants k1 > 0, ks and k3. Then
F is of isotropic S-curvature, S = (n+1)c(z)F, if and only if one of the following
holds

(1) B satisfies 7; + s; = 0 and ¢ satisfies ® = 0, where 1; := 750, s; 1= 530"
and ® is defined by

©=—(Q—sQ)(nA+1+5Q) - (b* —s*)(1+5Q)Q", (3.61)

here A =1+ sQ + (b* — s*)Q’. In this case, S = 0.

2) B satisfies rj; = u(b%a;; — bib;),s; = 0, where i = p(x) is a scalar function,
J J 5 ) Sj
and ¢ satisfies
PA?

o = —2(’[7, + ].)am,

(3.62)

where a is a constant. In this case, S = (n + 1)cF with ¢ = ap.

(3) B satisfies r;j = s; = 0. In this case, S = 0, regardless of the choice of a
particular ¢.

For the metric FF = a + €8 + k%z, where ¢, k are non-zero constants and
B is a non-zero 1-form, that is, ¢ = 1 + es + ks, by direct computation, we
obtain that ® = %, where @ is a polynomial in s and b of degree 7 and 2
respectively, and the coefficient of s in ® is —12nk*. Thus ® = 0 is impossible
because of k # 0. On the other hand, we compute A% and ¢pA? = ﬁ.
where A is also a polynomial in s and b of degree 10 and 4 respectively, and the
coefficient of s19 in A is 9k°. Thus, it is impossible that (3.62) holds. Hence by
Theorem 3.2, we have that F = o + €8 + k%Q (k # 0) is a Finsler metric with
isotropic S-curvature if and only if 3 satisfies r;; = s; = 0. In this case, § = 0.
From this and Theorem 3.1, we know that F' is locally dually flat with isotropic
S-curvature if and only if § = 0, which implies r;; = s;; = 0 and G°, = 0. So
bi;; = 0, that is, 8 is parallel with respect to o and « is flat. Hence, we obtain

Corollary 3.2. Let F = a+ ¢S + k% be a Finsler metric on M as The-
orem 3.1. Then it is locally dually flat with isotropic S-curvature if and only if o
is flat and B is parallel with respect to . In this case, F' is locally isometric to a

Minkowski metric F(y) = |y| + ebjy’ + k% with zero S-curvature.
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4. Locally dually flat metrics F = a + €8 + kﬁg
of isotropic flag curvature

In this section, we will classify the metrics F' = a + €5 + k%Q (e #0,k#£0,
B # 0), which are locally dually flat metrics of isotropic flag curvature(esp. cons-
tant flag curvature). Firstly, from Lemma 2.1, the spray coefficients G* of F are

given .
G'= G + aQs’y + O(—2aQsy + roo)% + U (—2aQsg + roo)b’, (4.1)
with e+ %ks
Q= 1= ka2’ (4.2)

€ — 3kes® — 4k2s3

- 4.
© 2(1 4 2kb? — 3ks?)(1 + es + ks?)’ (4.3)
k
V= s 4.4
1+ 2kb? — 3ks? (4.4)

IfF=a+e6+ k%z is locally dually flat, then the spray coefficients of F' can be
written as the following form by Theorem 3.1,

where G' = Py' + LO" + TV, (4.5)
P:= %{[1 + (s +5%°Q)0)0 — (1 + 5Q)Bbha}, (4.6)
L= 0‘;(1 +5Q), (4.7)
T.= %[(2(5 +02Q)V — Q)0 — 2U(1 + sQ)foal, (4.8)

and 6y := 6;b°. P is positively y-homogeneous of degree one and L, T are positi-
vely y-homogeneous of degree two respectively.

For any Finsler metric F' and y € T, M \ {0}, the Riemann curvature R, :=
Ry (y) O @ dek . T,M — T,M is defined as a linear map with the property

ox?
R,(y) =0 and gy(Ry(u),v) = gy(u, Ry(v)) for u,v € T, M (ct. [CS]), where
- 0G" . 02GY - 9%GH 0G* 0GY
o =2 — ) — T — — - — 4.
Ri(y) ok Y 9xioLk + Oyioyk  Oyi dyk (4.9)

For a flag IT = span{y,u} C T,(M) with flagpole y, the flag curvature K =
K(I1,y) is defined by

_ gy (u, Ry(u))
K(Ly) = 9y (Y, ¥) gy (u, u) — gy (y,u)?’
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where g, = g;;j(z,y)dz’ ® dz7. It is the analogue of the sectional curvature in
Riemannian geometry. We say that a Finsler metric F is of scalar flag curvature,
if for any y € T, (M) \ {0}, the flag curvature K = K(x,y) is independent of II
containing y € T, M. If K = K(z) depends on & € M only, then F is said to be of
isotropic flag curvature. F' is said to be of constant flag curvature if K=constant.
A Dasic fact ([CS], [Sh4]) is that a Finsler metric F' is of isotropic flag curvature
K = K(z) if and only if

