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B-transform and its quasiasymptotics-applications to
the convolution equation (xuxx + 2ux + mu) ∗ g = h, m ≤ 0

By STEVAN PILIPOVIĆ (Novi Sad) and MIRJANA STOJANOVIĆ (Novi Sad)

Abstract. By using the B-transform we examine the equation (xuxx + 2ux +
mu) ∗ g = h, g, h ∈ S′+, m ≤ 0. We investigate the quasiasymptotic behaviour of the
solution. We find the Laguerre series solution.

1. Introduction

The B-transform, or Bessel transform on the spaces of tempered
distribution supported by [0,∞) was introduced by Zavialov [10]; see
also [9]. In [6] we have given different approaches to the B-tansform on
the spaces of tempered distributions and ultradistributions supported by
[0,∞) by using Laguerre expansions of their elements.

This paper is concerned with the convolution equation

(xu′′ + 2u′ + mu) ∗ g = h, m ≤ 0,

the quasiasymptotic behaviour of the solution and the Laguerre series so-
lution.

In Section 2 we give the definition and the Laguerre representation
of the B-transform on the spaces S′+. In Section 3 we give relations be-
tween the quasiasymptotics at 0+ (resp.∞) and the B-transform as well as
the applications of these notions to the qualitative analysis of an ordinary
differential equation in S′+, and consequently to the quoted convolution
equation. In Section 4 we give an explicit method for solving this convo-
lution equations based on the Laguerre expansions.
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2. Generalized B-transform

The basic test function space for the well-known space of tempered
distributions supported by [0,∞), S′+, is

S+ = {φ ∈ C∞[0,∞), supt∈[0,∞) tk|φ(n)(t)| < ∞, k, n ∈ N0}.
We give below an equivalent definition of this space ([2], [4], [7], [11].)
Let ln = e−x/2Ln(x), x > 0, n ∈ N0 be the Laguerre orthonormal

system in L2(R+), where

Ln =
n∑

m=0

(
n

n−m

)
(−x)m

m!
, x > 0, n ∈ N0,

are the Laguerre polynomials, and ln are the eigenfunctions of the operator
R = ex/2Dxe−xDex/2, for which R(ln) = −nln, n ∈ N0.

S+ is the space of smooth functions for which all the norms

‖φ‖k =
(∫ ∞

0

|Rkφ(x)|2dx

)1/2

, k ∈ N0

are finite and the following holds:

(Rkφ, ln) = (φ,Rkln), k, n ∈ N0, (Rk+1 = R(Rk)).

In [6] we defined the B-transform on S′+ dualizing the results for the
b-transform on S+:

〈B[f ], φ〉 = 〈f, b[φ]〉, φ ∈ S+,

where, if φ =
∑∞

n=0 anln ∈ S+, then

b[φ](t) = φ(0) + 1/2〈φ(τ),
√

t/τJ ′0(
√

tτ)〉 =

= −2
∞∑

n=0

(−1)n(2
∞∑

i=n+1

ai + an)ln(t), t > 0 ([10], [6]).

So we obtain ([6])

B[f ] =
∞∑

n=0

[2
n−1∑
m=0

(−1)mbm + (−1)nbn]ln,

being f =
∑∞

n=0 bnln.
Recall ([8], [6]) that

B[fα] = 4αf−α, α ∈ R,
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where

fα =

{
H(t)tα−1/Γ(α) if α > 0,

DNfα+N (t) if α ≤ 0, α + N > 0, N ∈ N,

and D is the distributional derivative.

3. The quasiasymptotics and the B-transform

Let us start with regularly varying functions at ∞ and 0+ which were
defined by J. Karamata in the early thirties as natural generalizations
of power functions. The best reference concerning such functions in [1].

A function ρ : (a,∞) → R, (resp. ρ : (0, a) → R), a ∈ R is regularly
varying at ∞, (resp. at 0+) if it is positive, measurable and there exists a
real number α such that for each x > 0,

lim
k→∞

ρ(kx)
ρ(k)

= xα (resp. lim
ε→0

ρ(εx)
ρ(ε)

= xα).

Specially, when α = 0, then ρ is slowly varying at ∞ (resp. at 0+),
and for such a function the letter “L” will be used. Recall some properties
of regularly varying functions. A positive and measurable function ρ :
(a,∞) → R, (resp. ρ : (0, a) → R) is regularly varying at ∞, (resp. at 0+)
if and only if it can be written as

ρ(x) = xαL(x), x > a (resp. x ∈ (0, a)),

for some real number α and some slowly varying function L at ∞ (resp.
at 0+). If L(k), k ≥ k0 is slowly varying at ∞ then L(1/k), k ∈ (0, 1/k0)
is slowly varying at 0+. The reverse assertion also holds.

