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Semi-parallel vector fields and conformally flat Randers metrics
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Abstract. In this article, we investigate the conformal flatness of Randers metrics

as an application of the geometry of Riemannian spaces admitting a semi-parallel vector

field.

1. Introduction

A Riemannian manifold (M, g) is said to be conformally flat if there exists a

local function σ(x) defined on a neighborhood U of an arbitrary point in M such

that the local metric eσ(x)g is a flat metric on U . As is well-known, the conformal-

flatness is characterized by the vanishing of the Weyl’s conformal curvature. On

the other hand, Yano [Ya2] characterized the conformal-flatness by the existence

of some special linear connection, that is, a Riemannian metric g is conformally

flat if and only if there exists a semi-symmetric metrical connection ∇ whose

curvature vanishes identically.

In Finsler geometry, the conformal curvature which characterize the con-

formal-flatness of Finsler metric has not been obtained yet. The conformal-

flatness of a Finsler metric is characterized by [Ha-Ic2] as a generalization of
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Yano’s theorem as follows: A Finsler manifold (M,L) is conformally flat if and

only if there exists a semi-symmetric Finsler connection ∇ whose curvature va-

nishes identically.

A typical example of Finsler metrics are given by the Funk metric or Hilbert

metric on a strictly convex domain. These metrics have some special properties,

that is, these metrics are projectively flat, and they are of negative constant

flag curvature. In particular, the Funk metric is a special class of the so-called

Randers metric if the boundary of the domain is given by a quadratic equation.

A positive function L defined on the total space TM of tangent bundle of a

smooth manifold M is said to be a Randers metric if L is given by the form

L(X) =
√
g(X,X) + β(X) (X ∈ TM) for a Riemannian metric g on M and a

one-form β on M . A characterization of Randers metric of negative constant flag

curvature is given by [Ha-Sa-Sh] under some assumption.

Theorem 1.1 ([Ha-Sa-Sh]). Let L(X) =
√
g(X,X) + β(X) be a Randers

metric on M with a one-form β satisfying dβ(E,X) = 0 for all vector filed X

on M , where E is the dual of β with respect to g. Then (M,L) has negative

constant flag curvature K = −ρ2/4 if and only if

(1) the base Riemannian manifold (M, g) has negative constant sectional curvat-

ure −ρ2,

(2) the one-form β is semi-parallel, that is, β satisfies

∇gβ = ρ(g − β ⊗ β), (1.1)

where ∇g is the Riemannian connection of (M, g).

The form β satisfying (1.1) is a special case of the so-called torse-forming

one-form, that is,

∇gβ = ρ (g + εβ ⊗ β) , (1.2)

where ρ is a constant and ε = ±1 ([Ya1]). It is easily shown that one-form β

satisfying (1.2) is closed. In the second section, we shall show that a connected

complete Riemannian manifold which admits such a one-form β is given by the

warped product space M = N ×ψ(t)R, where N is a totally umbilic hypersurface.

In the third and fourth sections, we shall investigate the conformal flatness of

Randers metric as an application of geometry of Riemannian manifolds admitting

a semi-parallel vector field.
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2. Semi-parallel vector fields

Let (M, g) be a connected complete Riemannian manifold of dimM = n. In

this section, we shall investigate the structure of a Riemannian manifold (M, g)

admitting a semi-parallel vector filed E.

Definition 2.1 ([Ha1]). A vector field E is said to be semi-parallel if it satisfies

∇g
XE = ρ (X + εβ(X)E) , (2.1)

where β is the dual of E, that is, β(X) = g(X,E) for any vector field X on M ,

and ρ is a constant and ε = ±1. If ρ ≡ 0, then E is a parallel vector field.

The condition (2.1) is equivalent to (1.2) which implies dβ = 0, and thus

β = df for some local function f . Then E is the gradient vector filed ∇gf of f ,

that is, g(X,∇gf) = X(f) every vector field X, and E is given by

E = ∇gf =

n∑

i,j=1

gij
∂f

∂xi

∂

∂xj
(2.2)

in local coordinate on M .

Example 2.1. Let B be the unit ball in the n-dimensional Euclidean space Rn:

B =

{
(x1, . . . , xn) ∈ Rn | 1−

n∑

i=1

(xi)2 > 0

}
.

