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On minimal non-p-closed groups and related properties
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GABRIELA MENDOZA (Riverside) and MICHAEL B. WARD (Western Oregon)

Abstract. Let p be a prime. A group is called p-closed if it has a normal Sy-

low p-subgroup and it is called p-exponent closed if the elements of order dividing p

form a subgroup. A group is minimal non-p-closed if it is not p-closed but its proper

subgroups and homomorphic images are p-closed. Similarly, a group is called minimal

non-p-exponent closed if it is not p-exponent closed but all its proper subgroups and

homomorphic images are p-exponent closed. In this paper we characterize finite mi-

nimal non-p-closed groups and investigate the relationship between them and minimal

non-p-exponent closed groups. In particular, we show that every minimal non-p-closed

group is non-p-exponent closed and that minimal non-p-closed groups and simple mini-

mal non-p-exponent closed groups have cyclic Sylow p-subgroups. Furthermore, given a

prime p, we describe non-p-exponent closed groups of smallest order and we show that

they coincide with non-p-closed groups of smallest order.

1. Introduction

Let E be a group theoretic property. We say that a group G is a minimal

non-E-group if G is not an E-group but proper subgroups and proper homo-

morphic images of G are E-groups. Already in 1903, Miller and Moreno [12]

characterized finite minimal non-E-groups for the property E = abelian. Their

investigations were completed by Rédei [15]. In [12] and [15], the same three au-

thors considered the class of non-abelian groups with every proper subgroup abe-

lian. As it turned out, this class coincides with the class of minimal non-abelian
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groups. Minimal non-E-groups have been investigated for various properties such

as nilpotency, solvability, and others. We refer to [6] for further details.

The topic of our investigation is the class of minimal non-E-groups, where E

is either the class of finite p-closed groups or the class of finite p-exponent closed

groups. In [1], Reinhold Baer defined the following property.

Definition 1.1. Let Σ be a set of primes. A group G is called Σ-closed if

the set of all elements of G whose order has no prime divisor outside of Σ is a

subgroup of G.

In particular, a group is called p-closed if it is Σ-closed for Σ = {p}. Note

that a finite group is p-closed if and only if it has a normal Sylow p-subgroup. In

particular, all abelian groups are p-closed.

In [9], n-exponent closed groups are defined as follows.

Definition 1.2. Let G be a group and let n be a positive integer. Consider

the set G[n] = {g ∈ G : gn = 1} and let Gn = 〈G[n]〉 be the subgroup of G

generated by G[n]. We say that G is n-exponent closed provided G[n] = Gn.

Clearly, an abelian group is n-exponent closed for any n. In particular, the

concept of an n-exponent closed group has been studied in the case when G is a

p-group and n is a power of p. In this case, it is customary to write Ω{i}(G) or

Λi(G) for G[pi] and Ωi(G) for Gpi .

The classes of p-closed groups and p-exponent closed groups appear to have

some similarities, but neither is a subclass of the other. For example, any finite p-

group is p-closed but there is a wealth of finite p-groups which are not p-exponent

closed. An example of smallest order is the wreath product W = Cp o Cp of a

cyclic group of order p with itself. The group W has order pp+1, exponent p2,

and it is generated by elements of order p. Thus any finite group having W as

a normal Sylow p-subgroup is p-closed but not p-exponent closed. On the other

hand, if q is a prime divisor of 2p − 1, then the group

T = T (p, q) = 〈a, b | aq = bp
2

= 1, b−1ab = a2〉

is not p-closed but it is p-exponent closed, since T [p] = 〈bp〉 is the center of T .

In light of the above remarks, it comes somewhat as a surprise that there

is a strong connection between minimal non-p-closed groups and minimal non-

p-exponent closed groups. As we will show, any minimal non-p-closed group

and any minimal non-p-exponent closed group is either solvable or simple (The-

orem 3.1). In the solvable case, any minimal non-p-closed group is also minimal

non-p-exponent closed, while a solvable minimal non-p-exponent closed group
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is either minimal non-p-closed or it is a p-group (Theorems 3.1 and 4.1). The

minimal non-p-exponent closed p-groups are 2-generated, have class at least p,

exponent p2 and a cyclic center. A full classification of these p-groups seems out

of reach at the moment.

