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Ricci solitons in manifolds with quasi-constant curvature
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Abstract. The Eisenhart problem of finding parallel tensors treated already in

the framework of quasi-constant curvature manifolds in [Jia] is reconsidered for the

symmetric case and the result is interpreted in terms of Ricci solitons. If the generator

of the manifold provides a Ricci soliton then this is i) expanding on para-Sasakian spaces

with constant scalar curvature and vanishing D-concircular tensor field and ii) shrinking

on a class of orientable quasi-umbilical hypersurfaces of a real projective space=elliptic

space form.

1. Introduction

In 1923, Eisenhart [Eisenhart] proved that if a positive definite Riemannian

manifold (M, g) admits a second order parallel symmetric covariant tensor other

than a constant multiple of the metric tensor, then it is reducible. In 1926, Levy

[Levy] proved that a parallel second order symmetric non-degenerated tensor α

in a space form is proportional to the metric tensor. Note that this question

can be considered as the dual to the the problem of finding linear connections

making parallel a given tensor field; a problem which was considered by Wong

in [Wong]. Also, the former question implies topological restrictions namely if

the (pseudo) Riemannian manifold M admits a parallel symmetric (0, 2) tensor

field then M is locally the direct product of a number of (pseudo) Riemannian
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manifolds, [Wu] (cited by [Zhao]). Another situation where the parallelism of α

is involved appears in the theory of totally geodesic maps, namely, as is point out

in [Oniciuc, p. 114], ∇α = 0 is equivalent with the fact that 1 : (M, g) → (M,α)

is a totally geodesic map.

While both Eisenhart and Levy work locally, Ramesh Sharma gives in

[Sharma1] a global approach based on Ricci identities. In addition to space-

forms, Sharma considered this Eisenhart problem in contact geometry [Sharma2]–

[Sharma4], for example for K-contact manifolds in [Sharma3]. Since then, several

other studies appeared in various contact manifolds, see for example, the biblio-

graphy of [CalinCrasm].

Another framework was that of quasi-constant curvature in [Jia]; recall that

the notion of manifold with quasi-constant curvature was introduced by Bang-

yen Chen and Kentaro Yano in 1972, [ChenYano], and since then, was the

subject of several and very interesting works, [Bernardini], [DeGhosh], [Wang],

in both local and global approaches. Unfortunately, the paper of Jia contains

some typos and we consider that a careful study deserves a new paper. There are

two remarks regarding Jia result: i) it is in agreement with what happens in all

previously recalled contact geometries for the symmetric case, ii) it is obtained in

the same manner as in Sharma’s paper [Sharma1]. Our work improves the cited

paper with a natural condition imposed to the generator of the given manifold,

namely to be of torse-forming type with a regularity property.

Our main result is connected with the recent theory of Ricci solitons [Cao],

a subject included in the Hamilton–Perelman approach (and proof) of Poincaré

Conjecture. A connection between Ricci flow and quasi-constant curvature mani-

folds appears in [CaiZhao]; thus our treatment for Ricci solitons in quasi-constant

curvature manifolds seems to be new.

Our work is structured as follows. The first section is a very brief review of

manifolds with quasi-constant curvature and Ricci solitons. The next section is

devoted to the (symmetric case of) Eisenhart problem in our framework and the

relationship with the Ricci solitons is pointed out. A technical conditions appears,

which we call regularity, and is concerning with the non-vanishing of the Ricci

curvature with respect to the generator of the given manifold. Let us remark that

in the Jia’s paper this condition is involved, but we present a characterization of

these manifolds as well as some remarkable cases which are out of this condition

namely: quasi-constant curvature locally symmetric and Ricci semi-symmetric

metrics. A characterization of Ricci soliton is derived for dimension greater that 3.

Four concrete examples involved in possible Ricci solitons on quasi-constant

manifolds are listed at the end. For the second example, we pointed out some
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consequences which are yielded by the hypothesis of compacity, used in paper

[DragomirGrimaldi], in connection with (classic by now) papers of T. Ivey and Per-

elman.