For every point x = (x1, . . . , xn) ∈ Rn, we set ‖x‖2 =
∑n

i=1(x
i)2 and f(x) =

log(1− ‖x‖2). The Hilbert metric gH on B is defined by

gH =
(1− ‖x‖2)(∑n

i=1 dx
i
)2

+
(∑n

i=1 x
idxi

)2
(1− ‖x‖2)2 , (2.3)

which is a hyperbolic Riemannian metric induced on B from the Minkowski metric

gM =
∑

(dxi)2 − (dt)2 on the hyperboloid
∑

(xi)2 − t2 = −1 (cf. [KN]). As is

well-known, the space (B, gH) has negative constant curvature K = −1. The

vector field E = ∇gf satisfies (2.1), and the one-form β defined by

β = −1

2
df =

1

1− ‖x‖2
n∑

i=1

xidxi (2.4)

satisfies (1.2) for the case of ρ = 1 and ε = −1 (cf. [Ok]). The norm ‖β‖ of this

one-form β is given by ‖β‖ = ‖x‖ < 1. ¤
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Since any torse-forming one-form β is closed, the integrability condition

∇g
X∇g

Y E −∇g
Y ∇g

XE −∇g
[X,Y ]E = Rg(X,Y )E for (2.1) is given by

Rg(X,Y )E = −ερ2
[
g(X,E)Y − g(Y,E)X

]
. (2.5)

Then, the sectional curvature K(X ∧ E) of the 2-plane X ∧ E is given by

K(X ∧ E) =
g(Rg(X,E)E,X)

‖X ∧ E‖2 =
g(Rg(X,E)E,X)

‖X‖2‖E‖2 − g(X,E)2
= ερ2 (2.6)

for all X ∈ TM . In particular, if (M, g) is a Riemannian manifold of constant

curvature ερ2, that is, if its curvature Rg satisfies

Rg(X,Y )Z = ερ2
[
g(Y, Z)X − g(X,Z)Y

]

for all X,Y, Z ∈ TM , then the integrability condition (2.5) is satisfied, and thus,

if (M, g) is of constant curvature, there exists a semi-parallel vector field around

every point in M .

Every Riemannian manifold of constant curvature c can be locally expressed

as a warped product whose warping function satisfies ∆f = cf (cf. [Ch]). In

the sequel, we shall show that a Riemannian manifold (M, g) admitting a semi-

parallel vector field E can be locally expressed as a warped product space R×ρN ,

where N is a totally umbilic submanifold.

We suppose that there exists a smooth function f : M → R such that

E = ∇gf satisfies (2.1) and f has no critical points. Then the set N = f−1(t) is a

hypersurface inM with normal vector field E for every t ∈ R. Let p ∈ N = f−1(t)

be an arbitrary point. The second fundamental form S of N at p ∈ N with respect

to the normal vector field E = ∇gf is defined by

S(X,Y ) = (∇g
XY )

⊥
(2.7)

for X,Y ∈ TpN , where ⊥ is the projection to the orthogonal line bundle spanned

by E. Since ∇g is metrical and β(X) = g(X,E) = g(X,∇gf) = 0 for every

X ∈ TpN , we have

g (∇g
XY,E) = Xg(Y,E)− g(Y,∇g

XE) = Xβ(Y )− g (Y, ρ {X + εβ(X)E})
= −ρg(X,Y ),

and thus we have

S(X,Y ) = −ρg(X,Y )

‖E‖2 E. (2.8)

Hence we have
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Lemma 2.1. Let (M, g) be a connected complete Riemannian space. Sup-

pose that there exists a smooth function f : M → R such that its gradi-

ent E = ∇gf is a semi-parallel vector field. Then the complete hypersurface

N = f−1(t) is totally umbilical for every t ∈ R. If E is parallel, that is, ρ ≡ 0,

then N is a totally geodesic hypersurface.

If a semi-parallel vector field E has constant length, then its length must be

unit and ε = −1 (cf. [Ha1]). Thus, in the sequel, we shall restrict our discussions to

the case of ε = −1. Then, since the gradient of f has constant norm ‖∇gf‖ = 1,

we have a splitting theorem by the same method as in [In], [Sa] and [Ya1] as

follows.

