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Two generalisations of the symmetric inverse semigroups

By GANNA KUDRYAVTSEVA (Nova Gorica) and VICTOR MALTCEV (St Andrews)

Abstract. We study two generalisations of the full inverse symmetric semigroup
Zx and its dual semigroup Zx — inverse semigroups PZ% and PZ* x. Both of them have
the same carrier and contain Zx. Binary operations on PZ% and PZ* x are reminiscent
of the multiplication in Zx. We use a convenient geometric way to realise elements from
these two semigroups. This enables us to study efficiently their inner properties and to
compare them with the corresponding properties of Zx and Z%.

1. Introduction

One of the most natural examples of proper inverse semigroups (i.e., except
groups) is the symmetric inverse semigroup Zx. Beside pure combinatorial in-
terest in this semigroup, it plays an important role for the class of all inverse
semigroups similar to that played by the symmetric group Sx for the class of all
groups. For some facts about semigroup and combinatorial properties of Zx we
refer the reader to [6].

Seeking for further natural examples of inverse semigroups, FITZGERALD
and LEECH [5], using categorical methods, introduced the dual symmetric inverse
semigroup T% (see also [4]). Using more general categorical approach, Z% also
appeared in [11]. This semigroup also has a useful geometric realisation, which
was exploited in [3], [13] to study some inner properties of Z%.

In a recent work [10] there was found a new, representation theoretic, link
between Zx and Z%.
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In addition, both 7% and Zx belong to the class of the so-called partition
semigroups [15], [20] and are contained in the “full partition semigroup”. The
latter semigroup was studied mainly in the context of representation theory and
cellular algebras [7], [9], [14], [20]. Some of its pure semigroup aspects were studied
in [7], [15].

In the present paper we aim at constructing two inverse semigroups PZy and
PTI*x, which are strongly related to Zx and I%, though have more complicated
structure. We give transparent geometric definitions for these two semigroups
and then study their inner properties, focusing on combinatorial aspects and
their resemblance to Zx and Z%.

The semigroups PZ% and PT* x are natural also from the representation the-
oretic point of view: PZ* x is contained in a bigger semigroup, the “deformation”
of the full partition semigroup, whose semigroup algebra naturally arises in the
representation theory, see, e.g., [7]. Some other representation theoretic aspects,

where PZ% and PZ* x appeared naturally, can be found in [10].

Both semigroups PZ% and PZ* x admit realisations as semigroups of difunc-
tional binary relations (see Section 2). These special relations have been studied
in a series of works [1], [2], [4], [17], [18]. Using this realisation PZ* x has already
appeared in [19].

We are grateful to the referee for the comments on the first version of the
paper.

2. Definitions

Let X, X’ be two disjoint sets of the same cardinality, and ' be a bijection
from X to X’. We denote the inverse bijection from X’ to X by the same symbol ’,
so that (z')" = z for every x € X.

2.1. T%. The carrier of 7% is the set of all partitions of X UX' into subsets which
have non-empty intersections with both X and X’. We realise these partitions
as diagrams with two strands of vertices, top vertices indexed by X and bottom
vertices indexed by X’ so that for each z € X the vertices x and z’ are in the same
vertical column of the diagram. For a € Z% two vertices of the corresponding
diagram belong to the same block or “connected component” if and only if they
belong to the same set of the partition «. Notice that there may be many different
ways of presenting an element o € I% as a diagram, we treat two diagrams
corresponding to the same « as equal. In the case when X is n-set we assume
that X = N = {1,2,...,n} and in the notation for our semigroups replace lower
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Figure 1. Two diagrams for {1,2,1'} U {3,4,2,3',4'} U {5,6'} U
{6,7,5,8'YU{8,7'} € T3.

index X by n. An example of two diagrams corresponding to the same element
of 7§ is given in Figure 1.