The notion of quasiasymptotic behaviour at∞ and 0+ of distributions
from S′+ has been introduced by Vladimirov, Zavialov and Drožžinov
[9]. Recall the definitions and the properties of this notion.

Let f ∈ S′+ and c(k) = kσL(k), k > 0, (resp. c(ε) = εσL(ε), ε ∈
(0, ε0)), where L(k), k ≥ k0, (resp. L(ε), ε ∈ (0, ε0)) is slowly varying at
∞ (resp. at 0+). Then f has the quasiasymptotic behaviour at ∞ (resp.
at 0+) of order σ with respect to c(k) (resp. c(ε)) if

lim
k→∞

〈 f(kx)
kσL(k)

, φ(x)〉 = 〈Cfσ+1, φ〉, (φ ∈ S+), C 6= 0

(resp.

lim
ε→∞

〈 f(εx)
εσL(ε)

, φ(x)〉 = 〈Cfσ+1, φ〉, (φ ∈ S+), C 6= 0).
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We shall use the identity

(1) B[f(εx)](t) = k2B[f(x)](kt), t > 0, ε = 1/k, k > 0.

Proposition 1. Let f ∈ S′+, and let L(ε), ε ∈ (0, ε0) be slowly
warying at 0+. Then the following conditions are equivalent:

1. f has quasiasymptotics at 0+ (resp. at ∞) of order σ with respect to
εσL(ε) (resp. kσL(1/k)).

2. Bf has quasiasymptotics at ∞ (resp. at 0+) of order −σ − 2 with
respect to k−σ−2L(1/k) (resp. ε−σ−2L(ε)).
Proof. Since B : S′+ → S′+ is an isomorphism ([6]) we have to prove

only the part of this assertion which corresponds to 0+.
1.=⇒2. Let φ ∈ S+. Then, with ε = 1/k, k →∞,

〈 (Bf)(kt)
k−σ−2L(1/k)

, φ(t)〉=〈 B[f(x/k)](t)
k−σ−2+2L(1/k)

, φ(t)〉=〈 f(x/k)
k−σL(1/k)

, b[φ](x)〉

= 〈 f(εx)
εσL(ε)

, b[φ](x)〉 → 〈Cfσ+1(x), b[φ](x)〉 = 〈CB[fσ+1], φ〉

= 〈C̃f−σ−1, φ〉, where C̃ = C4σ+1.

2.=⇒1. For given φ ∈ S+ let φ=b[ψ], ψ ∈ S+. From b[φ] = b[b[ψ]] = ψ
([6]) and (1) we have

〈 f(x/k)
kσ+2L(k)

, φ(t)〉=〈 (Bf)(kt)
kσL(k)

, b[b[ψ]](x)〉→〈Cf−σ−2+1, ψ〉, k →∞,

and this implies the assertion.
Now we shall use the B-transform and quasiasymptotics for the qual-

itative analysis of the following ordinary differential equation in S′+:

(2) xuxx + 2ux + mu = g, m ≤ 0.

Since
(3) B[xuxx + 2ux](t) = (−t/4) B[u](t), t > 0, ([6]),
it is equivalent to the equation

(−t/4 + m) ũ = g̃, where g̃ = B[g] ∈ S′+, and ũ = B[u].

Let us remark that the equation
(4) xp = q, q ∈ S′+
has solutions in S′+ uniquely determined up to Cδ, C ∈ C, and that the
equation

(x + m)p = q, m > 0, q ∈ S′+,

has the unique solution in S′+.

We need the following
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Proposition 2. (i) Let m = 0 in (2) and g have quasiasymptotics at
0+ with respect to εσL(ε), where σ 6= −2,−1, 0, 1, . . . then:

1. if σ < −2, then the solution u has quasiasymptotics at 0+ with respect
to εσ+1L(ε);

2. if σ > −2 then there exists numbers bj , j = 0, 1, . . . , p such that
u +

∑p
j=0 bjfj has quasiasymptotics with respect to εσ+1L(ε).

(ii) Let m < 0 in (2) and g have quasiasymptotics at 0+ with respect
to εσL(ε), σ ∈ R. Then the solution u has quasiasymptotics at 0+ with
respect to εσ+1L(ε).