Since the function f admits no critical points, f−1(t) = N is a complete

hypersurface for every t ∈ R, and M is diffeomorphic to the product space N×R.
In the case of ρ ≡ 0, the gradient ∇gf is parallel, and the Hessian ∇g(df) vanishes

everywhere. Such a function f is called an affine function (cf. [Sa]).

Let γE be the integral curve of E through p ∈ N = f−1(0). By the assumpt-

ion of ‖E‖2 = β(E) = 1, we get ∇g
EE = 0, and thus the integral curve γE of E is

a geodesic orthogonal to the hypersurface N . Since (M, g) is complete, γE(t) is

defined for all t ∈ R. Then, since E(f) = g(E,∇gf) = ‖E‖2 = 1 and

E(f) =
d

dt
f (γE(t)) ,

we have f(γE(t)) = f(p) + t = t for all t ∈ R.
Moreover, the integral curve γE is a minimal geodesic between the hypersur-

face f−1(0) and f−1(t) (cf. [Sa]). Indeed, let c : [0, l] −→ M be any smooth curve

parametrized by its arc-length s joining a point p = c(0) ∈ f−1(0) and a point

q = c(l) ∈ f−1(t). Then the length L(c) of c satisfies

L(c) =

∫ l

0

‖ċ(s)‖ ds ≥
∣∣∣∣∣
∫ l

0

g (ċ(s),∇gf(c(s)))

∣∣∣∣∣

=

∣∣∣∣∣
∫ l

0

d

ds
f(c(s))ds

∣∣∣∣∣ = |f(q)− f(p)| = t

=

∫ t

0

‖E‖ dt = L(γE),

namely dist
(
N, f−1(t)

)
= L(γE).

Lemma 2.2 ([Sa]). Let (M, g) be a connected complete Riemannian ma-

nifold. Suppose that there exists a smooth function f : M → R such that its

gradient ∇gf is a semi-parallel vector field of unit length. Then f is the signed

distance function to the connected complete hypersurface N = f−1(0).
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With respect to a suitable local coordinate system (x1, . . . , xn) on M ∼=
N × R, the given metric g has the form

g =

n−1∑

i,j=1

gij(x
1, . . . , xn)dxi ⊗ dxj + gnn(x

1, . . . , xn)dxn ⊗ dxn.

Since the orthogonal trajectories to N defined by xi = constant (i = 1, . . . , n−1)

are geodesics, the coefficients Γλ
βγ of the Riemannian connection ∇g of (M, g)

satisfy

Γ i
nn =

1

2

n∑

λ=1

gλi
(
∂gλn
∂t

+
∂gnλ
∂t

− ∂gnn
∂xλ

)
= 0,

and this implies gnn = gnn(x
n). Replacing

√
gnn(xn)dxn by dt, the metric has

the following form

g =

n−1∑

i,j=1

gij(x, t)dx
i ⊗ dxj + dt⊗ dt. (2.9)

Denoting by g0 = dt⊗dt the canonical metric on R, the map f : (M, g) −→ (R, g0)
is a Riemannian submersion.

With respect to such a coordinate system (x, t) = (x1, . . . , xn−1, t), we have

E = ∂/∂t and

∇g
∂

∂xj

∂

∂xi
=

n−1∑

h=1

Γh
ij(x, t)

∂

∂xh
+ Γn

ij(x, t)E.

Consequently the second fundamental form S is given by

S

(
∂

∂xi
,

∂

∂xj

)
= Γn

ij(x, t)E,

and (2.9) implies that Γn
ij = ρ(x, t)gij , that is,

1

2

n∑

λ=1

gλn
(
∂giλ
∂xj

+
∂gλj
∂xi

− ∂gij
∂xλ

)
= ρgij .