2. Quasi-constant curvature manifolds. Ricci solitons

Fix a triple (M, g, ξ) with Mn a smooth n(> 2)-dimensional manifold, g a

Riemannian metric on M and ξ an unitary vector field on M . Let η the 1-form

dual to ξ with respect to g.

If there exist two smooth functions a, b ∈ C∞(M) such that:

R(X,Y )Z = a[g(Y, Z)X − g(X,Z)Y ] + b[g(Y, Z)η(X)− g(X,Z)η(Y )]ξ

+ bη(Z)[η(Y )X − η(X)Y ] (2.1)

then (M, g, ξ) is called manifold of quasi-constant curvature and ξ is the generator,

[ChenYano]. Using the notation of [DragomirTomassini, p. 325] let us denote

Mn
a,b(ξ) this manifold.

It follows:
R(X,Y )ξ = (a+ b)[η(Y )X − η(X)Y ] (2.2)

R(X, ξ)Z = (a+ b)[η(Z)X − g(X,Z)ξ] (2.3)

while the Ricci curvature S(X,Y ) = Tr(Z → R(Z,X)Y ) is:

S(X,Y ) = [a(n− 1) + b]g(X,Y ) + b(n− 2)η(X)η(Y ) (2.4)

which means that (M, g, ξ) is an eta-Einstein manifold; in particular, if a, b are

scalars, then (M, g, ξ) is an quasi-Einstein manifold, [GhoshDeBinh]. The scalar

curvature is:

r = (n− 1)(na+ 2b), (2.5)

and we derive:

a =
r − 2S(ξ, ξ)

(n− 1)(n− 2)
, b =

nS(ξ, ξ)− r

(n− 1)(n− 2)
. (2.6)

Then a+ b = S(ξ,ξ)
n−1 . Let us consider also the Ricci (1, 1) tensor field Q given by:

S(X,Y ) = g(QX,Y ). From (2.4) we get:

Q(X) = [a(n− 1) + b]X + b(n− 2)η(X)ξ (2.7)

which yields:

Q(ξ) = (a+ b)(n− 1)ξ (2.8)

and then ξ is an eigenvalue of Q.
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In the last part of this section we recall the notion of Ricci solitons according

to [Sharma5, p. 139]. On the manifold M , a Ricci soliton is a triple (g, V, λ) with

g a Riemannian metric, V a vector field and λ a real scalar such that:

LV g + 2S + 2λg = 0. (2.9)

The Ricci soliton is said to be shrinking, steady or expanding according as λ is

negative, zero or positive.

Also, we adopt the notion of η-Ricci soliton introduced in the paper

[ChoKimura] as a data (g, V, λ, µ):

LV g + 2S + 2λg + 2µη ⊗ η = 0. (2.10)

3. Parallel symmetric second order tensors and Ricci solitons

Fix α a symmetric tensor field of (0, 2)-type which we suppose to be parallel

with respect to the Levi–Civita connection ∇ i.e. ∇α = 0. Applying the Ricci

identity ∇2α(X,Y ;Z,W )−∇2α(X,Y ;W,Z) = 0 we obtain the relation (1.1) of

[Sharma1, p. 787]:

α(R(X,Y )Z,W ) + α(Z,R(X,Y )W ) = 0 (3.1)

which is fundamental in all papers treating this subject. Replacing Z = W = ξ

and using (2.2) it results, by the symmetry of α:

(a+ b)[η(Y )α(X, ξ)− η(X)α(Y, ξ)] = 0. (3.2)

Definition 3.1. Mn
a,b(ξ) is called regular if a+ b 6= 0.