Looking at simple groups, we show that every simple minimal non-p-closed

group is also a minimal non-p-exponent closed group (Theorem 3.5). We do not

know if the converse always holds. Looking carefully at the techniques of [10],

where the simple minimal non-7-closed groups are classified, one can verify that

the converse holds for p ≤ 7 (Section 3). The proof relies on the classification

of finite simple groups and it is crucial for the argument that p is small. Obtain-

ing a similar classification for all primes p will require substantially new ideas.

However, we show that simple minimal non-p-closed groups have cyclic Sylow p-

subgroups with pairwise trivial intersection (Theorem 3.5; the fact that the Sylow

p-subgroups are cyclic was established independently in [17]). We also prove that

simple minimal non-p-exponent closed groups have cyclic Sylow p-subgroups, but

whether they have pairwise trivial intersection remains open (Theorem 4.3). Inci-

dently, only the results in this paragraph rely on the classification of finite simple

groups.

To introduce our final results, something should be said about what led us to

the investigation of these two classes of groups. The inspiration came from a paper

by Desmond MacHale [11]. In this paper 47 properties of groups are considered

and for each property MacHale asks for groups of smallest order which do not

have the property. The first property in [11] concerns groups in which the set of

all squares of elements is a subgroup. As can be easily seen, the alternating group

A4 and the group T (2, 3) mentioned above are exactly the groups of smallest

order which do not have this property. A natural extension of this result is to

consider groups in which the set of all n-th powers of elements is a subgroup.

Such groups are called n-power closed [9]. In [8], groups of smallest order which

are not n-power closed have been determined for any n not divisible by 16. A

dual problem is to determine groups of smallest order which are not n-exponent

closed. To solve this problem in the case n is a prime was the original motivation

for our investigation. We show that G is a non-p-closed group of smallest order

if and only if it is a non-p-exponent closed group of smallest order and then G is

either solvable or isomorphic to PSL(2, p) (Theorem 5.3). As a corollary of our

description of non-p-exponent closed groups of smallest order we get the following

formula for their order f(p):

f(2) = 6 and f(p) = min
{
p(kp+ 1),

1

2
p(p2 − 1)

}
,
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where p is an odd prime and k is the smallest positive integer such that kp+1 is a

prime power (Corollary 5.4). This formula leads us to an old problem in analytic

number theory about the smallest prime in an arithmetic progression, which we

discuss in more detail in the last section.

2. A family of finite solvable groups

In this section we introduce a family of finite solvable groups which will play

a major role in the next section, where we characterize minimal non-p-closed

groups.

Let p and q be distinct primes. Denote by ep(q) the order of q modulo p. Let

F be a finite field with qep(q) elements. The multiplicative group F× of F is cyclic

of order qep(q)−1. Since p divides qep(q)−1, the group F× has a unique subgroup

S of order p. The group S acts on the additive group F of F by multiplication.

Denote by U(p, q) the semidirect product F o S. We have the following result.

Proposition 2.1. Let p and q be distinct primes and let F , S, and ep(q) be

as defined above. Then the following hold:

(i) The group S acts irreducibly on F ;

(ii) Let P be a cyclic group of order p. If A is an elementary abelian q-group

of order qm on which P acts irreducibly, then m = ep(q) and the semidirect

product Ao P is isomorphic to U(p, q).

(iii) U(p, q) is minimal non-p-closed and minimal non-p-exponent closed.

Proof. Let Fq be the prime subfield of F. Let u be a generator of S. We

claim that Fq[u] = F. In fact, Fq[u] is a field with qs elements for some s ≤ ep(q).