Since gin = gjn = 0 for i, j = 1, . . . , n− 1 and gnn = 1, we have

∂gij
∂t

= −2ρgij(x, t).
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This implies that gij(x, t) = ψ(t)2g∗ij(x) for a Riemannian metric

gN =
∑

g∗ij(x)dx
i⊗dxj on N , where ψ is given by ψ(t) = e−ρt. Thus the metric g

is of the form

g =
(
e−ρt

)2 n−1∑

i,j=1

g∗ij(x)dx
i ⊗ dxj + dt⊗ dt =

(
e−ρt

)2
gN + dt⊗ dt. (2.10)

In particular, if ρ = 0, then g is the product metric g = gN+dt⊗dt on the product

space M = N × R. Consequently Lemma 2.1 and 2.2 imply the following.

Theorem 2.1. Let (M, g) be a connected complete Riemannian manifold.

Then, there exists a smooth function f : M → R such that its gradient ∇gf is

a semi-parallel vector field of unit length if and only if there exists a connected

complete hypersurface N which is totally umbilic with constant mean curvature ρ

and M is isometric to the warped product space N ×ψ(t) R with the warping

function ψ(t) = e−ρt. In this case, the function f is the signed distance function

to N .

By the exponential function, the manifold N ×R is diffeomorphic to N ×R+

by sending N × R 3 (x, t) −→ (x, et) ∈ N × R+.

Example 2.2. Let H = {(x1, . . . , xn) ∈ Rn | xn > 0} be the upper half plane

with the Riemannian connection ∇g of the Poincaré metric

gP =

(
1

xn

)2 n∑
α=1

dxα ⊗ dxα. (2.11)

Setting t = log xn, the metric gP is written as

gP = (e−t)2
n−1∑

i=1

dxi ⊗ dxi + dt⊗ dt. (2.12)

Comparing this metric with (2.11), we define a function f : H −→ R by f(x) =

log xn = t. Since ∇g is given by the Christoffel symbols

Γ i
jk = − 1

xn

(
δjnδ

i
k + δknδ

i
j − δjkδ

i
n

)
,

we can easily show that the gradient

∇gf =
∂

∂t
= xn ∂

∂xn

is a semi-parallel vector field on H of constant norm ‖∇gf‖ = 1, namely E = ∇gf

satisfies ∇g
XE = β(X)E − X. The hypersurface f−1(t) is a totally umbilical

hypersurface with constant mean curvature H = 1 for every t ∈ R. ¤
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3. Finsler metrics and connections

3.1. Finsler metrics. First we shall review the variational problems from [He].

Let π : TM → M be the tangent bundle of a connected smooth manifold M .

We denote by v = (x, y) the points in TM if y ∈ π−1(x) = TxM . We denote by

z(M) the zero section of TM , and by TM× the slit tangent bundle TM\z(M).

We introduce a coordinate system on TM as follows. Let U ⊂ M be an open

set with local coordinate (x1, . . . , xn). By setting v =
∑n

i=1 y
i
(
∂/∂xi

)
x
for every

v ∈ π−1(U), we introduce a local coordinate (x, y) = (x1, . . . , xn, y1, . . . , yn) on

π−1(U).

Let L : TM×R→ R be a Lagrangian. The Cartan form θL of L is defined by

θL =

n∑

i=1

∂L

∂yi
(dxi − yidt) + Ldt. (3.1)

For every smooth curve c : [0, 1] → M , we define a natural lift φ : [0, 1] → TM×R
by φ(t) = (c′(t), t). Since φ∗(dxi − yidt) = 0, we obtain

∫ 1

0

φ∗(θL) =
∫ 1

0

L (c′(t), t) dt.

For an arbitrary proper variational field X, we denote by φs : (−ε, ε)× I →
TM × R the variation of φ. The critical point of this variation is calculated as

follows:

d

ds s=0

∫ 1

0

φ∗
sθL =

∫ 1

0

d

ds s=0
φ∗
sθL =

∫ 1

0

[
φ∗(ιXdθL) + dφ∗(ιXθL)

]

=

∫ 1

0

φ∗ (ιXdθL) ,

since X is proper. Then we define a 2-form ΘL on TM × R by ΘL = dθL:

ΘL =
∑[

d

(
∂L

∂yi

)
− ∂L

∂xi
dt

]
∧ (dxi − yidt). (3.2)