In order to obtain a characterization of such manifolds we consider:

Definition 3.2 ([RachunekMikes]). ξ is called semi-torse forming vector field

for (M, g) if, for all vector fields X:

R(X, ξ)ξ = 0. (3.3)

From (2.2) we get: R(X, ξ)ξ = (a + b)(X − η(X)ξ) and therefore, if X ∈
ker η = ξ⊥, then R(X, ξ)ξ = (a+ b)X and we obtain:

Proposition 3.3. For Mn
a,b(ξ) the following are equivalent:
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i) is regular,

ii) ξ is not semi-torse forming,

iii) S(ξ, ξ) 6= 0 i.e. ξ is non-degenerate with respect to S,

iv) Q(ξ) 6= 0 i.e. ξ does not belong to the kernel of Q.

In particular, if ξ is parallel (∇ξ = 0) then M is not regular.

Remarks 3.4. i) From Theorems 2 and 3 of [Wang, p. 175] a regular Mn
a,b(ξ)

is neither recurrent nor locally symmetric.

ii) From Theorem 3 of [DragomirGrimaldi, p. 228] a regular Mn
a,b(ξ) with a

and b constants is not Ricci semi-symmetric.

In the following we restrict to the regular case. Returning to (3.2), with

X = ξ in:

η(Y )α(X, ξ) = η(X)α(Y, ξ) (3.4)

we derive:

α(Y, ξ) = η(Y )α(ξ, ξ) = α(ξ, ξ)g(Y, ξ). (3.5)

The parallelism of α implies also that α(ξ, ξ) is a constant:

X(α(ξ, ξ)) = 2α(∇Xξ, ξ) = 2α(ξ, ξ)g(∇Xξ, ξ) = 2α(ξ, ξ) · 0 = 0. (3.6)

Making Y = ξ in (3.1) and using (2.3) we get:

η(Z)α(X,W )− g(X,Z)α(ξ,W ) + η(W )α(X,Z)− g(X,W )α(ξ, Z) = 0

which yield, via (3.5) and W = ξ:

α(X,Z) = α(ξ, ξ)g(X,Z). (3.7)

In conclusion:

Theorem 3.5. A parallel second order symmetric covariant tensor in a re-

gular Mn
a,b(ξ) is a constant multiple of the metric tensor.

At the end of this section we include some applications of the above Theorem

to Ricci solitons:

Naturally, two remarkable situations appear regarding the vector field V :

V ∈ span ξ or V⊥ξ but the second class seems far too complex to analyse in

practice. For this reason it is appropriate to investigate only the case V = ξ. So,

we can apply the previous result for α := Lξg + 2S which yields λ = −S(ξ, ξ).

Theorem 3.6. Fix a regular Mn
a,b(ξ).

i) A Ricci soliton (g, ξ,−S(ξ, ξ) 6= 0) can not be steady but is shrinking if the

constant S(ξ, ξ) is positive or expanding if S(ξ, ξ) < 0.
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ii) An η-Ricci soliton (g, ξ, λ, µ) provided by the parallelism of α + 2µη ⊗ η is

given by:

λ+ µ = −S(ξ, ξ) 6= 0. (3.8)

iii) If n ≥ 4 and b 6= 0 then (g, ξ,−S(ξ, ξ)) is a Ricci soliton if and only if ξ is

geodesic i.e. ∇ξξ = 0 and:

ξ(a+ b)

4b
+ a(n− 1) + b =

a+ b

n− 1
. (3.9)

Proof. iii) We have three cases:

I) α+ 2λg = 0 on span ξ yields the above expression of λ.

II) α+ 2λg = 0 on ker η = ξ⊥ gives:

ξ(a+ b)

4b
+ λ+ a(n− 1) + b = 0 (3.10)

where we use the formula (3.5) of [GanchevMihova, p. 123].

III) α+ 2λg = 0 on (U, ξ) ∈ ker η ⊕ span ξ gives:

g(∇Uξ, ξ) + g(U,∇ξξ) = 0.

