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Semi-parallel vector fields and conformally flat Randers metrics
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Abstract. In this article, we investigate the conformal flatness of Randers metrics
as an application of the geometry of Riemannian spaces admitting a semi-parallel vector
field.

1. Introduction

A Riemannian manifold (M, g) is said to be conformally flat if there exists a
local function o () defined on a neighborhood U of an arbitrary point in M such
that the local metric e?(*) g is a flat metric on U. As is well-known, the conformal-
flatness is characterized by the vanishing of the Weyl’s conformal curvature. On
the other hand, YANO [Ya2] characterized the conformal-flatness by the existence
of some special linear connection, that is, a Riemannian metric ¢ is conformally
flat if and only if there exists a semi-symmetric metrical connection V whose
curvature vanishes identically.

In Finsler geometry, the conformal curvature which characterize the con-
formal-flatness of Finsler metric has not been obtained yet. The conformal-
flatness of a Finsler metric is characterized by [Ha-Ic2] as a generalization of
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Yano’s theorem as follows: A Finsler manifold (M, L) is conformally flat if and
only if there exists a semi-symmetric Finsler connection V whose curvature va-
nishes identically.

A typical example of Finsler metrics are given by the Funk metric or Hilbert
metric on a strictly convex domain. These metrics have some special properties,
that is, these metrics are projectively flat, and they are of negative constant
flag curvature. In particular, the Funk metric is a special class of the so-called
Randers metric if the boundary of the domain is given by a quadratic equation.
A positive function L defined on the total space TM of tangent bundle of a
smooth manifold M is said to be a Randers metric if L is given by the form
L(X) = \/g(X,X) + 8(X) (X € TM) for a Riemannian metric g on M and a
one-form 5 on M. A characterization of Randers metric of negative constant flag
curvature is given by [Ha-Sa-Sh] under some assumption.

Theorem 1.1 ([Ha-Sa-Sh|). Let L(X) = \/g(X,X) + B(X) be a Randers
metric on M with a one-form [ satisfying d5(E,X) = 0 for all vector filed X
on M, where FE is the dual of 8 with respect to g. Then (M, L) has negative
constant flag curvature K = —p?/4 if and only if

(1) the base Riemannian manifold (M, g) has negative constant sectional curvat-
2
ure —p?,

(2) the one-form B is semi-parallel, that is, 8 satisfies

ViB=plg—B©p), (1.1)

where V9 is the Riemannian connection of (M, g).

The form S satisfying (1.1) is a special case of the so-called torse-forming
one-form, that is,

VIg=p(g+ef®p), (1.2)

where p is a constant and ¢ = +1 ([Yal]). It is easily shown that one-form f
satisfying (1.2) is closed. In the second section, we shall show that a connected
complete Riemannian manifold which admits such a one-form  is given by the
warped product space M = N x ;) R, where N is a totally umbilic hypersurface.
In the third and fourth sections, we shall investigate the conformal flatness of
Randers metric as an application of geometry of Riemannian manifolds admitting
a semi-parallel vector field.
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2. Semi-parallel vector fields

Let (M, g) be a connected complete Riemannian manifold of dim M = n. In
this section, we shall investigate the structure of a Riemannian manifold (M, g)
admitting a semi-parallel vector filed E.

Definition 2.1 ([Hal]). A vector field F is said to be semi-parallel if it satisfies

V4E = p(X +8(X)E), (2.1)

where § is the dual of E, that is, 8(X) = g(X, E) for any vector field X on M,
and p is a constant and € = £1. If p = 0, then E is a parallel vector field.

The condition (2.1) is equivalent to (1.2) which implies df = 0, and thus
B = df for some local function f. Then FE is the gradient vector filed VI f of f,
that is, g(X,V9f) = X(f) every vector field X, and E is given by

" L Of 0
E:ng:Zgj&Zi@ (2.2)

3,7=1
in local coordinate on M.