The elements of Z% can be interpreted as equivalence relations on X UX’ such
that each equivalence class has a non empty intersection with both X and X'.
Namely, the equivalence relation ~, corresponding to o € Z% is defined as follows.
For z,y € X UX’ we have x ~,, y if and only if 2 and y belong to the same block
of a.

Less immediate, the elements of Z% are in the bijective correspondence with
the full difunctional binary relations on X. A binary relation = on a set Y is called
difunctional if it can be presented as a union Ujes(A; x Bj), where A;, B; are
subsets of Y, the sets A; are pairwise disjoint, and the sets B; are pairwise disjoint.
The difunctional relation U;ecy(A; x By) is called full if Y = UjejA; = UjeB;.
To a € I% we assign the full difunctional relation =, on X as follows. For
z,y € X we set x =, y if and only if z and 3’ belong to the same block of the
partition « which is equivalent to x ~, y’. Using the diagram language, we have
that z =, y if and only if 2 and 3’ are in the same connected component of the
diagram representing a.

The multiplication on Z% can be formally defined as follows. We set =,3 to
be the smallest full difunctional binary relation which contains the product of the
binary relations =, and =g ([4], [19]).

Using the interpretation with equivalence relations, the multiplication on Z%
can be defined as follows. Let o, § € 7%, and ~, and ~g be the correspondent
equivalence relations on X U X’. Then the relation ~,g is defined by:

e For i,j € X we have ¢ ~,g j if and only if i ~, j or there exists a sequence
S1y-+-58m, M even, such that i ~, s}, s1 ~g s2, 85 ~q sh, and so on,

, .
Sm—1 ~8 Smy Sy, ~Ya J-

e For i,j € X we have ¢/ ~qp j' if and only if ¢/ ~g j' or there exists a
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Figure 2. Elements of Zg Figure 3. Elements of PZg

and their multiplication. and their multiplication.

sequence si, ..., Sm, m even, such that i’ ~g s1, 8§ ~q s5, s2 ~g s3, and so
! / -/
on, S, ~a Sy Sm o~ J

e Fori,j € X we have ¢ ~,5 j' if and only if there exists a sequence s1,. .., Sm,

/
m—1

m odd, such that i ~, s}, s1 ~g s2, sh ~, s5, and so on, s ~a S
Sm ™~ j/.
Using the interpretation with diagrams, to get the diagram of the product
af we identify the bottom vertices of « with the corresponding top vertices of 3,
which uniquely defines the connection of the remaining vertices (which are the
top vertices of a and the bottom vertices of 5). On Figure 2.1 we give an example

of multiplication of the elements of Z3.

2.2. PI%. Let PZ% be the set of all partitions of the set X U X’ into sub-
sets which are either one-element or have a non-empty intersection with both X
and X'. As a set, T% is a subset of PZ%. Similarly as we did above for the
elements of Z%, we represent the elements of PZ% as diagrams. The connected
components of such diagrams now can be also one-point. There is a bijective
correspondence between the elements of PZ% and difunctional relations on X.
We define the difunctional relation =, similarly as we did in the case of % (but
now it need not be full). For 2,y € X we set x =, y if and only if 2 and y’ belong
to the same block of a.

We can define an associative multiplication on PZ% as follows. Let z ¢ X.
For every a € PTy set @ € T gy to be the element such that its blocks are the
blocks of a whose cardinality is at least two, plus one more block consisting of z,
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2’ and all elements of one-element blocks of . In terms of the corresponding
difunctional binary relations, we construct the full difunctional relation =, on
X U{z} given a (not necessarily full) difunctional relation =, as follows. For
y,z € X we set y=,z if and only if y and 2’ belong to the same block of the
partition a or both y and 2’ constitute one-element blocks of a. We also set
=g, =45y for all y such that {y'} is a one-element block of «, and y=5z for
all y such that {y} is a one-element block of . Denote by ¢ the injection, which
maps o € PIZy to@ € Ix ey~ Observe that v € T ¢,
of ¢ if and only if x =, x. This enables us to define an associative multiplication

} belongs to the image

on PT% as follows:
axf=¢ (@B).