Thus uqs−1 = 1 and therefore p|qs−1. It follows from the definition of ep(q) that

ep(q)|s. Consequently, s = ep(q) and F = Fq[u]. Any S-invariant subgroup of F is

invariant under multiplication by any element of Fq[u]. Since Fq[u] = F, it follows
that {0} and F are the only S-invariant subspaces of F . This shows that S acts

irreducibly on F .

Suppose now that P is a cyclic group of order p and A is an elementary

abelian q-group of order qm on which P acts irreducibly. Let c be a generator

of P . Then A is a simple module over the polynomial ring Fq[x], where x acts on

A as c. It follows that A can be identified with Fq[x]/J for some maximal ideal J

of Fq[x]. Since the ideal J is maximal, the ring Fq[x]/J is a field which we denote

by F. Thus A is identified with the additive group F of F. Moreover, the image

of x in F is an element of order p and the action of P on A is identified with
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the action of S on F by multiplication, where S is the cyclic subgroup of F× of

order p. Let u be a generator of S. The additive group of the subfield Fq[u] of
F is an S-invariant subgroup of F . Since F is irreducible, we have Fq[u] = F. It

follows that m is the smallest positive integer such that uqm = u, i.e. uqm−1 = 1.

Equivalently, m is the smallest positive integer such that p divides qm − 1, i.e.

m = ep(q). This proves that Ao P is isomorphic to U(p, q).

Since Sylow p-subgroups of U(p, q) are cyclic of order p and not normal, the

group U(p, q) does not have any non-trivial normal p-subgroups. Hence it is nei-

ther p-closed nor p-exponent closed. It follows from (i) that every proper subgroup

of U(p, q) is abelian and F is the only non-trivial proper normal subgroup. Now

(iii) follows easily. ¤

3. Minimal non-p-closed groups

In this section we characterize minimal non-p-closed groups. Recall that if

E is a property of finite groups, then a minimal non-E-group is any finite group

G which does not have the property E but the proper subgroups and proper

quotients of G have property E. For some properties E, e.g. abelian, if all proper

subgroups of a group have property E, then all proper quotients of this group

also have property E. This is not the case for the property of being p-closed.

Consider the group T = T (p, q) introduced in Section 1. All proper subgroups

of T are abelian, hence are p-closed, but the quotient of T by its center is not p-

closed. Non-p-closed groups with all proper subgroups p-closed have been called

inner-p-closed (see e.g. [10]). Thus T (p, q) is inner-p-closed but not a minimal

non-p-closed group.

The following theorem describes minimal non-p-closed groups.

Theorem 3.1. A finite group G is a minimal non-p-closed group if and only

if it satisfies one of the following conditions:

(i) G is a simple group which is a minimal non-p-closed group;

(ii) G is isomorphic to U(p, q) for some prime q different from p.

Proof. Let G be a minimal non-p-closed group which is not simple and let

P be a Sylow p-subgroup of G . Let A be a minimal normal subgroup of G, then

A is a proper subgroup and the quotient G/A is p-closed. Thus G/A has a normal

Sylow p-subgroup. It follows that all Sylow p-subgroups of G are contained in AP .

Since G is not p-closed, neither is AP . Thus AP = G, since all proper subgroups

of G are p-closed. It follows that G/A is a p-group.
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Note that A is a direct product of copies of a simple group H. We claim that

p does not divide the order of H. In fact, suppose that p divides |H|. Then, since
H is simple and p-closed, H must be abelian. Thus A is an elementary abelian

p-group. It follows that G is a p-group, a contradiction. We conclude that |A| is
prime to p. Thus G = AP is a semidirect product. For any maximal subgroup M

of P , the subgroup AM of G is p-closed and M is a Sylow p-subgroup of AM . It

follows thatM is normal in AM . Thus A normalizesM . Since maximal subgroups

of P are normal in P , we see that M is normal in G. Now if M is non-trivial,

then G/M is p-closed. Since M is a p-group, it follows that G is p-closed, a

contradiction. Thus all maximal subgroups of P must be trivial, hence P is cyclic

of order p.