Ezxample 2.1. Let B be the unit ball in the n-dimensional Euclidean space R™:

n

B = {(zl,...,x”) € R" | 172(:&)2 >0}.
i=1
For every point = (z!,...,2") € R", we set ||z[|* = Y ;_,(2z)? and f(z) =
log(1 — ||z||?). The Hilbert metric g on B is defined by
n )2 no_qgi)2
(1 — [l (307, da’)” + (X5, #'da’)

i (1~ [P / =

which is a hyperbolic Riemannian metric induced on B from the Minkowski metric
gr = Y. (dx)? — (dt)? on the hyperboloid Y (z%)? —t? = —1 (cf. [KN]). As is
well-known, the space (B, gy) has negative constant curvature K = —1. The
vector field F = VY f satisfies (2.1), and the one-form /8 defined by

1 1 L
B=—cdf = ——— Y z'ds’ (2.4)
27 T 1z 2

satisfies (1.2) for the case of p =1 and € = —1 (cf. [Ok]). The norm |5 of this
one-form g is given by [|5]| = ||z| < 1. O
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Since any torse-forming one-form [ is closed, the integrability condition
VEVSE = VY VS E = Vi B = RI(X,Y)E for (2.1) is given by
RI(X,Y)E = —ep*[g(X,E)Y — g(Y, E)X]. (2.5)
Then, the sectional curvature K (X A E) of the 2-plane X A E is given by

CYRIX.BEX)  gRI(X.BEX)
KENE) =" ner - - XIPIEE - ek e~ (20

for all X € TM. In particular, if (M,g) is a Riemannian manifold of constant
curvature p?, that is, if its curvature RY satisfies

RIX,Y)Z =¢ep*[g(Y,Z)X — g(X,2)Y]

for all X,Y,Z € TM, then the integrability condition (2.5) is satisfied, and thus,
if (M, g) is of constant curvature, there exists a semi-parallel vector field around
every point in M.

Every Riemannian manifold of constant curvature ¢ can be locally expressed
as a warped product whose warping function satisfies Af = c¢f (cf. [Ch]). In
the sequel, we shall show that a Riemannian manifold (M, g) admitting a semi-
parallel vector field £/ can be locally expressed as a warped product space R x, N,
where N is a totally umbilic submanifold.

We suppose that there exists a smooth function f : M — R such that
E = V9 f satisfies (2.1) and f has no critical points. Then the set N = f~1(¢) is a
hypersurface in M with normal vector field E for every t € R. Let p € N = f~1(t)
be an arbitrary point. The second fundamental form S of N at p € N with respect
to the normal vector field £ = VY f is defined by

S(X,Y) = (V%Y)" (2.7)

for X,Y € T,N, where L is the projection to the orthogonal line bundle spanned
by E. Since V9 is metrical and f(X) = g(X,E) = g(X,V9f) = 0 for every
X € T,N, we have

9 (VXY E) = Xg(Y, E) —g(Y, VL E) = XB(Y) — g (Y, p{X + eB(X)E})
= —pg(X,Y),
and thus we have

_p9(X,Y)

S =—T1EP

E. (2.8)

Hence we have
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Lemma 2.1. Let (M, g) be a connected complete Riemannian space. Sup-
pose that there exists a smooth function f : M — R such that its gradi-
ent E = VYf is a semi-parallel vector field. Then the complete hypersurface
N = f71(t) is totally umbilical for every t € R. If E is parallel, that is, p = 0,
then N is a totally geodesic hypersurface.

If a semi-parallel vector field E has constant length, then its length must be
unit and € = —1 (cf. [Hal]). Thus, in the sequel, we shall restrict our discussions to
the case of e = —1. Then, since the gradient of f has constant norm ||V9f|| =1,
we have a splitting theorem by the same method as in [In], [Sa] and [Yal] as
follows.

Since the function f admits no critical points, f~1(t) = N is a complete
hypersurface for every ¢ € R, and M is diffeomorphic to the product space N x R.
In the case of p = 0, the gradient V9 f is parallel, and the Hessian V9(df) vanishes
everywhere. Such a function f is called an affine function (cf. [Sa]).

Let vg be the integral curve of E through p € N = f~1(0). By the assumpt-
ion of ||[E||? = B(E) = 1, we get V4L E = 0, and thus the integral curve g of E is
a geodesic orthogonal to the hypersurface N. Since (M, g) is complete, yg(t) is
defined for all ¢+ € R. Then, since E(f) = g(E,Vf) = ||E|*> =1 and

B(f) = S7 (),

we have f(yg(t)) = f(p) +t =t for all t € R.