The construction above is based on the idea of the well-known embedding of
the partial transformation semigroup on the set X into the full transformation
semigroup on the set X U {z}.

In terms of the diagrams we have the following interpretation of the opera-
tion *. Connect the bottom vertices of o with the top vertices of 8. Then two
elements a,b from the union of the top vertices of o and the bottom ones of 3
belong to the same block of a5 if and only if @ = b, or a and b are connected and
neither of them is connected to a vertix which constitutes a one-element block.
On Figure 2.1 we give an example of multiplication of the elements from PZ3.

2.3. PZ”x. There is another way to define a multiplication on the set PL%. For
a binary relation o on X and = € X we set za to be the set of all y € X such
that (z,y) € a, and az to be the set of all y € X such that (y,z) € a. Given
a, § from the set PT%, there is a unique element v = a0 8 € PZ% such that for
Y,z € X, we have y =, z if and only if y(=,) = (=p)z and y(=,) # @. It is casy
to see that o gives rise to a semigroup PZ* x on the set PL% [19]. An example
of the multiplication in PZ* x is given in Figure 2.3.

Observe, that while being closed under *, 7% is not closed under o, which
is illustrated on Figure 2.3. In addition, the o-product of the two elements of
PL; from Figure 2.1 is the element, all the blocks of which are one-element. This
element is a zero with respect to both * and o. In the sequel we will denote this
element just by 0.

In what follows we will use the following notation. Let o € PZ%. Call the
blocks of a whose cardinality is at least two generalized lines, and the blocks of
the cardinality two points. Let o € PZ% be the element whose generalised lines
are {(A4; U B))}ier, A, B; C X. Since «a is uniquely defined by its generalised
lines, we will write o = {(A4; U B}) }icr. When we write {(A; U B})}icr we always
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Figure 4. Elements of PZ*g Figure 5. T3 is not closed
and their multiplication. under the operation o.

presume that this is the notation for some element of our semigroups, that is that
the sets A; are non empty and pairwise disjoint, and the same for the sets B;.
We also set rank(a) = |I|, codom(a) = X \ U,¢; Ai, coran(a) = X \ U, B,
dom(c) to be the partition [ J;.; A; of the set X'\ codom(a), ran(a) — the partition
Uies B of the set X'\ coran(a).

3. PI% and PZI"x are inverse semigroups

It was proved in [5], [13] that T% is an inverse semigroup, and in [19] that

PL* x is an inverse semigroup. In this section we are going to prove that PZ% is

an inverse semigroup as well. We also provide a proof that PZ* x is an inverse
semigroup, for the sake of completeness. Our proofs are based on our geometric
approach.

Lemma 1. Idempotents of PT% or of PI*x are elements of the form
{(Ai U A Yier-

PRrROOF. Traditionally, for a semigroup S by E(S) we denote the set of
idempotents of S. It follows immediately from the definitions that the sets
{(A; U A }ier are idempotents for both PZ% and PZ* x.

Let {(A4; U B})}icr be an idempotent in PZ%. Suppose that for some i,
A; # B;. Assume that « € A; \ B; is such that {2’} is a one-element block of «.
Then in the element a? we have one-element blocks {y'} for every y € B;, and
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therefore, a? # «. In the case when there is * € B; \ A; such that {z} is a
one-element block of @ we reason similarly.

Now we can suppose there is no « € A; \ B; such that {2’} is a one-element
block of a and no x € B; \ A; such that {z} is a one-element block of a. If
B\ A; # @, we fix y € B; \ A;. Then y belongs to some block A; U B} of a with
Bj # B;. It follows that o has some block AU B’ where A O A; and B D Bj.
Therefore, a? # a. The case when A; \ B; # @ is treated similarly.

Suppose e = {(A; U B})};es is an idempotent in PZ"x. Suppose that for

some i, A; # B;. Let x € A;. Then in the element o2, {x} is not a one element
block if and only if B; = A; for some j. Then a? contains the block A; U B;, and
hence o? # a. O

Proposition 2. PI% and PI"x are inverse semigroups.

