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On weakly SS-quasinormal minimal subgroups of finite groups

By XIANGGUI ZHONG (Guilin) and SHIRONG LI (Nanning)

Abstract. A subgroup H of a group G is said to be weakly SS-quasinormal if

there exists a subgroup B of G such that HB is normal in G and for any prime p with

(p, |H|) = 1, H permutes with every Sylow p-subgroup of B and Sylp(B) ⊆ Sylp(G). In

this article, we study the influence of weakly SS-quasinormal minimal subgroups of a

finite group. Our results generalize the recent results obtained about the classification

of a group by considering the SS-quasinormality of some subgroups.

1. Introduction

Throughout this article, only finite groups will be considered. The unexpla-

ined notation is standard and follows that in [7]. Two subgroups H and K of

a group G are said to permute if HK = KH. A subgroup H of a group G is

said to be S-quasinormal in G if H permutes with every Sylow subgroup of G.

This embedding property was studied by Kegel in [8] and was extended to the

SS-quasinormality in [9], [10]. Recall that a subgroup H of G is said to be SS-

quasinormal in G if there is a supplement B of H to G such that H permutable

with every Sylow subgroup of B. In this article we consider a new permutability

property in finite groups: the weakly SS-quasinormality.

Definition 1.1. Let H be a subgroup of a group G. We say that H is weakly

SS-quasinormal if there exists a subgroup B of G such that HB is normal in G
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and for any prime p with (p, |H|) = 1, H permutes with every Sylow p-subgroup

of B and Sylp(B) ⊆ Sylp(G).

This embedding property is very close to the SS-quasinormality. The rela-

tionship between S-quasinormal subgroups and SS-quasinormal subgroups has

been investigated in [9], [10]. For instance:

Proposition 1.1 ([9], Lemma 2.2). Let P be a p-subgroup of G. Then P is

S-quasinormal if and only if P is SS-quasinormal and P is contained in Op(G).

A significant role will be played by the following result, due to Kegel [8].

Proposition 1.2. Let H be a subgroup of G. Then H is subnormal if H is

S-quasinormal.

It is clear that every SS-quasinormal subgroup are weakly SS-quasinormal.

However the following example shows, in general, that a weakly SS-quasinormal

subgroup need not be SS-quasinormal. This means that the set of weakly SS-

quasinormal subgroups is bigger than that of SS-quasinormal subgroups. In what

follows, G = [A]B means B is a complement to the normal subgroup A in G.

Example 1.1. Let G = [A]B, where A = 〈a, b | a3 = b3 = 1, ba = b〉,
B = 〈c, d | c2 = d2 = 1, dc = d〉 and ac = a, (cb)2 = (ad)2 = (bd)2 = 1. Then,

L = 〈bd〉 is weakly SS-quasinormal but not SS-quasinormal.

In fact, because A is the only Sylow 3-subgroup of G, it is clear that L is

weakly SS-quasinormal. However L is not SS-quasinormal. If not, let M be a

supplement of L to G, then M is a subgroup with index 2, so either c or cd lies

in M . By definition, L permutes with either 〈c〉 or 〈cda〉, a contradiction.

In order to develop the weakly SS-quasinormality, we give some introductions

and statement of results.

A class F of groups is called a formation if F contains all homomorphic

images of a group in F , and if G/N1 and G/N2 are in F , then G/(N1 ∩ N2) is

in F for normal subgroups N1, N2 of G. A formation F is said to be saturated

if G/Φ(G) ∈ F implies that G ∈ F . For a formation F , each group G has a

smallest normal subgroup N such that G/N ∈ F . This uniquely determined

normal subgroup of G is called the F-residual subgroup of G and is denoted

by GF . In this article, U , N p will denote the class of all supersolvable groups and

the class of all p-nilpotent groups, respectively. As well-known results, U , N p are

saturated formations.