Moreover, the integral curve g is a minimal geodesic between the hypersur-
face f=1(0) and f~1(t) (cf. [Sa]). Indeed, let c: [0,1] — M be any smooth curve
parametrized by its arc-length s joining a point p = ¢(0) € f~1(0) and a point
q=c(l) € f1(t). Then the length L(c) of c satisfies

l
L@:AH%W@z

l
Ag@@»vw@@m|

Ld
| atetenis) = 1) - ) =«

t
— [ 1Bl de = L),
0

namely dist (N, f~1(t)) = L(vg).

Lemma 2.2 ([Sa]). Let (M,g) be a connected complete Riemannian ma-
nifold. Suppose that there exists a smooth function f : M — R such that its
gradient VY f is a semi-parallel vector field of unit length. Then f is the signed
distance function to the connected complete hypersurface N = f~1(0).
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With respect to a suitable local coordinate system (z!,...,2") on M =

N x R, the given metric g has the form

g= Z gij(xl, oz drt @ dad + g (2t ... 2 de" ® da™.

ij=1

Since the orthogonal trajectories to N defined by z° = constant (i =1,...,n—1)
are geodesics, the coefficients I’ /?v of the Riemannian connection V9 of (M, g)
satisfy

n

;1 ; (O9an | Ognx  Og
o= i n nA nn)
) ;19 ( ot ot oz ’
and this implies gnn = gnn(z™). Replacing +/gnn(z™)dz™ by dt, the metric has

the following form

n—1
9= gij(x,t)da’ @ da’ + dt @ dt. (2.9)

4,5=1

Denoting by go = dt®dt the canonical metric on R, the map f : (M, g) — (R, go)
is a Riemannian submersion.
With respect to such a coordinate system (z,t) = (x!,..., 2" 1), we have

E =0/0t and

Zrh 5ty JrF”(x t)E.

8,_] 83&1

Consequently the second fundamental form S is given by

o 0 n
S (356“ W) = Fij(xat)Ev

and (2.9) implies that I} = p(z,t)gij, that is,

1 gix | O9x;  0gii\
s (G G 58 ) =

Since ¢ = g;, =0 for i, =1,...,n— 1 and ¢"" = 1, we have

agij

T —2pgij(z,t).
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This implies that gi;(x,t) = 1(t)?g;;(x) for a Riemannian metric

gn =y g5;(x)dx* @da’ on N, where 1 is given by (t) = e~*". Thus the metric g

is of the form
n—1

_ (p—pt)2 * i j _ (o—Pt)2
g= ()" ) g5(@)da’ @ da? +dt @ dt = (e ") gy +dt@dt.  (2.10)

i,j=1

In particular, if p = 0, then g is the product metric g = gy +dt®dt on the product

space M = N x R. Consequently Lemma 2.1 and 2.2 imply the following.

Theorem 2.1. Let (M,g) be a connected complete Riemannian manifold.
Then, there exists a smooth function f : M — R such that its gradient VI f is
a semi-parallel vector field of unit length if and only if there exists a connected
complete hypersurface N which is totally umbilic with constant mean curvature p
and M is isometric to the warped product space N Xy ) R with the warping
function 1 (t) = e~*'. In this case, the function f is the signed distance function
to N.

By the exponential function, the manifold N x R is diffeomorphic to N x R
by sending N x R 3 (z,t) — (z,e') € N x R.

Ezample 2.2. Let H = {(x!,...,2™) € R" | 2™ > 0} be the upper half plane
with the Riemannian connection VY of the Poincaré metric

2 n
1
= — dz® ® dx®. 2.11
= (3) Zaon on

Setting t = log ™, the metric gp is written as
n—1
gp = (e74)? Zdzl ® dz' + dt ® dt. (2.12)
i=1
Comparing this metric with (2.11), we define a function f : H — R by f(z) =
logx™ = t. Since VY is given by the Christoffel symbols
i 1 i i i
*= o (600} + Okndl — 85%07,)

we can easily show that the gradient

0 0
I9f = — =g —
ver ot~ " oan
is a semi-parallel vector field on H of constant norm ||V f|| = 1, namely E = V9 f

satisfies Vi, E = B(X)E — X. The hypersurface f~!(¢) is a totally umbilical
hypersurface with constant mean curvature H = 1 for every t € R. ([
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3. Finsler metrics and connections