PROOF. It is sufficient to prove that the semigroups are regular and idem-
potents commute (see [16, Theorem I1.1.2, p. 78]). By Lemma 1 the idempotents
in PZ% and PZ" x are of the form {(4; U A;)}iel. It follows from this and the
definitions of the multiplication that both E(PZ%) and E(PZ" x) are semilattices.

It remains to show that PZ% and PZ* x are regular. Let o = {(A;UB;) Vier €
PIx. Seta™' = {(B;UA})}, ;- Then wehave axa™'+a = a, o™ xaxa™ = o™t

1 1

and aoca”ca=a, a” oaoat=qal. ([l

Recall that we call the cardinality of the set of all generalised lines in s € PZ
the rank of s and denote it by rank(s). The following proposition describing the
structure of the Green’s relations on our semigroups is a routine to check.

Proposition 3. Let a,b be from PZ or from PT" x.

1) aRb if and only if dom(a) = dom(b).

3

(1)

(2) aLb if and only if ran(a) = ran(b).

(3) aDb if and only if aJb if and only if rank(a) = rank(b).
(4)

4) All the ideals of PT% (respectively PT" x) have the form
Je = {a € PT% : rank(a) < &}

for certain cardinal £ <|X |', where | X |' is the successor cardinal of | X |.
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4. Fundamentality

Recall that an inverse semigroup S is said to be fundamental if the mazimal
idempotent-separating congruence

p={(a,b)eSxS:aea=b""eb foralleec E(S)}

is trivial. It is well-known that p is the largest congruence contained in H. For

z € X set a, = {({t}U {t/})}teX\{x}'

Proposition 4. Let X be non-singleton. Then PZ% and PI*x are funda-
mental.

PRrROOF. We will prove the statement for PZ%; for PZ* x the proof is similar.
Suppose (a,b) € p for some a,b € PT%. Since aHb, there are two collections of
pairwise disjoint sets A;, i € I, B;, i € I, such that

a= {(Al UBl{)}iGI’ b= {(Al UB;(i))}ieI

for some bijection w: I — I. Let ¢ € I and u; € A;. Then (Oéu,i *Q, Qy, * b) e
and so (au,; * a)H (0w, *b). On the other hand coran(a,, * a) = coran(a) U B} and
coran(ay, * b) = coran(a) U B ;). Therefore B; = By(;). Thus 7 is the identity
mapping. It follows that a = b. U

Remark 5. Let X be non-singleton. % is not fundamental.

PrROOF. For Y C X define the idempotent ny = {YUY’, (X\Y)U(X\Y)'}.
Let x € X, a =1, and

b= {{z}U(X\{z})', (X \{z}) U{a'} }Ha.

Observe that either a 'ea = nx or ™!

ea = a, for every e € E(Z%). In particular,
a~tea = a if and only if e contains the block {z,z'}. Analogously, we have that
either b=leb = nx or b~leb = a, for e € E(Z%). In particular, b~leb = a if and
only if e contains the block {z,z'}. Therefore (a,b) € p which implies that p is

not trivial. O

Note that Zx is fundamental, [8, p. 215, ex. 22].
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5. A generating set for PI

In the following sections we will need to use some generating sets for PZ;.
Let x,y,z € X be pairwise distinct. Set

Y,y = {{l‘, y} U {,T/}, {{t} U {t/}}teX\{m,y}}§
Coyr = {{my UL {2 ULy 2 {E U{t P hex\ (ot
7oy = Ho, v} Uyl H{E U it e xy gy -

Notice that &, .. € Z%. The elements vy, , and &, , . satisfy the following equa-
lities:

-1 _ -1 __ -1 — .
7$,y7z,y - 53%?/,2’ ’Yﬂ%y’y:c,y = Tz,y, Vx,yry-”f»y = Oy (1)