A number of authors have studied the structure of a group G under the

assumption that some subgroups of G are well located in G. For example, Sha-

alan [13] proved that, for a proper normal subgroup H of G, if G/H ∈ U and
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every subgroup of H of prime order is S-quasinormal in G, suppose further that

one of the following conditions holds: (i) 2 † |H|, (ii) 2 | |H| and the Sylow 2-

subgroups of H are abelian, (iii) 2 | |H| and every cyclic subgroup of H of order 4

is S-quasinormal in G, then G ∈ U . Ballester-Bolinches and Pedraza-

Aguilera [4] proved that if F is a saturated formation containing U and G is

a group with normal subgroup H such that G/H ∈ F , assume further that a

Sylow 2-subgroup of G is abelian or all cyclic subgroups with order 4 of H are

S-quasinormal in G and all minimal subgroups of H are permutable in G, then

G ∈ F . It is natural to limit the hypotheses of minimal subgroups to a smal-

ler subgroup, say, the Fitting subgroup F (H), of H, and to remove the abelian

assumption of the Sylow 2-subgroup of G by replacing the hypothesis with the

Q8-free hypothesis by using the weakly SS-quasinormality.

2. Preliminaries

In this section, we collect some auxiliary results that are needed in the sequel.

The first result is well known (cf. [14], VI, Aufgaben 16).

Lemma 2.1. Suppose that G is a minimal non-supersolvable group (every

proper subgroup of G is supersolvable but G is not supersolvable). Then G has

the following properties:

(i) G = [P ]K, where P is a normal Sylow p-subgroup ofG andK is supersolvable

Hall-subgroup of G;

(ii) P is either elementary abelian or superspecial with Z(P ) = P ′ = Φ(P );

(iii) If p > 2, then the exponent of P is p. If p = 2, then the exponent of P is 2

or 4.

Referring to Li ([10], Lemma 2.1), we have the following result.

Lemma 2.2. Suppose that H is weakly SS-quasinormal in G, H a subgroup

of G, and N a normal subgroup of G. We have:

(i) If H is a subgroup of K, then H is weakly SS-quasinormal in K;

(ii) If H is a p-subgroup and p a prime, then HN/N is weakly SS-quasinormal

in G/N ;

(iii) If N is a subgroup of K and K/N is weakly SS-quasinormal in G/N , then

K is weakly SS-quasinormal in G.

Lemma 2.3. Let P be a p-subgroup of G. Then P is S-quasinormal in G if

and only if P is weakly SS-quasinormal in G and P is contained in Op(G).
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Proof. First suppose that P is S-quasinormal in G. Then by Proposit-

ion 1.2, we get that P is subnormal in G. Thus, P ≤ Op(G) by a result of

Schmid ([12], p. 287).

Conversely, suppose P ≤ Op(G) and P is weakly SS-quasinormal in G.

Then PB is normal in G for some subgroup B of G, and for any prime q 6= p,

Sylq(B) ⊆ Sylq(G). This implies that Op(PB) = Op(G). Let Q be any Sylow q-

subgroup of B. By definition, we have PQ = QP . Moreover, P = P (Op(G)∩Q) =

Op(G) ∩ PQ is normal in PQ, and hence Op(PB) ≤ NG(P ). It yields that

Op(G) ≤ NG(P ). By Lemma A of [12], P is S-quasinormal in G. ¤

From Lemma 2.3 and Proposition 1.1, for any p-subgroup P of G, if P ≤
Op(G), then P is SS-qusinormal if and only if P is weakly SS-quasinormal.

Lemma 2.4 ([6]). Let A and B are supersolvable normal subgroups of G

such that |G : A| and |G : B| are co-prime. Then G is supersolvable.

Let Q8 denote the quaternion group of order 8. A group G is called Q8-free

if no quotient group of any subgroup of G is isomorphic to Q8. In what follows,

if G is a p-group, Ω1(G) will denote the subgroup of G generated by its elements

of order p.

Lemma 2.5 ([5], Lemma 2.15). If σ is an automorphism of odd order of

Q8-free 2-group G, and σ acts trivially on Ω1(G), then σ = 1.