Proof. (i) 1. Since g̃ has quasiasymptotics at ∞ with respect to
k−σ−2L(1/k) and σ < −2, by [9] (p. 144, the first part of Lemma 2), it
follows that ũ has quasiasymptotics at ∞ with respect to k−σ−3L(1/k),
because −σ − 3 > −1. Proposition 1 implies that u has quasiasymptotics
at 0+ with respect to εσ+1L(ε).

2. If σ > −2 then there exist p ∈ N and numbers aj , j = 0, 1, . . . , p,
such that ũ +

∑p
j=0 ajδ

(j) has quasiasymptotics at ∞ with respect to
k−σ−3L(1/k). This follows from [9] (p. 144, the second part of Lemma 2).

Thus u +
∑p

j=0 bjx
j−1
+ /Γ(j), where bj = 4−jaj , has quasiasymptotics

at 0+ with respect to εσ+1L(ε) because B[δ(j)] = 4−jfj , j ∈ N.
(ii) Since for every φ ∈ S+

1
k−σ−3L(1/k)

〈
(

g̃(t)
−t/4 + m

)
(kx), φ(x)〉

= 〈 g̃(kx)
k−σ−2L(1/k)

,
1

−x/4 + m/k
φ(x)〉

and
1

−x/4 + m/k
φ(x) → φ(x) in S+ as k →∞,

the proof of the assertion easily follows from Proposition 1.

The main part of the paper is a qualitative analysis of the equation

(5) ((xu)′′ + mu) ∗ h = g, m ≤ 0,

where g and h are from S′+. For example, the equation

(6)
m∑

k=0

ak((xu)′′ + mu)(k) = g (with h =
m∑

k=0

akδ(k))

is of this form.
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Proposition 3. Assume that g, h ∈ S′+ and the Laplace transform of
h, (Lh) (x+iy), x ∈ R, y > 0, has a bounded argument. Let h have quasi-
asymptotics at 0+ with respect to εσ1L1(ε) and g have quasiasymptotics
at 0+ with respect to εσ2L2(ε).

1. Let m = 0 in (5). If σ1 − σ2 > 1 then (5) has the solution u with
quasiasymptotics at 0+ with respect to εσ2−σ1L2(ε)/L1(ε).
If σ1 − σ2 < 1 and σ1 − σ2 6= 1, 0,−1,−2, . . . then there are numbers
bj ∈ C, j = 0, 1, . . . , p, such that (5) has the solution u such that
u +

∑p
j=0 bjfj has quasiassymptotics at 0+ with respect to

εσ2−σ1L2(ε)/L1(ε).
2. Let m < 0 in (5). Then (5) has the solution u with quasiasymptotics

at 0+ with respect to εσ2−σ1L2(ε)/L1(ε).

Proof. First, we will prove if the Laplace transform of h has a
bounded argument, then the same holds for B[h]. Namely by

b[eizτ ](t) = e−
ti
4z , t > 0, Imz > 0 ([9],p.41)

we have

L(B[f ])(z) = 〈(B[f ])(τ), eiτz〉 = 〈f(t), b[eizτ ]〉 = Lf

(
− 1

4z

)
, Imz > 0,

which implies the assertion.
By using (3), and B[f ∗ g] = B[f ] ∗B[g], (see [6]), (5) becomes

(7) (−t/4 + m)ũ ∗ h̃ = g̃.

We shall prove only part 1 since part 2 simply follows. Let m = 0. We
shall use a theorem from [9], page 198. In the one-dimensional case this
theorem reads as follows:

“Let K ∈ S′+ has quasiasymptotics at ∞ with respect to kαL1(k)
with the limit C1fα+1, C1 6= 0, and f ∈ S′+ has quasiasymptotics at ∞
with respect to kβL2(k) with the limit C2fβ+1, C2 6= 0. Let the Laplace
transform of K, LK(x + iy), has a bounded argument in R + iR+. Then
the convolution equation K ∗ u = f has the solution u ∈ S′+ which has
quasiasymptotics at ∞ with respect to k(β−α−1L2(k)/L1(k) with the limit
(C2/C1)fβ−α.”