Riy = KF? <5;’€ - %Fyk> (4.10)

Since Ricci curvature is defined as the trace of the Riemannian curvature, that
is, Ric := R™,,, thus if F' is of isotropic flag curvature K = K(z), then we have

Ric = (n — 1)K F?. (4.11)

Lemma 4.1. Let FF = o+ €8 + k%z be a dually flat Finsler metric on an
open subset U C R"(n > 2) of isotropic flag curvature A = A(z), where « is a
Riemannian metric, 8 is a non-zero 1-form and €, k are non-zero contants. Then

(1) € = 4k;
(2) 0=0;
(3) F must be of constant flag curvature A and A = 0.

PROOF. By assumption, F' = a+¢€8+ k%z is a dually flat metric of isotropic
flag curvature. we get from (4.5) and (4.9)

R'(y) = EW)0, + W)y’ + ()0 + vk ()b’ + X1 (v), (4.12)
and
Ric = (n — 1)2(y) + s (¥)0" + vi(y)b" + x*5(y), (4.13)
where
E(y) : = P> — Puy’ + 2LP,;07 + 2T PV, (4.14)
Ti(y) : = 3(Pyr — PPy — Lu Py — Ty Pyib?) + =, (4.15)

p(y) : = 2L0 — Lyjyey’ + 2LLy;5 067 + 2T Ly b — Ly L6

— Ly Tyt (4.16)
ve(y) : = 2Tk — Tyi et + 2LT 5 0607 + 27T, 6t — Ty L 6?

— T Ty, (4.17)

Nay) = 2L(0) e + 2TV )r — Ly (0)097 — Tpe W)y, (4.18)
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Hence by (4.11), we have
(n = DAF? = (n = 1)Z(y) + m()0" + vi(y)b’ + X" (y)- (4.19)

In order to formulate the equation (4.19) in « and 0, we need to compute all
terms on the right hand of (4.19). Firstly, from Theorem 3.1 and (2.11)—(2.13),
we get

2 2
gy’ =200, a6t = ?)—a(|9|2042 +20%),  aub® = g(eoa +2s6), (4.20)
0
aykyk = q, aykﬂk = O[ykbk = s, (4.21)
b — 4(aby, — 460
P W@ = (4.22)
Boax — s6 b? — 2
k k k 0 k
Sapry” = Sypy” =0, sk0° = oz sykb" = — (4.23)
Let
= 2(14 7o) — _2Be:
p = 3 5 q = 3 )
1:=2B — sB,, h:= B; — sB;
u = 1(2Z\Il -Q) vi= —EE\I/
= 3 y = 3 )
where A := s+ b?Q and B := 1+ sQ. Then
1_
P =p0+qbpa, L= gBO&Q, T = ubo + vy, (4.24)
Using (4.20)—(4.24), by direct computation, we get
Priy? = (060 + 000)bsiy’ + p0riy’ + qa(Bo)wsy’ + 2¢000cx, (4.25)
, 600 62
Pyjej = p‘9|2 + (ps — 5Qs + (I)% - Spsﬁ + qs(90)27 (426)

. ) 4 —
Pt = (p+ sq + qst)o +p8t§, L,i07 = §(B|9|2a2 + B0 + 10%), (4.27)
(0%

Y

1 — 1 —
L,;i0? = =(10 + By0pa), L,V = =(sl + Byb%)a, 4.28
Y 3 v 3

— =5
a

) | 2 _
(Lyi0"),:607 = 3 (19|2 + 2h900 h% + 35393), (4.29)
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1T e o
(Lyib)yot? = 5| bt~ + 2B+ Bost)o (4.30)
, 1 o o
(Lyiel)x_jyj = g[l@aﬂy] + Bsa(Qg)ij] + 2B590904], (431)
j 2 0° 2
Tyi6? =ulf“a+ (u— sus)g + (20 + us — sv5)0p0 + v, (4.32)
Tyt = (u+ 250 + vgt)foa + (su + ust)d, (4.33)

) . 000
(T,)i0")ysb" = (us +ust)|0]* + [2(u — sus) + (Uss — SV + Us)ﬂ%

92
— s(u — sus + Uss )a + (20 + us + vsst) 03, (4.34)

, , 0
(T,ib")i b’ = [2us + 2020 + (2us + svs 4 vast)t]0o + (u — su,s + usst)ta, (4.35)