But the first term is zero since ξ is unitary while the second implies that ∇ξξ ∈
span ξ. But again, ξ being unitary we have that ∇ξξ is orthogonal to ξ. ¤

Example 3.7. A para-Sasakian manifold with constant scalar curvature and

vanishing D-concircular tensor is an Mn
a,b(ξ) with [DragomirGrimaldi, p. 186]:

a =
r + 2(n− 1)

(n− 1)(n− 2)
, b =

−r − n(n− 1)

(n− 1)(n− 2)

and then, a Ricci soliton (g, ξ) on it is expanding. This result can be considered

as a version in para-contact geometry of the Corollary of [Sharma5, p. 140] which

states that a Ricci soliton g of a compactK-contact manifold is Einstein, Sasakian

and shrinking.

From (3.9) we get r = −n and returning to formulae above it results:

a =
1

n− 1
, b =

−n

n− 1
.
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Example 3.8. Let Nn+1(c) be a space form with the metric g and M a quasi-

umbilical hypersurface in N , [ChenYano], [Wang, p. 175], i.e. there exist two

smooth functions α, β on M and a 1-form η of norm 1 such that the second

fundamental form is:

hij = αgij + βηiηj .

According to the cited papers M is an Mn
a,b(ξ) with:

a = c+ α2, b = αβ

and ξ the g-dual of η. This Mn
a,b(ξ) is regular if and only if c + α2 + αβ 6= 0.

Therefore, a Ricci soliton (g, ξ) on this Mn
a,b(ξ) is shrinking if c + α2 + αβ > 0

and expanding if c+ α2 + αβ < 0.

Inspired by Theorem 3 of [DragomirGrimaldi, p. 185] let N = RPn+1(c),

c > 0 and M an orientable quasi-umbilical hypersurface with b = αβ > 0. Then:

i) a Ricci soliton (g, ξ) on it is shrinking and M is a real homology sphere

(all Betti numbers vanish) if it is also compact,

ii) using the result of [Ivey], for n = 3 the manifold is of constant curvature

being compact; so the case n = 4 is the first important in any conditions or the

case n = 3 without compactness when we (possible) give up at the topology of

real homology sphere,

iii) using again a classic result, now due to Perelman [Perelman], the com-

pactness implies that the Ricci soliton is gradient i.e. η is exact.

Example 3.9. Let (M2n
0 , ω0, B) be a generalized Hopf manifold

[DragomirOrnea], and Mn an n-dimensional anti-invariant and totally geodesic

submanifold. We set ‖ω0‖ = 2c and suppose that B is unitary. Then, formula

(12.40) of [DragomirOrnea, p. 162] gives that if R⊥ = 0 then Mn is of quasi-

constant curvature with a = c2 and b = − 1
4 . Therefore, Mn is regular for

‖ω0‖ 6= 1 and a Ricci soliton is shrinking if ‖ω0‖ > 1 and expanding if ‖ω0‖ < 1.

Example 3.10. Suppose that ξ is a torse-forming vector field i.e. there exist

a smooth function f and a 1-form ω such that:

∇Xξ = fX + ω(X)ξ. (3.11)

From the fact that ξ has unitary length it results f + ω(ξ) = 0 which means that

ξ is exactly a geodesic vector field.
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Particular cases:

i) ([RachunekMikes]) If ω is exact then ξ is called concircular; let ω = −du

with u a smooth function on M . Then f = −ω(ξ) = ξ(u).

ii) If ω = −fη then we call ξ of Kenmotsu type since (3.11) becomes similar to

a expression well-known in Kenmotsu manifolds, [CalinCrasm].

Let us restrict to ii). From (3.11) a straightforward computation gives:

R(X,Y )ξ = X(f)[Y −η(Y )ξ]−Y (f)[X−η(X)ξ]+f2[η(X)Y −η(Y )X] (3.12)

and a comparison with (2.2) yields a + b = −f2 and f must be a constant,

different from zero from regularity of the manifold. So, a possible Ricci soliton

in a Kenmotsu type case must be expanding and with S(ξ, ξ) and the scalar

curvature constants, a result similar to Propositions 3 and 4 of [CalinCrasm].
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