9 Vew9 = Vo(x).g(y), for any g € Sx. (2)

Lemma 6. Let u be an element of PZ, of rank n—1. There are m,7 € S,
such that Tut € {7'1,2,041,51,2,3,%,2’71_,%}

PROOF. It is enough to observe that every element of rank n — 1 coinci-
des with some element of the form 7, ,m, @,m, &ry 2T, Vo,yT, O 7,7, where
z,y,z € X and 7 € Sx. (]

It is known from [13, Proposition 12] that for n > 3, I = (S,, &1,2,3).
Lemma 7. Let n > 3. Then PI;, = (S, 71,2, V1.2)-

PRrROOF. Let a € PZ;,. Consider four possible cases.

Case 1. Suppose a € Z). Then from [13, Proposition 12], (1) and (2) it
follows that a € (Sn,71,2,7£%>.

Case 2. Suppose a has a block {z}, z € N, and a block {y'}, y € N. Let
A = codom(a) and B’ = coran(a). Construct an element ¢ as follows: it contains
all the generalised lines of a and, in addition, the generalised line A U B’. Then
qeIL; C (Sn771727'yi21>. This, a = azqa, and (1) imply a € <Sn,7172,'yf’21>.

Case 3. Suppose a has a block {z'}, z € N, and has no blocks {y}, y € N.
Then there exists a generalised line AUB’ in a such that | A|> 2. Fix i,j € A. Set
M’ = coran(a) # @. Construct the element p as follows: it contains the blocks
{7}UM’, (A\ {j}) U B’ and all the other blocks of p are all the generalised lines
of a except AUB’. By the construction, p € Z*. Moreover, v; ;p = a. From what
we have proved in the first case now follows p € (Sn,71,2,71, %), which implies
a € (Sn, 7.2, V1.2)-

Case 4. a has a block {z}, x € N, and has no blocks {y'}, y € A/. This case
is dual to Case 3. U
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Lemma 8. 7,5 & (Sp, 71,2, 71,2, 61,2,3, 1)

PROOF. Assume that there are elements aq,...,ar in Sp{v12,71.2, &1.2.3,
a1}S,, such that fyf% = ay - -+ - ag. Since coran(’yi%) = @, it follows that
coran(ax) = @. Thus ar € Sp{m.2,§1,23}S, C Z;. This, in turn, gives
coran(ag—1) = &, whereas ag—1 € Z}. Then a; € Z; for all ¢ < k by induc-
tion. Therefore v, =ayc ar € I). This is a contradiction, which completes
the proof. O

Theorem 9. Let n > 3.

1) PZ; as an inverse semigroup is generated by S, and v 2.

2) PZ; is generated (as an inverse semigroup) by S,, and some u € PZL; \ S, if
and only if u € Sp{71,2, vié}Sn.

PROOF. The first claim follows from Lemma 7. To prove the second one
it suffices to show that PZ; = (S,,u,u"!) implies u € Sn{’ym,’yl_é}Sn. Let
PI: = (Sp,u,ut). Then u is of rank n — 1. From Lemma 6 we have u €
Sn{TLQ,Oq,§1,273,’)/172,’)/1—7%}8”. Observe that u ¢ S,{a1}S, since otherwise we
would have (S,,,u,u') C Z,, and u ¢ S, {1 2, &1,2,3}S), since otherwise we would
have (S,,,u,u"1) C Z*. The statement follows. O

The situation with the generating sets for PZ*,, is much more complicated:
one can show that PZ*, can not be generated by adding to S,, some natural and
‘compact’ set of elements.