3.1. Finsler metrics. First we shall review the variational problems from [He].
Let m : TM — M be the tangent bundle of a connected smooth manifold M.
We denote by v = (z,y) the points in TM if y € 7~ (x) = T,,M. We denote by
z(M) the zero section of TM, and by TM* the slit tangent bundle TM\z(M).
We introduce a coordinate system on T'M as follows. Let U C M be an open
set with local coordinate (x',...,2™). By setting v =31 | ¢/’ ((‘9/(‘9xi)ac for every
v € 7~ Y(U), we introduce a local coordinate (z,y) = (z!,...,2™, 4%, ...,y") on
7Y U).

Let L : TM xR — R be a Lagrangian. The Cartan form 6y, of L is defined by

) A
oL => 3y (dz® — y'dt) + Ldt. (3.1)
1=1

For every smooth curve ¢ : [0,1] — M, we define a natural lift ¢ : [0,1] — TM xR
by ¢(t) = ((t),t). Since ¢*(da’ — y'dt) = 0, we obtain

[ o= [ rewna

For an arbitrary proper variational field X, we denote by ¢5 : (—¢,e) x I —
TM x R the variation of ¢. The critical point of this variation is calculated as

1 1
d
0, — o
5:0/0 Ps6r /0 ds

1
= / ¢* (1xdfr),
0

follows:

d 1
s S:O¢:9L = /0 [0*(txdOL) + dp* (1x0L)]

since X is proper. Then we define a 2-form @ on TM x R by O = df:

or=% {d ( Sj) - gjidt} A (dat — yidb). (3.2)

Then ¢ = ¢(t) is called a characteristic curve of L if it satisfies ¢*@p = 0. A
smooth curve ¢ = ¢(t) on M is called a extremal curve of L if ¢ is the projection
of a characteristic curve ¢ = ¢(t) into M. A smooth curve ¢ = ¢(t) is a extremal
if and only if it satisfies the Fuler—Lagrange equation:

d (0L L
dt \ oyt ) Ozt
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Secondly we shall investigate the case where the Lagrangian L is indepen-
dent of the parameter ¢ and, moreover, L satisfies the homogeneity condition
L(AX) = AL(X) for all A > 0. In this case, the extremal of L is independent of
the parametrization, and, since the homogeneity of L implies >_ 3*0L/0y'—L = 0,
the Cartan form 6 is given by

" 9L

6, = :
i=1 ay

dx’. (3.3)

Definition 8.1. A function L : TM — R is called a Finsler metric on M if
1. L(z,y) > 0, and L(z,y) = 0 if and only if y = 0,
2. L(z,\y) = AL(x,y) for "A € R* = {A € R: X > 0},
3. L(z,y) is smooth on TM*
are satisfied. The pair (M, L) is called a Finsler space.
For each X € T, M, its norm || X]|| is defined by || X|| = L(x, X). The length

I(c) of a smooth curve ¢ = ¢(t) is defined by I(c) = fol L(c(t))dt. An extremal
curve in a Finsler manifold (M, L) is called a geodesic in (M, L).

Example 3.1. Let g be a Riemannian metric on M. Since there exists a 1-
from g satistying 8(X) < 1/g(X, X), the function L = /g(X, X) 4+ B(X) defines
a Finsler metric on M so-called Randers metric. A Randers metric L is strictly
convex if and only the norm ||| of 5 with respect to the metric g satisfies || 8] < 1.
O

Let L and L be two Finsler metrics on M. Then (M, L) is projectively equ-
ivalent to (M, L) if (M, L) and (M, L) have the same geodesics as point sets.
An appropriate ”sufficient condition” for (M, L) to be projectively equivalent to
(M, L) is

O =0;. (3.4)

Definition 3.2. A Finsler space (M, L) is said to be strictly projective-equ-

ivalent to a Finsler space (M, L) if (3.4) is satisfied.

The condition (3.4) is written in the form:

~ (9L i ~~ (0L ;
;d(ayi)/\d:ﬂ—;d<ayi>/\dx.