Then φ = φ(t) is called a characteristic curve of L if it satisfies φ∗ΘL = 0. A

smooth curve c = c(t) on M is called a extremal curve of L if c is the projection

of a characteristic curve φ = φ(t) into M . A smooth curve c = c(t) is a extremal

if and only if it satisfies the Euler–Lagrange equation:

d

dt

(
∂L

∂yi

)
=

∂L

∂xi
.
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Secondly we shall investigate the case where the Lagrangian L is indepen-

dent of the parameter t and, moreover, L satisfies the homogeneity condition

L(λX) = λL(X) for all λ > 0. In this case, the extremal of L is independent of

the parametrization, and, since the homogeneity of L implies
∑

yi∂L/∂yi−L = 0,

the Cartan form θL is given by

θL =

n∑

i=1

∂L

∂yi
dxi. (3.3)

Definition 3.1. A function L : TM −→ R is called a Finsler metric on M if

1. L(x, y) ≥ 0, and L(x, y) = 0 if and only if y = 0,

2. L(x, λy) = λL(x, y) for ∀λ ∈ R+ = {λ ∈ R : λ > 0},
3. L(x, y) is smooth on TM×

are satisfied. The pair (M,L) is called a Finsler space.

For each X ∈ TxM , its norm ‖X‖ is defined by ‖X‖ = L(x,X). The length

l(c) of a smooth curve c = c(t) is defined by l(c) =
∫ 1

0
L(c′(t))dt. An extremal

curve in a Finsler manifold (M,L) is called a geodesic in (M,L).

Example 3.1. Let g be a Riemannian metric on M . Since there exists a 1-

from β satisfying β(X) ≤
√
g(X,X), the function L =

√
g(X,X) + β(X) defines

a Finsler metric on M so-called Randers metric. A Randers metric L is strictly

convex if and only the norm ‖β‖ of β with respect to the metric g satisfies ‖β‖ < 1.

¤

Let L and L̃ be two Finsler metrics on M . Then (M,L) is projectively equ-

ivalent to (M, L̃) if (M,L) and (M, L̃) have the same geodesics as point sets.

An appropriate ”sufficient condition” for (M,L) to be projectively equivalent to

(M, L̃) is

ΘL = ΘL̃. (3.4)

Definition 3.2. A Finsler space (M,L) is said to be strictly projective-equ-

ivalent to a Finsler space (M, L̃) if (3.4) is satisfied.

The condition (3.4) is written in the form:

n∑

i=1

d

(
∂L

∂yi

)
∧ dxi =

n∑

i=1

d

(
∂L̃

∂yi

)
∧ dxi.

Therefore we have

∂2(L̃− L)

∂yi∂yj
= 0,

∂2(L̃− L)

∂yi∂xj
=

∂2(L̃− L)

∂xi∂yj
.
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These equations imply θL̃ = θL + π∗β for a closed one-form β on M and

L̃(X) = L(X) + β(X) (3.5)

for all X ∈ TM . Consequently we obtain the following theorem:

Theorem 3.1. Let L and L̃ be two Finsler metrics on a smooth manifold M .

Then (M,L) is strictly projective-equivalent to (M,L) if and only if L̃ is given

by (3.5) for a closed one-form β on M . In particular, a Finsler manifold (M,L)

is strictly projective-equivalent to a Riemannian manifold (M, g) if and only if

there exists a closed one-form β on M satisfying

L(X) =
√
g(X,X) + β(X) (3.6)

for all X ∈ TM .

3.2. Chern-Finsler connection. Let V = kerπ∗ be the vertical sub-bundle

of the tangent bundle over TM , where π∗ is the differential of the projection

π : TM → M . Since we have the natural identification V ∼= π∗TM = {(y, v) ∈
TM×TM | v ∈ Tπ(y)M} and V is locally spanned by {ej = ∂/∂yj} (j = 1, . . . , n)

on each π−1(U), we may consider the differential π∗ as a V -valued one-form

π∗ =
∑

ei ⊗ dxi on TM . We denote by Ak(V ) the space of smooth V -valued

k-forms.

A Finsler metric L is said to be convex if G = L2/2 is strictly convex on each

tangent space TxM , that is, the Hessian (Gij) defined by

Gij(x, y) =
∂2G

∂yi∂yj
(3.7)

is positive-definite.