3. Main results

Theorem 3.1. Let p be a prime dividing the order of G and H a normal

p-subgroup of G such that G/H ∈ U . If every subgroup of H of order p is weakly

SS-quasinormal in G, and if, in addition, every cyclic subgroup of H of order 4

is weakly SS-quasinormal in G or H is Q8-free, then G ∈ U .
Proof. Assume the theorem is false and let G be a counterexample of mi-

nimal order.

It is obvious that the hypotheses of the theorem are inherited for subgroups

of G. The minimal choice of G yields that G 6∈ U but every proper subgroup of

G lies in U . By Lemma 2.1, G = [P ]K, where P is the normal Sylow p-subgroup

of G and K is a supersolvable Hall-subgroup of G for some p ∈ π(G).

If (p, |P |) = 1, then that G = G/P ∩ H is isomorphic to a subgroup of

G/P × G/H. This means that G∈ U , a contradiction. Hence, H ≤ P . If H ≤
Φ(P ), then G/Φ(P ) ∈ U . Noting that Φ(P ) ≤ Φ(G), therefore, G/Φ(G) ∈ U . It
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follows that G ∈ U , a contradiction. Hence, H 6≤ Φ(P ). Since P/Φ(P ) is a normal

minimal subgroup of G/Φ(P ), then H = P . By hypotheses, every subgroup of

H of order p is weakly SS-quasinormal in G, then is S-quasinormal in G by

Lemma 2.3.

Case 1. If p > 2, then exp(P ) = p by Lemma 2.1. Thus G ∈ U by a theorem

of Asaad and Csorgo in [2], a contradiction.

Case 2. If p = 2, for any subgroup 〈x〉 of H of order 2, 〈x〉 is weakly SS-

quasinormal by hypotheses and so S-quasinormal in G. So let q be odd prime and

Q any Sylow q-subgroup of G, then 〈x〉Q is a subgroup of G. In fact, 〈x〉Q is a

proper subgroup of G, and hence lies in U . So 〈x〉Q is nilpotent and Q centralizes

〈x〉. It follows that K acts trivially on Ω1(P ) by conjugation.

Case 2.1. Suppose H is Q8-free. It is immediate from Lemma 2.5, K acts

trivially on P , and consequently G = P × K. Thus, we get that (|G : P |,
|G : K|) = 1. Then Lemma 2.4 implies that G ∈ U , a contradiction.

Case 2.2. Suppose every cyclic subgroup of H of order 4 is weakly SS-

quasinormal in G. Let x be any generated element of P . Since exp(P ) = 2

or 4 by Lemma 2.1, x is then of order 2 or 4. If 〈x〉 is normal in G, then

1 6= 〈x〉Φ(P )/Φ(P ) is a normal minimal subgroup of G/Φ(P ) and contained in

P/Φ(P ). That is 〈x〉Φ(P ) = P , and hence 〈x〉 = P , a contradiction. Thus,

all it remains to consider NG(〈x〉) is a proper subgroup of G. Since every cyclic

subgroup ofH of order 2 or 4 is weakly SS-quasinormal in G by hypotheses and so

H ≤ Op(G). It follows that each 〈x〉 is S-quasinormal in G by Lemma 2.3. Hence

Op(G) ≤ NG(〈x〉) < G. This means P 6≤ Op(G), that is P ∩Op(G) ≤ Φ(P ). On

the other hand, G/P ∩ Op(G) ∈ U . Trivially, G/Φ(P ) ∈ U and hence G ∈ U , a
contradiction. ¤

Theorem 3.2. Let p be a prime dividing the order of G with (p−1, |G|) = 1.

If every minimal subgroup of G of order p is weakly SS-quasinormal in G, and if,

in addition, every cyclic subgroup of G of order 4 is weakly SS-quasinormal in G

or Sylow p-subgroup of G is Q8-free, then G ∈ N p.