Therefore we have

(L — L) (L—-L) 0*L-L)

dyidys 7 Oyioxd  Oxidyd
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These equations imply 07 = 0 + 7 for a closed one-form § on M and
L(X) = L(X) + B(X) (3.5)
for all X € TM. Consequently we obtain the following theorem:

Theorem 3.1. Let L and L be two Finsler metrics on a smooth manifold M.
Then (M, L) is strictly projective-equivalent to (M, L) if and only if L is given
by (3.5) for a closed one-form 8 on M. In particular, a Finsler manifold (M, L)
is strictly projective-equivalent to a Riemannian manifold (M, g) if and only if
there exists a closed one-form 3 on M satisfying

L(X) = Vg(X, X) + B(X) (3.6)
for all X € TM.

3.2. Chern-Finsler connection. Let V = kerm, be the wvertical sub-bundle
of the tangent bundle over T M, where m, is the differential of the projection
m:TM — M. Since we have the natural identification V = 7*TM = {(y,v) €
TMxTM | v € Tr,yM} and V is locally spanned by {e; = 9/0y’} (j =1,...,n)
on each 7~1(U), we may consider the differential 7, as a V-valued one-form
e = Y. e; @ dr’ on TM. We denote by A*(V) the space of smooth V-valued
k-forms.

A Finsler metric L is said to be convez if G = L?/2 is strictly convex on each
tangent space T, M, that is, the Hessian (G;;) defined by
0@

- Oyioyd

Gij(x,y) (3.7)

is positive-definite.

In the sequel, we assume the convexity of L. Then each fiber T, M is a
Riemannian space with a metric G, = 3 Gi;(z,y)dy’ ® dy?, and the family
{G.}uem defines a metric G on V by G(Y,Z) = Y G;;Y*ZI for every section
Y =YY% and Z =3 Z7e;. We define a symmetric tensor C : @3V — R by

O (3.)
It is trivial C' vanishes identically if and only if G is a Riemannian metric on M.

The multiplier group RT = {¢I € GL(TM); ¢ € R*} € GL(TM) acts on
the total space by multiplication my : TM 3 v = (z,y) = \v = (x,\y) € TM
for YA € R*. This action induces a canonical vector filed £ defined by

5(3?,:1/) = Zyl@7

i=1
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which is called the tautological section of V. By the homogeneity of L, we have
gry="2 | Ley+ie) =1
= — 1‘7 = .

dt lt=0 Y

Moreover it is easily shown that L = \/G(&,€) and C(E,,e) = 0.
Definition 3.3 ([Ba-Ch-Sh]). The Chern connection on (M, L) is a connection
D:I'(V)— AY(V) uniquely determined by the following conditions.
(1) D is almost G-compatible:
DG = 2C. (3.9)
(2) D is symmetric:
Dr, =0, (3.10)

where we consider 7, as a V-valued one-form on T'M.

We define § € AY(V) by § = DE. Then, H = ker @ defines a horizontal sub-
bundle H which is complementary to V. Denoting by w§ =3 F;k(x, y)dx* the
connection form of the Chern connection D with respect to the frame {ey, ..., e,},
the differentiation dp in the horizontal direction is given by

N OF S i (0 OF ) gt
dpF := ]; (33:’“ ;y I“lk(%y)ayl,) dz

for any smooth function F' on TM*. Then the Chern—Finsler connection D of
(M, L) satisfies

dpL = 0. (3.11)

Remark 3.1. In the case of C' = 0, the metric L is the norm function of a

Riemannian metric g, and the Chern connection D is given by D = 7#*V9 for the
Riemannian connection V9 of (M, g). Then we have

dyoL, =0, (3.12)
where L is defined by Ly(X) = /g(X, X) for every X € TM. O

Let D be the Chern-Finsler connection of a Finsler space (M, L). The 2-
plane F(X) spanned by X € V and & is called the flag with the flagpole £. For
the curvature tensor R of D, the sectional curvature

B (R(X,&)E,X)
KX N8 = X - (x,8)2

is called the flag curvature of the flag F(X). A Finsler manifold (M, L) is said to
be of constant flag curvature if K(X A E) is constant for every X € V.
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Ezample 3.2 ([OK]). The Hilbert metric gy defined by (2.3) has negative
constant curvature. The Funk metric Ly on B is defined by