In the sequel, we assume the convexity of L. Then each fiber TxM is a

Riemannian space with a metric Gx =
∑

Gij(x, y)dy
i ⊗ dyj , and the family

{Gx}x∈M defines a metric G on V by G(Y, Z) =
∑

GijY
iZj for every section

Y =
∑

Y iei and Z =
∑

Zjej . We define a symmetric tensor C : ⊗3V → R by

C(ei, ej , ek) =
1

2

∂Gij

∂yk
:= Cijk. (3.8)

It is trivial C vanishes identically if and only if G is a Riemannian metric on M .

The multiplier group R+ ∼= {cI ∈ GL(TM); c ∈ R+} ⊂ GL(TM) acts on

the total space by multiplication mλ : TM 3 v = (x, y) → λv = (x, λy) ∈ TM

for ∀λ ∈ R+. This action induces a canonical vector filed E defined by

E(x, y) =
n∑

i=1

yi
∂

∂yi
,
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which is called the tautological section of V . By the homogeneity of L, we have

E(L) = d

dt

∣∣∣
t=0

L(x, y + tE) = L.

Moreover it is easily shown that L =
√
G(E , E) and C(E , •, •) ≡ 0.

Definition 3.3 ([Ba-Ch-Sh]). The Chern connection on (M,L) is a connection

D : Γ (V ) → A1(V ) uniquely determined by the following conditions.

(1) D is almost G-compatible:

DG = 2C. (3.9)

(2) D is symmetric:

Dπ∗ = 0, (3.10)

where we consider π∗ as a V -valued one-form on TM .

We define θ ∈ A1(V ) by θ = DE . Then, H = ker θ defines a horizontal sub-

bundle H which is complementary to V . Denoting by ωi
j =

∑n
k=1 Γ

i
jk(x, y)dx

k the

connection form of the Chern connectionD with respect to the frame {e1, . . . , en},
the differentiation dD in the horizontal direction is given by

dDF :=

n∑

k=1

(
∂F

∂xk
−

n∑

l=1

ylΓ i
lk(x, y)

∂F

∂yi

)
dxk

for any smooth function F on TM×. Then the Chern–Finsler connection D of

(M,L) satisfies

dDL ≡ 0. (3.11)

Remark 3.1. In the case of C = 0, the metric L is the norm function of a

Riemannian metric g, and the Chern connection D is given by D = π∗∇g for the

Riemannian connection ∇g of (M, g). Then we have

d∇gLg ≡ 0, (3.12)

where Lg is defined by Lg(X) =
√
g(X,X) for every X ∈ TM . ¤

Let D be the Chern–Finsler connection of a Finsler space (M,L). The 2-

plane F(X) spanned by X ∈ V and E is called the flag with the flagpole E . For

the curvature tensor R of D, the sectional curvature

K(X ∧ E) = 〈R(X, E)E , X〉
‖X‖2‖E‖2 − 〈X, E〉2

is called the flag curvature of the flag F(X). A Finsler manifold (M,L) is said to

be of constant flag curvature if K(X ∧ E) is constant for every X ∈ V .
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Example 3.2 ([Ok]). The Hilbert metric gH defined by (2.3) has negative

constant curvature. The Funk metric LB on B is defined by

LB(X) =
√
gH(X,X) + β(X) (3.13)

for the one-form β defined by (2.4). The norm ‖β‖H with respect to gH is given

by ‖β‖H = ‖x‖ < 1. Since β is closed, the Funk metric LB is strictly projectively-

equivalent to Hilbert metric gH . Furthermore, β satisfies the condition (1.1).

Therefore, by Theorem 1.1, (B, LB) has negative constant flag curvature K =

−1/4. ¤

3.3. Berwald spaces and Wagner spaces. A Finsler metric L is said to be

flat or locally Minkowski if its Chern-Finsler connection D is flat, that is, its

curvature R vanishes identically. The flatness of L is equivalent to the fact that

there exists an open covering of M such that the metric L is independent of the

base point x ∈ M (cf. [Ma]).

Definition 3.4. A Finsler metric L is said to be Berwald if the Chern–Finsler

connection D is given by D = π∗∇ for a symmetric linear connection ∇ in TM .

The following theorem plays an important role in the study of Berwald spaces.