Suppose that H is non-abelian. For any prime divisor q of H, the group P

acts by conjugation on the set of Sylow q-subgroups of A. Since the number of

such subgroups divides |A|, it is prime to p and therefore the action has a fixed

point. In other words, P normalizes a Sylow q-subgroup Sq of A, which is also

a Sylow q-subgroup of G. Since Sq is a proper subgroup of A, the group SqP is

a proper subgroup of G, hence it is p-closed. Thus P is normal in SqP , i.e. Sq

normalizes P . It follows that the normalizer of P contains a Sylow q-subgroup

of G for every prime q dividing |G|. This however means that P is normal in G,

a contradiction. Thus H must be abelian. It follows that A is an elementary

abelian q-group for some prime q different from p. Being a minimal normal

subgroup of G, the group A is an irreducible P -module. By Proposition 2.1, the

group G is isomorphic to U(p, q). Conversely, the groups U(p, q) are minimal

non-p-closed groups by Proposition 2.1. ¤

The question arises if there are non-abelian simple groups which are mi-

nimal non-p-closed, and if there exist such groups, can they be classified? It

follows from Dickson’s Theorem (see e.g. [6, II.8.2]) that for any prime p > 3 the

group PSL(2, p) is a simple minimal non-p-closed group. For small primes p the

classification of finite simple groups can be employed to list all simple minimal

non-p-closed groups. The main idea is a trivial observation that simple minimal

non-p-closed group cannot have proper simple subgroups of order divisible by p.

When p is small, the groups minimal among the simple groups of order divisible

by p are easy to list. Using known properties of these groups one verifies which

among them are minimal non-p-closed. The details have been worked out for

p ≤ 7. From the classification in [10] and the related results quoted therein, we

get the following description of simple minimal non-p-closed groups for p ≤ 7:

(i) all minimal non-2-closed groups are solvable;
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(ii) simple minimal non-3-closed groups are exactly the groups PSL(2, 2q), q an

odd prime;

(iii) simple minimal non-5-closed groups are exactly the groups PSL(2, 5) and

Sz(2q), q an odd prime;

(iv) simple minimal non-7-closed groups are exactly the groups PSL(2, 7),

PSL(2, q) for any prime q ≡ −1(mod 7), and PSL(2, q3) for any prime q ≡ 3

or 5(mod 7).

A similar classification for all p > 7 seems out of reach in general. However,

we show that simple minimal non-p-closed groups have cyclic Sylow p-subgroups

with pairwise trivial intersections. The proof is based on the classification of

simple groups with a strongly p-embedded proper subgroup. Recall that a subg-

roup H of a group G is called strongly p-embedded if for any non-trivial subgroup

Q of some Sylow p-subgroup of G, the normalizer of Q in G is contained in H.

Proposition 3.2. Let G be a simple minimal non-p-closed group.

(i) Any two distinct Sylow p-subgroups of G have trivial intersection.

(ii) The normalizer of a Sylow p-subgroup of G is a strongly p-embedded sub-

group.

Proof. Let P1, P2 be two distinct Sylow p-subgroups of G such that the

order of Q = P1 ∩ P2 is largest possible. It suffices to show that Q is the trivial

group. Suppose otherwise and consider the normalizer N of Q in G. Since G is

simple, N is a proper subgroup of G. It follows that N has a normal Sylow p-

subgroup S, which is contained in a Sylow p-subgroup P of G. Now the normalizer

Qi of Q in Pi is a p-group strictly containing Q and contained in N , i = 1, 2. Thus

Qi ⊆ S ⊆ P , hence P ∩ Pi has order larger than the order of Q. This however

implies that P = Pi and consequently P1 = P2, a contradiction. This completes

the proof of (i).