Lg(X) = Vgu (X, X) + B(X) (3.13)

for the one-form /3 defined by (2.4). The norm ||3]| g with respect to gg is given
by ||5]lz = ||z|| < 1. Since f is closed, the Funk metric Ly is strictly projectively-
equivalent to Hilbert metric ggy. Furthermore, 8 satisfies the condition (1.1).
Therefore, by Theorem 1.1, (B, Lp) has negative constant flag curvature K =
~1/4. 0

3.3. Berwald spaces and Wagner spaces. A Finsler metric L is said to be
flat or locally Minkowski if its Chern-Finsler connection D is flat, that is, its
curvature R vanishes identically. The flatness of L is equivalent to the fact that
there exists an open covering of M such that the metric L is independent of the
base point € M (cf. [Ma]).

Definition 3.4. A Finsler metric L is said to be Berwald if the Chern—Finsler
connection D is given by D = 7*V for a symmetric linear connection V in T'M.

The following theorem plays an important role in the study of Berwald spaces.

Theorem 3.2 ([Sz]). Let (M, L) be a Berwald space. Then there exists a
Riemannian metric g satisfying D = 7w*V9, where V9 is the Riemannian connec-
tion of (M, g).

It is obvious that if (M, L) is a Berwald space, then (M, L) is projective
equivalent to the associated Riemannian space (M, g). In Theorem 3.2, without
loss of generality, we may assume L(X) > L,(X) for every X € TM*. Then we
have

Theorem 3.3. Suppose that a Berwald space (M, L) is strictly projective-
equivalent to the associated Riemannian space (M, g). Then L has the form of

L(X)=+g9(X,X)+ p(X) (3.14)

for a parallel one-form 8 on (M, g).

PROOF. We assume that (M, L) is strictly projective-equivalent to (M, L),
that is, ©p = Op,. Then, by Theorem 3.1, there exists a closed one-form 3 =
3 Br(z)dx® on M satisfying (3.5). Furthermore, by Theorem 3.2, the Chern—
Finsler connection D is given by D = 7*V¥¢ for the Riemannian connection V9
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of the associated Riemannian space (M, g). Therefore we have dysL = 0. Con-
sequently, because of (3.12), the one-form f satisfies

0=dws[BEN =D (66(5) - Zylﬂ’g(%y)w)dﬁ

k i
k=1 Oz 1=1 9y
Sy (P, dz* = (V9B) (€
—Ziy @—Z k(@) Bn |dz® = (VIB) (€).
k=1 h=1
Consequently S must be parallel with respect to V9. (]

A Finsler metric (M, L) is said to be generalized Berwald if there exists a
linear connection V with torsion 7" such that D = #*V (cf. [Ha2]). By the same
argument as that in [Sz], we can prove the following:

Theorem 3.4 ([Ai]). Let (M,L) be a generalized Berwald space whose
Chern connection D is given by D = ©*V for a linear connection V with torsion T .
Then there exists a Riemannian metric g such that V is compatible with g.

In particular, a generalized Berwald space is said to be a Wagner space if
the linear connection V is semi-symmetric, that is, there exists a one-form v such
that its torsion T is given by

T(X,Y) = v(X)Y — y(Y)X. (3.15)

Since a semi-symmetric linear connection that is compatible with a Riema-
nian metric ¢ is uniquely determined, we obtain the following as an application
of Theorem 3.4.

Theorem 3.5. Let (M,L) be a Wagner space, and let V be the semi-
symmetric linear connection whose torsion form T is given by (3.15). Then there
exists a Riemannian metric g such that V is given by

VxV = VY —9(Y)X + g(X, Y )", (3.16)
where v# is the dual of v with respect to g.

The notion of Wagner spaces has a deep relation with the conformal flatness
of Finsler spaces.

4. Conformally flat Randers metrics

A conformal change of Finsler metric L is defined by the change L — L=
e?@ L for a smooth function o(z) on M.
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Definition 4.1. A Finsler space (M, L) is said to be locally conformal to a
Berwald space if there exists a local function oy (z) on an open subset U C M
such that Ly = e“U® [ is Berwald on U. A Finsler space (M, L) is said to be
conformally flat if (M, L) is locally conformal to a flat Finsler space.