Theorem 3.2 ([Sz]). Let (M,L) be a Berwald space. Then there exists a

Riemannian metric g satisfying D = π∗∇g, where ∇g is the Riemannian connec-

tion of (M, g).

It is obvious that if (M,L) is a Berwald space, then (M,L) is projective

equivalent to the associated Riemannian space (M, g). In Theorem 3.2, without

loss of generality, we may assume L(X) > Lg(X) for every X ∈ TM×. Then we

have

Theorem 3.3. Suppose that a Berwald space (M,L) is strictly projective-

equivalent to the associated Riemannian space (M, g). Then L has the form of

L(X) =
√
g(X,X) + β(X) (3.14)

for a parallel one-form β on (M, g).

Proof. We assume that (M,L) is strictly projective-equivalent to (M,Lg),

that is, ΘL = ΘLg . Then, by Theorem 3.1, there exists a closed one-form β =∑
βk(x)dx

k on M satisfying (3.5). Furthermore, by Theorem 3.2, the Chern–

Finsler connection D is given by D = π∗∇g for the Riemannian connection ∇g



Semi-parallel vector fields and conformally flat Randers metrics 203

of the associated Riemannian space (M, g). Therefore we have d∇gL = 0. Con-

sequently, because of (3.12), the one-form β satisfies

0 = d∇g [β(E)] =
n∑

k=1

(
∂β(E)
∂xk

−
n∑

l=1

ylΓ i
lk(x, y)

∂β(E)
∂yi

)
dxk

=

n∑

k,l=1

yl
(
∂βl

∂xk
−

n∑

h=1

Γh
kl(x)βh

)
dxk = (∇gβ) (E).

Consequently β must be parallel with respect to ∇g. ¤

A Finsler metric (M,L) is said to be generalized Berwald if there exists a

linear connection ∇ with torsion T such that D = π∗∇ (cf. [Ha2]). By the same

argument as that in [Sz], we can prove the following:

Theorem 3.4 ([Ai]). Let (M,L) be a generalized Berwald space whose

Chern connectionD is given byD = π∗∇ for a linear connection∇ with torsion T .

Then there exists a Riemannian metric g such that ∇ is compatible with g.

In particular, a generalized Berwald space is said to be a Wagner space if

the linear connection ∇ is semi-symmetric, that is, there exists a one-form γ such

that its torsion T is given by

T (X,Y ) = γ(X)Y − γ(Y )X. (3.15)

Since a semi-symmetric linear connection that is compatible with a Riema-

nian metric g is uniquely determined, we obtain the following as an application

of Theorem 3.4.

Theorem 3.5. Let (M,L) be a Wagner space, and let ∇ be the semi-

symmetric linear connection whose torsion form T is given by (3.15). Then there

exists a Riemannian metric g such that ∇ is given by

∇XY = ∇g
XY − γ(Y )X + g(X,Y )γ#, (3.16)

where γ# is the dual of γ with respect to g.

The notion of Wagner spaces has a deep relation with the conformal flatness

of Finsler spaces.

4. Conformally flat Randers metrics

A conformal change of Finsler metric L is defined by the change L 7→ L̃ =

eσ(x)L for a smooth function σ(x) on M .
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Definition 4.1. A Finsler space (M,L) is said to be locally conformal to a

Berwald space if there exists a local function σU (x) on an open subset U ⊂ M

such that L̃U = eσU (x)L is Berwald on U . A Finsler space (M,L) is said to be

conformally flat if (M,L) is locally conformal to a flat Finsler space.

The following theorem is fundamental in the rest of this paper.

Theorem 4.1 ([Ha-Ic2]). A Finsler space (M,L) is locally conformal to a

Berwald space if and only if (M,L) is a Wagner space with respect to a closed

one-form β. In particular, (M,L) is conformally flat if and only if (M,L) is a

Wagner space whose semi-symmetric connection is flat.

Let E be a semi-parallel vector field on a Rimeannian space (M, g) with unit

length, that is,

∇g
XE = ρ

[
X − β(X)E

]
(4.1)

for a constant ρ. The dual β of E is a closed one-form satisfying (1.1). For this

one-form β, we define a linear connection ∇ by

∇XY = ∇g
XY + ρ

[
g(X,Y )E − β(Y )X

]
(4.2)

for the Riemannian connection ∇g of (M, g).