Consider now a Sylow p-subgroup P of G and a non-trivial subgroup Q

of P . If x ∈ G normalizes Q, then Q is contained in both P and xPx−1 and

therefore P = xPx−1 by (i). In other words, the normalizer of Q is contained in

the normalizer of P . Thus (ii) holds. ¤

In [16], a classification of simple groups of Lie type with a strongly p-

embedded proper subgroup has been obtained (see, in particular, Theorem 7

therein). Using the classification of finite simple groups and some facts about the

sporadic simple groups (contained, for example, in [3]), one can extend this to

a list of all simple groups with a strongly p-embedded proper subgroup (see [5,

Theorem 4.249]). Note that both in [16] and [5] the classification is obtained for
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groups with simple generalized Fitting subgroup. Restricting to simple groups,

we obtain the following result.

Theorem 3.3. Let G be a finite simple group with a strongly p-embedded

proper subgroup. Then one of the following conditions holds:

(i) G has cyclic Sylow p-subgroups;

(ii) G ∼= PSL(2, q), PSU(3, q), Sz(q), 2G2(q), or A2p, and q is a power of p;

(iii) p = 3 and G ∼= PSL(3, 4), or M11;

(iv) p = 5 and G ∼= 2F4(2)
′, Mc, or M(22);

(v) p = 11 and G ∼= J4.

Recall that a finite group is quasi-simple if it is perfect and its quotient

modulo the center is simple. Theorem 3.3 allows us to prove the following result.

Corollary 3.4. Let p be an odd prime and let G be a finite simple group

with a strongly p-embedded proper subgroup such that the simple quotient of

any proper quasi-simple subgroup of G has order prime to p. Then G has cyclic

Sylow p-subgroups.

Proof. The group G is one of the groups described in (i)–(v) of Theo-

rem 3.3. The groups in (iii)–(v) are eliminated by using the Atlas [3] to verify

that they have proper non-abelian simple subgroups of order divisible by p. If G

is one of the groups of (ii), then it is isomorphic to PSL(2, p), PSU(3, p), or

p = 3 and G ∼= 2G2(27). For otherwise, it clearly has a proper non-abelian simple

subgroup of order divisible by p (note that Sz(q) is eliminated since p 6= 2). Using

the Atlas, we see that 2G2(27) has proper non-abelian simple subgroups of order

divisible by 3, hence it is not isomorphic to G. For p ≥ 5, the group PSU(3, p)

has a proper subgroup isomorphic to SL(2, p) (see [13]). From the Atlas we

see that the group PSU(3, 3) has a proper subgroup isomorphic to PSL(2, 7).

It follows that G can not be isomorphic to PSU(3, p). This shows that if G is

one of the groups of (ii), then G ∼= PSL(2, p). Since PSL(2, p) has cyclic Sylow

p-subgroups, the result follows. ¤

We now obtain the following result.

Theorem 3.5. Let G be a minimal non-p-closed group. Then G has cyclic

Sylow p-subgroups with pairwise trivial intersections. In particular, G is minimal

non-p-exponent closed.

Proof. According to Theorem 3.1, G is either simple or isomorphic to

U(p, q) for some q. In the latter case, the first part of the theorem is clear.
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Suppose then that G is simple. We claim that p is odd in this case. Indeed, sup-

pose that p = 2 and let x be an element of order 2. By the Baer–Suzuki Theorem

[4, Theorem 3.8.2], there is a conjugate y of x in G such that the group 〈x, y〉 is
not a 2-group. Thus 〈x, y〉 is not 2-closed and being a dihedral group, it must be

a proper subgroup of G. This shows that G is not a minimal non-2-closed group.

Thus p is odd and the first part of the theorem follows from Proposition 3.2 and

Corollary 3.4.

To justify the last part, note that neither a simple group of order divisible

by p nor U(p, q) is p-exponent closed. Since G is minimal non-p-closed, any proper

subgroup H of G has a cyclic normal, Sylow p-subgroup. Hence H is p-exponent

closed. ¤

4. Minimal non-p-exponent closed groups

In this section we characterize minimal non-p-exponent closed groups. It

turns out that these groups are closely related to the minimal non-p-closed groups

investigated in the preceding section. We point out however that, unlike the class

of p-closed groups, the class of p-exponent closed groups is not quotient closed, as

can be seen from the groups T (p, q) introduced in Section 1. The main theorem

of this section is very similar to Theorem 3.1 except that the list of minimal

non-p-exponent closed groups includes some p-groups.