The following theorem is fundamental in the rest of this paper.

Theorem 4.1 ([Ha-Ic2]). A Finsler space (M, L) is locally conformal to a
Berwald space if and only if (M, L) is a Wagner space with respect to a closed
one-form (. In particular, (M, L) is conformally flat if and only if (M,L) is a
Wagner space whose semi-symmetric connection is flat.

Let F be a semi-parallel vector field on a Rimeannian space (M, g) with unit
length, that is,
V4 E = p[X — B(X)E] (4.1)

for a constant p. The dual 8 of E is a closed one-form satisfying (1.1). For this
one-form 3, we define a linear connection V by

VxY =V%Y +p[g(X,Y)E — B(Y)X] (4.2)
for the Riemannian connection V¢ of (M, g).
Then we have
Proposition 4.1. The curvature tensor R of the connection V defined
by (4.2) is given by
R(X,Y)Z = RY(X,Y)Z + p* [g(Y, )X —g(X, Z)Y} (4.3)
in term of the curvature RY of VY.
PROOF. Because of Vx FE = 0, we have
VxVyZ =V%V$Z+ plg(X,V$2)E - B(VS2)X — X(B(2))Y
+ X(gY, ) - B(Z)V4Y] = 1*8(2) [o(X, Y)E = B(V)X],
VyVxZ =ViV%Z + plg(Y,V%Z)E — B(VZ)Y =Y (B(Z2))X
+Y(9(X,2))E - B(Z)VY.X] - p*B(Z) [g(Y. X)E — B(X)Y]

and
V[X,Y]Z = V?X7y]Z+p[g([X7Y]7Z)E - 5(Z)[X7YH

Furthermore, because of
= g(vg(}/a Z) *Q(V%X, Z) - g([Xv Y]vZ) =0,
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—B(VYZ) +Y(B(Z)) = 9(Z, V3 E)
and
—X(B(2)) +B(V& Z) = —9(Z. VL E),

we obtain

R(X,Y)Z = R9(X,Y)Z + p[g(Z,V{E)X — g(Z,V4E)Y]
+p*B(2)[BY)X - B(X)Y]
=RI(X,Y)Z + p*[9(Z,Y)X — g(Z, X)Y].

By this proposition, we see that the connection V defined by (4.2) is flat if
and only if (M, g) is of negative constant curvature K = —p?. Then we have

Theorem 4.2. Suppose that a Riemannian space (M,g) admits a semi-
parallel vector field E of unit length. Then the Finsler metric L defined by

LX) =/g(X,X)+c-B(X) (0<c<1) (4.4)

is locally conformal to a Berwald metric. Furthermore, if (M, g) is a space of
negative constant curvature, then (M, L) is conformally flat.

PROOF. Suppose that (M, g) admits a vector field F satisfying (4.1). Then
it is easily shown that V defined by (4.2) is compatible with g, and that V has the
torsion T'(X,Y) = p[8(X)Y — B(Y)X]. Furthermore, by direct computation, we
can show that the dual 5 of F is parallel with respect to V. Therefore, similarly
to the proof of Theorem 3.3, we have

dyL = 0.

Consequently, by Theorem 4.1, L is locally conformal to a Berwald metric.
In particular, if (M, g) is a space of negative constant curvature, then (2.6)

implies the constant curvature K must be K = —p?. Therefore (4.3) implies that
the connection V defined by (4.2) is flat. Consequently (M, L) is conformally flat.
O

Example 4.1. Let H the upper half plane with the Poincaré metric gp. For
the function f(z!,...,2") = logz", the one-form 3 defined by 3 = c - df for a
constant ¢ such that 0 < ¢ < 1 has constant norm ||§||p = ¢ < 1 with respect to
gp. We shall define a Randers metric Ly on H by

Lu(X) = Vap(X, X) +c-df(X) (0<ec<1). (4.5)
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Then, as shown in Example 2.2, V9 f is semi-parallel vector field on H with unit
length. Since (H, gp) is negative constant curvature —1 and the form [ satisfies
the condition (4.1), (H, Lg) is conformally flat. In deed, Ly is given by

n

S X
Z(X1)2+cm—n (0<e<l)
i=1

for every X € TH. O
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