T,V = %[(u + 450 + 20,t) 000 + 2(su + ust)0? 4 200307

ualy i b+ va(0) 4 b 4 (upf + vpbo) by b (4.36)
(Tyib) sy’ = 2(u + 250 + vst)0pfa + (u + 250 + vst)(00) sy’

(up + 2bvg + 2505 + vept)Boaby 1y’ + (sup + 2bug + ugpt)Bbyiy’

+ (su + ugt) sy, (4.37)

where t = b% — s and (-)s, (-)p or (+)s are the first or second differential with
respect to s, b. Putting (4.24)—(4.37) into (4.19) yields

(n — DAF? = ¢1]0%a® + c20% + e300 + c4030* + c5(byiy" 0o + c6((00)2iy’ )
+ c7(04:0" ) + cg(byiy')0 + coa® + crofa + 110,49, (4.38)

where ¢;(1 <1 < 11) are defined as follows:

2
=g (n—1)pB + 3(lB + B) + B(su + ust) — u(ls + Bsb?)| ; (4.39)
1 _
cii=ci1t+cp2<i<4); co:i= %(3})2 — 28ps B + 6upst); (4.40)
1 — 1
c3 1= —5(25hB — 6uht + 1> — 8l) + g[_ 25uB + 2s°usB — 3u®s’
— 2(6suus — 4us — 3u® + su, )t]

+ (2uugs — u2)t? — g(ls + Byb?)(u — sus); (4.41)



On a class of locally dually flat Finsler metrics. . . 187

2(n—1 —
C31 1= % [3pq —3q+ B(ps — sqs + q) + 3u(p + sq + gst) + 3vpst]; (4.42)

2. _ — N — 1
Cs2 1= g [2hB + 12uB + 3(uBss + vh)t — IB, + Bs] + 3 [ — 2u + 6u’s

_ 92 _ _ _
+ 4sv — 4susB] + 3 [vsB + vs + Yuv + 3uus — 9svus + Bugs — stss}t

2 _
+ 2(uvss + vugs — usvs)t2 — g(sl + Bsb2)(us — svs + 2v); (4.43)
n—1 —
Cap 1= 3 [3(]2 + 2Bgs + 6v(p + sq + qst)]; (4.44)
1 — — 1 _ _
iz = 5 (2BBus — B + 6vB,t) + 5 (80 +80B + 2Bu, —3u°)

1
+ 2<2vus + 202 — svvs — uvs + BBUss>t

— (v = 2uu, )% — gvs(sl + Bob%); (4.45)
cs = —(n—1)gp —up — 2bvs — 25V — Vspt; (4.46)
6 :=—(n—1)qg— %ES — 250 — u — vst; (4.47)
cri=2u;  cg:i=—(n—1)py — sup — 2bugs — ugpt; (4.48)
co = %E(ei)xi + 20(00)ib + 2000(B ) g: + 20400 (byeb): (4.49)
c10 = 2[upbyib’ +u(b')il;  c11 = —(n—1)p — él — su — ust, (4.50)

By a long but direct computation, the equation (4.38) can be reduced into the
following

S AR = g2 co1 21y
(n=1) o | 9azg(sa3 T oA Al

C31 C32 C41 Cy42 9 9

9

* [9A%¢<S>A§ " 9A§A3]9°9“+ [9A%A% * 9A%A%} oe
- .

A1 Ay

) C . )
+ (baiy)boar + ——=((60) w1y’ + (0,0
A A2

_%
A A3

CS)As(bmiyi)9+ D P4

—_— 0
+A1¢(3 5 A A3 A1 A3 “

Ci1 0., 4
Arg(s)43 Y
here Ay :=1—ks? Ay :=1+2kb>—3ks?, Gi(i =1, or 5 <i < 11), ;1 (2 <i < 4)
and C;2(2 < i < 4) are polynomials in s and b respectively, in particular, ¢o; =

n (4.51)
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9A2¢(s)2A3co1 and Cp = 9AFAdcin (2 < i < 4). From (4.51) and \ = \(x), we
know that €37 must be divisible by ¢(s). On the other hand, let

1
hib) =15 [2k%0° + (8k — 7€®)kb* + 2(5k% — 13ke® + 4e')kPH?
+ 4k% — 21k%€® + 16ke* — 3€°], (4.52)

and
folb) == % 25505 4 (15 — 7e2)k4b* + 214k — 1The® + 4c*) k2D
+ (15k% — 34k®€* + 19ke* — 3¢%)]. (4.53)
We compute ¢2; directly and get
Co1 = —3(n — 1)(e? — 4k)® f(s,b) mod ¢(s), (4.54)

where f(s,b) := f1(b) + f2(b)s is a polynomial in s and b of degree 1 and 6
respectively. By assumption, n > 2. Thus, either €2 = 4k or f(s,b) = 0. But
f(s,b) = 01implies f1(b) = f2(b) = 0, which is impossible unless € = k = 0 because
of the arbitrary of s and b. The assumption of lemma implies €2 = 4k. (1) holds.