Theorem 4.1. A finite group G is a minimal non-p-exponent closed group

if and only if it satisfies one of the following conditions:

(i) G is a simple group which is a minimal non-p-exponent closed group;

(ii) G is a p-group which is a minimal non-p-exponent closed group. In this

case G is 2-generated, has class at least p, exponent p2, and cyclic center. In

particular, |G| ≥ pp+1;

(iii) G is isomorphic to U(p, q) for some prime q 6= p.

Proof. Let G be a minimal non-p-exponent closed group which is not

simple. There are two elements x, y ∈ G of order p such that the order of xy

is neither 1 nor p. The minimality of G ensures that G is generated by x and y.

Let A be a minimal normal subgroup of G. Since G is not simple, the subgroup

A is a non-trivial proper subgroup. Let G = G/A. Again by minimality of G,

the group G is p-exponent closed. Since G is p-exponent closed, the set G[p] is
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a subgroup of G. Note that both xA and yA belong to G[p]. Since G is genera-

ted by x and y, we conclude that G = G[p]. In other words, G/A is a group of

exponent p.

Note that A is a direct product of copies of a simple group H. Suppose that

p divides |H|. The group H, being isomorphic to a proper subgroup of G, is a

p-exponent closed group. Since H is simple, it must be abelian. It follows that A

is an elementary abelian p-group and therefore G is a p-group. Consequently, the

group A contains a non-trivial element c of order p which is central in G. Since A

is a minimal normal subgroup of G, we have A = 〈c〉. Thus A is cyclic of order p

and it is central in G. It follows that G has exponent p2 and therefore xy has order

p2. Since G/A has exponent p, we have (xy)p is a nontrivial element of A, hence

A = 〈(xy)p〉. This together with our assumption that A is an arbitrary minimal

normal subgroup of G shows that A is the unique minimal normal subgroup of G.

Consequently, A coincides with the center of G. Since p-groups of class less than

p are regular and regular p-groups are p-exponent closed, the class of G is at

least p. Clearly a group of class p has order at least pp+1. This establishes (ii) of

the theorem.

Suppose now that p does not divide the order of H. Then |A| is prime to

p and G/A is a p-group. It follows that G is isomorphic to a semidirect product

AoG/A. In particular, the Sylow p-subgroups of G have exponent p. Note that

for groups with a Sylow p-subgroup of exponent p, to be p-closed is the same as

to be p-exponent closed. It follows that G is a minimal non p-closed group. By

Theorem 3.1, the groupG is isomorphic to a group of the form U(p, q). Conversely,

the groups U(p, q) are minimal non-p-exponent closed by Proposition 2.1. ¤

Two questions naturally arise: what are the minimal non-p-exponent closed

p-groups and what are the simple minimal non-p-exponent closed groups? For

the first question, consider the wreath product W = Cp oCp, where Cp is a cyclic

group of order p. The group W is a minimal non-p-exponent closed group of

order pp+1. Indeed, this group has exponent p2 and is generated by elements

of order p (see [6, III.10.2]). Every proper subgroup or quotient group of W

has order at most pp hence it is a p-exponent closed group. We do not know

of any other construction of minimal non-p-exponent closed p-groups. Note that

Theorem 4.1(ii) implies that for each p there is only a finite number of p-groups

which are minimal non-p-exponent closed. It would be nice to have an explicit

description of all such groups.

As for the second question, it follows from Dickson’s Theorem (see e.g. [6,

II.8.2]) that for any prime p > 3, the group PSL(2, p) is a simple minimal non-p-

exponent closed group. By Theorem 3.5, every simple minimal non-p-closed group
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is also a minimal non-p-exponent closed group. We do not know if the converse

holds for all p. Using the methods of [10], one can verify that this is indeed true for

p ≤ 7. In general, we will show that simple minimal non-p-exponent closed groups

have cyclic Sylow p-subgroups, but we have not been able to show that different

such subgroups have trivial intersection. The key is the following observation.