Since the Laplace transform of h̃ has a bounded argument, it follows
that there exists s̃ ∈ S′+ such that s̃ ∗ h̃ = g̃, and

s̃(kx)
kσ1−σ2−1L2(1/k)/L1(1/k)

→ const · fβ−α, k →∞ in S′+,

because g̃ has quasiasymptotics with respect to kσ2−2L2(1/k) and h̃ has
quasiasymptotics with respect to kσ1−2L1(1/k).
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Let u be the solution of
xu′′ + 2u′ = s ⇐⇒ (−t/4)ũ = s̃.

As in the proof of Proposition 2. we have the following situations:
1. Since s̃ has quasiasymptotics at ∞ with respect to k−(σ2−σ1−1)−2

L2(1/k)/L1(1/k), if σ2−σ1 < −1 it follows that ũ has quasiasymptotics at
∞ with respect to k−(σ2−σ1−1)−3L2(1/k)/L1(1/k) and by Proposition 1,
h has the quasiasymptotics at 0+ with respect to εσ2−σ1L2(ε)/L1(ε).

2. If σ2 − σ1 > −1 and σ1 − σ2 6= 1, 0 − 1,−2 . . . then as in
the proof of Proposition 2 we conclude that there are numbers aj , j =
0, . . . , p, such that ũ +

∑p
j=0 ajδ

j has quasiasymptotics at ∞ with respect
to k(σ2−σ1−1)−3L2(1/k)/L1(1/k) which implies that

u +
p∑

j=0

bjx
j−1
+ /Γ(j), (bj = 4jaj , j = 0, . . . , p),

has quasiasymptotics at 0+ with respect to εσ2−σ1L2(ε)/L1(ε).

4. Laguerre series solution of convolution equations

We can find the Laguerre series solution of (5) by using (7) and the
approximation formulas for the convolution given in [7]. Recall, if f =∑∞

n=0 bnln ∈ S′+, g =
∑∞

n=0 cnln ∈ S′+ then

(8) f ∗ g =
∞∑

n=0

(
∑

p+q=n

bpcp −
∑

p+q=n−1

bpcq)ln,

where as usual
∑

p+q=−1 = 0, and thus ([6])

B[f ∗ g] =
∞∑

n=0

[
∑

p+q=n

(2
n−1∑

k=p

(−1)k + (−1)n)bpcq

−
∑

p+q=n−1

(2
n−1∑

k=p

(−1)k + (−1)n)bpcq)]ln.

Let in (7)

(−t/4 + m)ũ =
∞∑

n=0

bnln, h̃ =
∞∑

n=0

cnln, g̃ =
∞∑

n=0

dnln.

Then (8) gives the system of equations

b0c0 = d0, b1c0 +b0c1−b0c0 = d1, b2c0 +b1c1 +b0c2−b1c0−b0c1 = d2, . . .
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which is discussed in [7]. With ũ =
∑∞

n=0 xnln, and since

−tln = (n + 1)ln+1 − (2n + 1)ln + nln−1,

(see [3] p. 188, formula (8)), it follows
∞∑

n=0

xn[−1/4t + m]ln =
∞∑

n=0

bnln

or ∞∑
n=0

[nxn−1 − (2n + 1− 4m)xn + (n + 1)xn+1]ln =
∞∑

n=0

4bnln.

This gives the system of equations

(−1 + 4m)x0 + x1 = 4b0

x0 + (−3 + 4m)x1 + 2x2 = 4b1

. . .

ixi−1 + (−2i− 1 + 4m)xi + (i + 1)xi+1 = 4bi, i ∈ N.(9)

whose solution gives the coefficients of the Laguerre series of the inverse
of the solution ũ(x).

Summing (9) till i = n we obtain the recurrence relation

x1 = 4b0 − (4m− 1)x0,

(n + 1)xn+1 − (n + 1)xn + 4m

n∑

i=0

xi = 4
n∑

i=0

bi n ∈ N, m ≤ 0,

which gives the solution ũ.
If m = 0 then one can easily obtain, in view of x1 = x0 + 4b0,

xn+1 = x0 +
n∑

i=0

bi

n∑

j=i

4/(j + 1), n ∈ N0,

and the inverse for ũ is

u(x) =
∞∑

n=0

(2
n−1∑

i=0

(−1)ixi + (−1)nxn)ln(x), (see[6]).

Finally, since δ =
∑∞

n=0 ln the solution is

u(x) = x0δ +
∞∑

n=0

(2
n−1∑

j=0

(−1)j

j−1∑

k=0

bi

j−1∑

k=i

4/(k + 1)

+ (−1)n
n−1∑

i=0

bi

n−1∑

k=i

4/(k + 1)])ln.
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