Then we have

Proposition 4.1. The curvature tensor R of the connection ∇ defined

by (4.2) is given by

R(X,Y )Z = Rg(X,Y )Z + ρ2
[
g(Y,Z)X − g(X,Z)Y

]
(4.3)

in term of the curvature Rg of ∇g.

Proof. Because of ∇XE = 0, we have

∇X∇Y Z = ∇g
X∇g

Y Z + ρ
[
g(X,∇g

Y Z)E − β(∇g
Y Z)X −X(β(Z))Y

+X(g(Y,Z))E − β(Z)∇g
XY

]− ρ2β(Z)
[
g(X,Y )E − β(Y )X

]
,

∇Y ∇XZ = ∇g
Y ∇g

XZ + ρ
[
g(Y,∇g

XZ)E − β(∇g
XZ)Y − Y (β(Z))X

+ Y (g(X,Z))E − β(Z)∇g
Y X

]− ρ2β(Z)
[
g(Y,X)E − β(X)Y

]

and

∇[X,Y ]Z = ∇g
[X,Y ]Z + ρ

[
g([X,Y ], Z)E − β(Z)[X,Y ]

]
.

Furthermore, because of

g(X,∇g
Y Z) +X(g(Y, Z))− Y (g(X,Z))− g(Y,∇g

XZ)− g([X,Y ], Z)

= g(∇g
XY, Z)− g(∇g

Y X,Z)− g([X,Y ], Z) = 0,
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−β(∇g
Y Z) + Y (β(Z)) = g(Z,∇g

Y E)

and

−X(β(Z)) + β(∇g
XZ) = −g(Z,∇g

XE),

we obtain

R(X,Y )Z = Rg(X,Y )Z + ρ
[
g(Z,∇g

Y E)X − g(Z,∇g
XE)Y

]

+ ρ2β(Z)
[
β(Y )X − β(X)Y

]

= Rg(X,Y )Z + ρ2
[
g(Z, Y )X − g(Z,X)Y

]
.

By this proposition, we see that the connection ∇ defined by (4.2) is flat if

and only if (M, g) is of negative constant curvature K = −ρ2. Then we have

Theorem 4.2. Suppose that a Riemannian space (M, g) admits a semi-

parallel vector field E of unit length. Then the Finsler metric L defined by

L(X) =
√
g(X,X) + c · β(X) (0 < c < 1) (4.4)

is locally conformal to a Berwald metric. Furthermore, if (M, g) is a space of

negative constant curvature, then (M,L) is conformally flat.

Proof. Suppose that (M, g) admits a vector field E satisfying (4.1). Then

it is easily shown that ∇ defined by (4.2) is compatible with g, and that ∇ has the

torsion T (X,Y ) = ρ[β(X)Y − β(Y )X]. Furthermore, by direct computation, we

can show that the dual β of E is parallel with respect to ∇. Therefore, similarly

to the proof of Theorem 3.3, we have

d∇L = 0.

Consequently, by Theorem 4.1, L is locally conformal to a Berwald metric.

In particular, if (M, g) is a space of negative constant curvature, then (2.6)

implies the constant curvature K must be K = −ρ2. Therefore (4.3) implies that

the connection ∇ defined by (4.2) is flat. Consequently (M,L) is conformally flat.

¤

Example 4.1. Let H the upper half plane with the Poincaré metric gP . For

the function f(x1, . . . , xn) = log xn, the one-form β defined by β = c · df for a

constant c such that 0 < c < 1 has constant norm ‖β‖P = c < 1 with respect to

gP . We shall define a Randers metric LH on H by

LH(X) =
√
gP (X,X) + c · df(X) (0 < c < 1). (4.5)
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Then, as shown in Example 2.2, ∇gf is semi-parallel vector field on H with unit

length. Since (H, gP ) is negative constant curvature −1 and the form β satisfies

the condition (4.1), (H, LH) is conformally flat. In deed, LH is given by

LH(X) =
1

xn

√√√√
n∑

i=1

(Xi)2 + c
Xn

xn
(0 < c < 1)

for every X ∈ TH. ¤
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