Proof. Assume the theorem is false and let G be a counterexample of mi-

nimal order. It is obvious that the hypotheses of the theorem are inherited for

subgroups of G. Our minimal choice yields that G 6∈ N p but every proper subg-

roup of G lies in N p. A well-known result ([11], Theorem 9.1.9) implies that,

G = [P ]Q, where P is normal in G and Q is cyclic and is not normal in G for

some p ∈ π(G).

Case 1. p > 2. Let x be any generated element of P . Since exp(P ) = p, we
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have that x is of order p. If 〈x〉 is normal in G, then 1 6= 〈x〉Φ(P )/Φ(P ) is a normal

minimal subgroup of G/Φ(P ) and contained in P/Φ(P ). Hence 〈x〉Φ(P ) = P

and so 〈x〉 = P . Noting that |Aut(P )| = p − 1, we have that q divides p − 1, a

contradiction. So NG(〈x〉) must be a proper subgroup of G. On the other hand,

every subgroup of P of order p is weakly SS-quasinormal in G by hypotheses,

then is S-quasinormal in G by Lemma 2.3. Thus 〈x〉Q is a proper subgroup of G,

then is nilpotent. Hence, Q acts trivially on P by conjugation, a contradiction.

Case 2. p = 2. Let 〈x〉 be any subgroup of P of order 2. Without loss of

generality suppose that Q is any Sylow q-subgroup of G. Then, from Lemma 2.3,

〈x〉 must be S-quasinormal in G. So 〈x〉 permutes with Q. Then it must be true

that 〈x〉Q is a proper subgroup of G and hence a direct product of 〈x〉 and Q. It

follows that Q acts trivially on Ω1(P ) by conjugation.

Case 2.1. If P is Q8-free, then Lemma 2.5 implies that Q acts trivially on P .

Therefore, G = P ×Q, a contradiction.

Case 2.2. If every cyclic subgroup ofG of order 4 is weakly SS-quasinormal in

G. Let x be any generated element of P . Since exp(P ) = 2 or 4 by Theorem 9.1.9

of [11], we have that x is of order 2 or 4. Since P ≤ Op(G), by Lemma 2.3, each

〈x〉 is S-quasinormal in G. This means that 〈x〉 permutes with Q. It is easy to

show that 〈x〉Q is a proper subgroup of G, and is a direct product of 〈x〉 and Q.

Hence, Q acts trivially on P by conjugation, a final contradiction. ¤

Theorem 3.3. Let p be a prime dividing the order of G with (p−1, |G|) = 1.

If every minimal subgroup of G of order q 6= p is weakly SS-quasinormal in G, and

if, in addition, every cyclic subgroup of G of order 4 is weakly SS-quasinormal

in G or Sylow p-subgroup of G is Q8-free, then G possesses Sylow tower.

Proof. Theorem 3.2 implies G ∈ N p. Let K be a normal p-complement

to G. Therefore, G = PK, where P is a Sylow p-subgroup of G. By induction on

|G|, K possesses Sylow tower. Thus, G possesses Sylow tower. ¤

Theorem 3.4. Let H be a normal subgroup of G such that G/H ∈ U . If

every minimal subgroup of H is weakly SS-quasinormal in G, and if, in addition,

every cyclic subgroup of H of order 4 is weakly SS-quasinormal in G or H is

Q8-free, then G ∈ U .

Proof. Suppose H is a p-group. Then G ∈ U by Theorem 3.1. Thus |H|
is divisible by at least two distinct primes. Let p be the largest prime dividing

|H| and P a Sylow p-subgroup of H, then from Theorem 3.3, we immediately get

that G ∈ U . Thus P is normal in H, then is normal in G.



On weakly SS-quasinormal minimal subgroups of finite groups 215

Now, let X/P be any prime order subgroup of H/P . Then 〈h〉P = X

for some prime order subgroup 〈h〉 of H. Since Lemma 2.2 implies that every

prime order subgroup of H/P is weakly SS-quasinormal in G/P . Moreover,

(G/P )/(H/P ) ∼= G/H ∈ U . By induction on |G|, we have that G/P ∈ U . It

follows from Theorem 3.1, that G ∈ U . ¤

As an immediate consequence of Theorem 3.4, we have:

Corollary 3.5. Let p be a prime dividing the order of G with (p−1, |G|) = 1.