Proposition 4.2. Let G be a simple minimal non-p-exponent closed group.

Then the following hold:

(i) If P1, P2 are different Sylow p-subgroups of G, then either they have trivial

intersection or Ω1(P1) = Ω1(P2);

(ii) If P is a Sylow p-subgroup of G, then the normalizer of Ω1(P ) is a strongly

p-embedded subgroup.

Proof. Let P1, P2 be two different Sylow p-subgroups of G such that

Ω1(P1) 6= Ω1(P2) and the group Q = Ω1(P1) ∩ Ω1(P2) has largest possible order.

It suffices to show that Q is the trivial group. Suppose otherwise and consider

the normalizer N of Q in G. Since G is simple, N is a proper subgroup of G. The

normalizer Qi of Q in Ω1(Pi) contains Q properly and is contained in N , i = 1, 2.

Let B = N [p]. Thus B is a normal p-subgroup of N and it contains Qi, i = 1, 2.

Let P be a Sylow p-subgroup of G containing B. Then B ⊆ Ω1(P ). It follows that

the order of Ω1(P ) ∩ Ω1(Pi) is larger than the order of Q. This however implies

that Ω1(P ) = Ω1(Pi) and consequently Ω1(P1) = Ω1(P2), a contradiction. This

completes our proof of (i).

Consider now a Sylow p-subgroup P of G and a non-trivial subgroup Q of P .

If x ∈ G normalizes Q, then Q is contained in both P and xPx−1 and therefore

Ω1(P ) = Ω1(xPx−1) = xΩ1(P )x−1 by (i). In other words, the normalizer of Q is

contained in the normalizer of P . ¤

The last proposition combined with Corollary 3.4 yields now the following

result. The proof is similar to the proof of Theorem 3.5.

Theorem 4.3. Let G be a simple minimal non-p-exponent closed group.

Then G has cyclic Sylow p-subgroups.

5. Non-p-exponent closed groups of smallest order

We have not been able to characterize all simple groups which are minimal

non-p-closed or minimal non-p-exponent closed groups. We can however describe
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such groups of smallest possible order. The key is the following theorem, conjec-

tured by E. Artin and proved by R. Brauer and W. F. Reynolds [2].

Theorem 5.1. Let G be a non-abelian simple group of order |G| divisible
by a prime p such that |G| < p3. Then p > 3 and either G is isomorphic to

PSL(2, p) or p = 2n + 1 is a Fermat prime and G is isomorphic to PSL(2, 2n).

Corollary 5.2. Let p be a prime and let G be a finite non-abelian simple

group of smallest possible order divisible by p. If p > 3, then G is isomorphic

to PSL(2, p). In particular, G is both a minimal non-p-closed group and a mi-

nimal non-p-exponent closed group. If p ∈ {2, 3}, then G is isomorphic to the

alternating group A5.

Proof. The conclusion is clear for p ∈ {2, 3}. Note that for p ∈ {2, 3}, the
group A5 is neither a minimal non-p-closed group nor a minimal non-p-exponent

closed group.

Suppose that p > 3. Since p divides |PSL(2, p)|, we have |G| ≤ |PSL(2, p)| <
p3 and Theorem 5.1 applies. If p = 5, then G ∼= PSL(2, 5) ∼= PSL(2, 22). If p > 5

and p = 2n + 1 is a Fermat prime, then

|PSL(2, 2n)| = (22n − 1)2n = p(p− 2)(p− 1) >
1

2
p(p2 − 1) = |PSL(2, p)|.

The first part of the corollary is now an immediate consequence of Theorem 5.1.

The second part follows immediately from Dickson’s Theorem [6, II.8.27]. ¤

For a prime p, let n(p) = qm be the smallest prime power congruent to 1

modulo p, where q = q(p) is a prime. Clearly, n(p) = kp+1, where k is the smallest

positive integer such that kp + 1 is a power of a prime. The following theorem

describes non-p-closed groups of smallest order and non-p-exponent closed groups

of smallest order.