In the case when €2 = 4k, the coefficients Coz, 32 and 4o in (4.51) satisfy
Cog = (b(s)égg, C3g = qb(S)QEgg and ¢y = ¢(S)2E42, where 522, 532 and 542 are
polynomials in s and b. Moreover, from (4.51) and A = A(x), we know that
G902 + C300p0a + 642(98&2 must be divisible by As, i.e.,

52292 + d)(S)Egzaoea + ¢(8)E420(2)042 =0 mod AQ. (455)
On the other hand, using € = 4k, we compute by maple program
52202 + gb(s)ﬁggﬂoﬁa + ¢(S)E429%0¢2 = g(S, b) mod A27 (456)

where g(s,0) := [(91(0) + g2(b)s]0° + [g3 () + ga(b)s]fofcr + [g5(D) + g6(b)s]0F
and

1/1 7 11 5
by — [ a2z _ Loaogio L 2 sys 9 6p6 4 4p
91(0) 9<126 g€ VT T3 ‘

128
+ 16€2b* — 3); (4.57)

1 11 17
ga(b) = _g <4610b10 — Ze8b8 + ?e%ﬁ + 2¢*p* — 40€%% + 32) i (4.58)

€V (1 gs 5 g 434 272
gg(b)::T geb—zeb +3€7b” + 4e°b* — 16 ) ; (4.59)
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271 1
ga(b) = % (861%10 — 8% + 56%6 + 10e*p* — 8€%b* — 32) ; (4.60)
g5(b) := —i ieloblo - i681)8 - Z€6b6 + 7€'t + 420% + 32 ) ; (4.61)
ST g (32 16 4 ’ '
1 878 0 6,6, 3 44 272

From (4.55) and (4.56), we get g(s,b) = 0, which implies 6 is divisible by «.
Noting that « is irrational and 6 is a 1-form. Hence # = 0. Thus from (4.51), we
obtain A = 0. This completes the proof of lemma. ([l

By Theorem 4.6 in [Zh], the metric F' = M with constant flag cur-
vature must be projectively flat. Combining Lemma 4.1 and Proposition 2.6 in
[CSZ], we have

Theorem 4.1. Let FF = a + ¢ + k%z be a locally dually flat metric on
M"™(n > 2), where « is a Riemannian metric, 8 is a non-zero 1-form and e,k
are non-zero constants. Then it is locally projectively flat if and only if it is of
constant flag curvature.

Theorem 4.2. Let F = a+ ¢S+ k%2 be a Finsler metric on M™(n > 2),
where « is a Riemannian metric, § is a non-zero 1-form and €,k are non-zero
constants. Then F' is a locally dually flat Finsler metric of isotropic flag curvature
if and only if € = 4k, « is flat and 3 is parallel with respect to o. In this case, F

_ N2
is locally isometric to F' = W, which is a Minkowski metric with zero
flag curvature, where | - | is the Euclidean metric on R™ and b;(1 < i < n) are

non-zero constants.

PrOOF. It is obvious that the Minkowski metric F
flat metric with constant curvature from Lemma 2.2. Conversely, assume that F' is

= 7(|y|+\/fbiyl)2 is dually

a locally dually flat Finsler metric of isotropic flag curvature. From Lemma 4.1,
we have €2 = 4k, # = 0 and F is of zero flag curvature. By Theorem 3.1, we
conclude that rj; = s;, = G% = 0. We have completed the proof of theorem. [

Remark 4.1. The another proof of necessity of Theorem 4.2 may follow
from the conclusion (1), (3) in Lemma 4.1, Theorem 4.6 in [Zh] and Theorem 1.2
in [SY] directly.

Remark 4.2. Theorem 4.2 shows that there exists no locally dually flat
metric in the form F = a + €8 + k:% (e #0, kK #0, 8 # 0) of isotropic flag
curvature unless it is Minkowskian.
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Remark 4.3. Theorem 4.2 implies that locally dually flat metrics F' =
2
a+ef+ k% (e £0, k#0, 8+#0) of isotropic flag curvature K are equivalent to

locally dually flat metrics F' = a+ €5 + k%z (e £0, £ #0, B # 0) with constant
flag curvature K. In both cases, we have K = 0.
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