If every minimal subgroup of G is weakly SS-quasinormal in G, then G ∈ U if

and only if G ∈ N p.

Proof. First suppose that G ∈ U . It is clear that G ∈ N p. Conversely,

suppose G ∈ N p and hence G has a normal p-complement K. Then G = PK,

where P is a Sylow p-subgroup of G. It follows that G/K ∼= P . Then from

Theorem 3.4, we immediately get that G ∈ U . ¤

Ito Theorem has a generalization as follows.

Corollary 3.6. Let p be a prime dividing the order of G with (p−1, |G|) = 1.

If every minimal subgroup of G′ is weakly SS-quasinormal in G, then G′ ∈ N .

Proof. Theorem 3.4 immediately implies that G ∈ U if we let H = G′. It

is clear that G′ ∈ N . This completes the proof. ¤

Corollary 3.7. Let p be a prime dividing the order of G with (p−1, |G|) = 1

and q the largest prime dividing the order of G. If every minimal subgroup of G

of order q 6= p is weakly SS-quasinormal in G and every cyclic subgroup of G of

order 4 is weakly SS-quasinormal in G or Sylow p-subgroup of G is Q8-free, then

G/Gq ∈ U .
Proof. Theorem 3.3 implies that G possesses Sylow tower. Therefore, G =

PK, where K is a normal p-complement to G. It follows from Theorem 3.3, that

K possesses Sylow tower. Then K = RL, where L is a normal r-complement

to K, r is the smallest prime dividing the order of K and R Sylow r-subgroup

of K. This means that K/L ∼= R, and hence G/P ∼= K ∈ U by Theorem 3.4.

This completes the proof. ¤

The next question addresses wether Theorem 3.4 could be applied to the

group formation F , and what are the additional conditions needed in order to

stay in the class. The following Theorem generalizes some results in [4], [13].

Theorem 3.8. Let F be a saturated formation containing U . Then G ∈ F
if and only if G has a normal subgroup H such that G/H ∈ F , every minimal



216 Xianggui Zhong and Shirong Li

subgroup of H is weakly SS-quasinormal in G, and if, in addition, every cyclic

subgroup of H of order 4 is weakly SS-quasinormal in G or H is Q8-free.

Proof. We need to prove only that the sufficiency is true. Assume the

theorem is false and let G be a counterexample of minimal order. Theorem 3.4

implies that H ∈ U . Let p be the largest prime dividing |H| and P a Sylow

p-subgroup of H. Clearly, P is normal in H, then is normal in G.

Let X/P be any cyclic subgroup of H/P of order prime or 4 and 〈h〉 some

cyclic subgroup of H of order prime or 4. Since (G/P )/(H/P ) ∼= G/H ∈ F , we

have 〈h〉P = X. By Lemma 2.2, X/P is weakly SS-quasinormal in G/P . The

minimal choice of G implies that G/P ∈ F .

By hypotheses, every minimal subgroup and every cyclic subgroup of P of

order 4 is weakly SS-quasinormal in G or H is Q8-free. Then every minimal

subgroup of P is S-quasinormal in G by Lemma 2.3, and every cyclic subgroup

of P of order 4 is S-quasinormal in G or H is Q8-free.

First suppose every cyclic subgroup of P of order 4 is S-quasinormal in G.

Then by a known Theorem of [2], we get that G ∈ F , a contradiction.

Now, suppose p = 2 and P = H is Q8-free. Since G 6∈ F but G/P ∈ F ,

then 1 < GF ≤ P . By Theorem 3.5 of [3], G = MF ′(G), where M is a maximal

subgroup of G, F ′(G) = Soc(G mod Φ(G)), and G modulo the G-core MG of M

does not lie in F . Moreover, GF is a p-group. Thus G = MGF = MF (G) and

consequently (M,M ∩P ) satisfies the conditions of the Theorem. The minimality

of G implies M ∈ F .