Theorem 5.3. Let p be a prime. The following conditions for a finite group

G are equivalent:

(i) G is a non-p-closed group of smallest order;

(ii) G is a non-p-exponent closed group of smallest order;

(ii) Either 1
2 (p

2 − 1) ≤ n(p) and G is isomorphic to PSL(2, p) or 1
2 (p

2 − 1) >

n(p) = qm and G is isomorphic to U(p, q).

Proof. Since |PSL(2, p)| < pp+1, a non-p-exponent closed group of smallest

order is not a p-group by Theorem 4.1(ii). Note that PSL(2, 2) ∼= U(2, 3) ∼= S3,

PSL(2, 3) ∼= U(3, 2) ∼= A4, and
1
2 (p

2 − 1) 6= n(p) for p > 3. These observations

together with Theorems 3.1, 4.1, and Corollary 5.2 easily imply the theorem. ¤
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As a corollary to Theorem 5.3 we get an answer to the question which led us

into the investigations of this paper: given a prime p, what is the smallest order

of a non-p-exponent closed group?

Corollary 5.4. Let p be a prime and let f(p) denote the smallest order of

a non-p-exponent closed group. Then

f(p) =




6, if p = 2;

min{p · n(p), 1
2
p(p2 − 1)}, if p is odd.

Given a prime p > 3, it is natural to ask which of the groups PSL(2, p),

U(p, q(p)) has smaller order. In other words, we would like to know which of the

numbers n(p) and 1
2 (p

2 − 1) is smaller. With the help of a computer we checked

that among the first 2000 primes only p = 19 satisfies n(p) > 1
2 (p

2 − 1). It

seems reasonable to conjecture that 19 is the only such prime. This leads us to

the following question: given an odd prime p different from 19, is there a prime

power which is congruent to 1 modulo p and does not exceed 1
2 (p

2 − 1)? This

question is closely related to an old problem in number theory which asks for

the smallest prime in an arithmetic progression. It follows from [14] that n(p) <
1
2 (p

2 − 1) for infinitely many primes p. In fact, it is a long standing conjecture in

analytic number theory that if a and q are relatively prime and ε > 0 then the

smallest prime p(q, a) congruent to a modulo q satisfies p(q, a) = O(q1+ε) (see [7,

Chapter 18]). If true, this conjecture implies that the equality f(p) = 1
2p(p

2 − 1)

can hold for only a finite number of primes p.

One can ask how often n(p) is a prime power rather than a prime itself.

Clearly, if p is a Mersenne prime, then n(p) = p + 1 is a power of 2. One can

speculate that for any prime q there are infinitely many primes p such that n(p)

is a power of q. To prove or disprove any such claim seems beyond the reach of

current methods. Perhaps more tractable is the question whether n(p) is not a

prime for infinitely many values of p. From the numerical evidence it seems that

this happens rarely. For example, among the first 2000 primes only the Mersenne

primes 3, 7, 31, 127, 8191, and the primes 13, 1093, 2801 yield n(p) which is not

a prime.

We end this discussion with the following curious characterization of Mer-

senne primes by group theoretic means.

Corollary 5.5. For a prime p the following conditions are equivalent:

(i) p = 2 or a Mersenne prime;

(ii) There is a non-p-closed group of order p(p+ 1).
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Proof. Suppose that p = 2 or p is a Mersenne prime. Thus n(p) = p + 1.

By Theorem 5.3 and Corollary 5.4, the non-p-closed group of smallest order has

order p(p+ 1). Thus (ii) follows from (i).

Conversely, suppose there is a non-p-closed group of order p(p + 1). Since

p = 3 is a Mersenne prime, we may assume that p > 3. Thus (p+1) < (p2 − 1)/2

and we conclude by Theorem 5.3 that n(p) ≤ p + 1. This is only possible if

n(p) = p+ 1 and p is a Mersenne prime. ¤
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