By Lemma 2 of [1], we get that exp(GF ) = p or 4. If GF is abelian, then

GF is a normal minimal subgroup of G, and so GF 6≤ Φ(G). It follows that,

G = M∗GF , where M∗ is a maximal subgroup of G and M∗ ∩ GF = 1. Since

every minimal subgroup of P is S-quasinormal in G, we have that 〈x〉Q is a

subgroup of G for each element x of GF and each Sylow q-subgroup Q of G

of order odd. This means that GF = 〈x〉 and hence GF is of order p. Thus

G ∈ F , a contradiction. If GF is nonabelian, then Lemma 2 of [1] implies that

(GF )′ = Z(GF ) = Φ(GF ) is an elementary abelian group. Let X/(GF )′ be any

prime order subgroup of GF/(GF )′. Then there exists a subgroup A of GF such

that A(GF )′ = X. If |A| is a prime, then, since (GF/(GF )′)∩ (Φ(G)/(GF )′) = 1,

we have that X/(GF )′ is normal in G/(GF )′. Now, the minimality of GF/(GF )′

implies that X = GF . Hence X is a cyclic group of order prime. Thus G ∈ F , a

contradiction.

Now, all it remains to consider that each element of GF is of order 4. Then,

Ω1(G
F ) = (GF )′ = Z(GF ) = Φ(GF ). For any minimal subgroup X of GF and

every Sylow q-subgroup Q of G with q 6= 2. Since every minimal subgroup of P is
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S-quasinormal in G, then 〈x〉Q is a subgroup of G. Hence Q ≤ CG(x). It follows

that every 2′-element of G acts trivially on Ω1(G
F ) by conjugation, then acts

trivially on GF by Lemma 2.5. Because G/(GF )′ is a chief factor of G, it follows

that G/(GF )′ is of order prime. Since G/(GF )′ is G-isomorphic to Soc(G/MG)

and so G/MG ∈ F , a contradiction. ¤

The following result generalizes Theorem 3.5 in [9].

Theorem 3.9. Let F be a saturated formation containing U . Then G ∈ F
if and only if G has a normal subgroup H such that G/H ∈ F , every minimal

subgroup of F (H) is weakly SS-quasinormal in G, and if, in addition, every cyclic

subgroup of H of order 4 is weakly SS-quasinormal in G or H is Q8-free.

Proof. We need to prove only that the sufficiency is true. Assume the

theorem is false and let G be a counterexample of minimal order.

If F (H) is of order odd, then Lemma 2.2 and the main Theorem of [2] imply

G ∈ F , a contradiction. So F (H) is of order even. Because any Sylow 2-subgroup

P of F (H) is normal inG. Let L/P = F (H/P ). Since (G/P )/(H/P ) ∼= G/H ∈ F
and L/P is nilpotent, if 1 < P1/P ∈ Syl2(L/P ), then P1 ≤ F (H). By Sylow′s
Theorem, P1 ≤ P and so P1 = P , a contradiction. This means that L/P is of

order odd. From Theorem 3.1, we get that L ∈ U . Next we show that every

cyclic subgroup X/P of L/P of order prime or 4 is weakly SS-quasinormal in

G/P . The reason is that there exists a Sylow q-subgroup Q of L such that

X/P ≤ QP/P ∈ Sylq(L/P ). Moreover, L ∈ U implies that PQ ∈ U and so Q is

normal in PQ. Since L/P is nilpotent and so PQ is normal in G. It follows that

Q is normal in G. Since X = (X ∩Q)P , we have that X ∩Q is a cyclic subgroup

of Q of order prime or 4 and is weakly SS-quasinormal in G by hypotheses.

From Lemma 2.2, we get that X/P is weakly SS-quasinormal in G/P . It follows

from the proof above that (G/P,H/P ) satisfies the conditions of the Theorem.

The minimality of G implies G/P ∈ F . Thus, G ∈ F by Theorem 3.8, a final

contradiction. ¤
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