6. Maximal and maximal inverse subsemigroups

Theorem 10. Maximal subsemigroups of PZI; are exhausted by the follo-
wing list:
1) S Udp—1US{m1,2,00,71,2,81,2,3}Sn;
2) Sp U1 US{n2, (11,71_7%751_’273}871,'
3) GU J,, where G runs through the set of all maximal subgroups of S,,.
Maximal inverse subsemigroups of PZ;, are exhausted by the following list:
1) S Udp_1USu{m2,00,81,23}Sn = (L), 1),
2) G U J,, where G runs through the set of all maximal subgroups of S,,.
ProOOF. That the semigroups listed in items 1) and 2) are maximal follows

from Lemma 6, Lemma 7 and Lemma 8. That the semigroups given in item 3)
are maximal is obvious.
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Let T be a maximal subsemigroup of PZ;. Then J,_ 1 C T and G C T,
where G is either S,, or a maximal subgroup of S,,. If G # S, then T' C S, where
S is one of the semigroups listed in item 3). Since both 7" and S are maximal,
it follows that 7' = S. Let G = S,,. Observe that we can not have v, o € T and
'yf% € T, since otherwise we would have T' = PZ;, by Lemma 7. Suppose y1 2 € T
and '71_5 ¢ T. Then T C S, where S = J,,_1 US,{m1,2,01,71,2,&1,2,3}Sn. Since
both T and S are maximal, it follows that T = S. The case 7{% €Tandy12¢T
is treated similarly.

The proof of the claim about maximal inverse subsemigroups is analogous
and is left to the reader. ([l

7. Congruences on I*

Let S be an inverse semigroup and F = FE(S). We recall the definitions
from [16, p. 118]. A subsemigroup K of S is said to be a normal subsemigroup
of Sif EC K and s 'Ks C K for all s € S. A congruence A on E is said to be
normal provided that for all e, f € E and s € 9, eAf implies s tesAs™!fs. The
pair (K, A) is said to be a congruence pair of S if K is a normal subsemigroup
of S, A is a normal congruence on E and

eacc€ K,eAa 'aimply a € K for alla € S and e € E;
o k€ K implies kk~'Ak~ k.
For congruence pair (K, A) of S define the relation p(x a):

(apr,ayb) < (a7 'aAb™'b and ab™! € K).

It is known (see [16, Theorem III.1.5, p. 119]) that p(x ) is a congruence on S,
and every congruence on S is of the form p(x x), where (K, A) is a congruence
pair of S.

In this section we describe all normal congruences, all normal subsemigroups
and all congruence pairs on Z}. Set E,, = E(Z}).

Lemma 11. Let e, f € E, be such that rank(f) < rank(e). Then there
exists s € I such that s™les = f.

PROOF. Suppose e = {E1 UE{,...,Ey UEL}, f={F1UF], dots, F; U F}
where k>1. Then f=s"tes for s = {E1UF|,...,E,_1UF/_,, (Uf:l E;)UF/}.
([l
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Let Y CN. Let v = {Y UY", {t} U {t};c\y}- Observe that 7oy = N UN'
is the zero of T, rank(7ar) = 1 and 7ar is the only element in Z of rank 1. For a
set M let tp; denote the identity relation on M. Set also

I, = {a € I} : rank(a) < k} and
ET(L’C) = {e € E, :rank(e) < k} =FE,NI.

Lemma 12. Let A be a normal congruence on E,,, e € E,, and rank(e) = m.
If eA7ys then (E,(Lm) X E,(Lm)) CA.

PrOOF. Let f e Ef,m). By Lemma 11 there exists t € Z; such that f =t"let.
This and the definition of a normal congruence imply f = t~letAt trpat = Tpr.
O

The following lemma characterises normal congruences on E(Z):

Lemma 13. Let A be a normal congruence on E,,. Then there is k such that
A=1p, U(EP x EP).

PROOF. Suppose A # g, (otherwise we can put £k = 1). Let e, f € E,
be such that e # f and eAf. Assume rank(e) > rank(f). Then eAef and
rank(e) > rank(ef). Moreover rank(e) > rank(ef). Indeed, otherwise we would
have rank(f) > rank(ef) = rank(e) > rank(f) which would imply rank(ef) =
rank(e) = rank(f) and then e = ef = f, a contradiction. Let rank(e) =m > 2.
We will show that (E,(lm) X Eflm)) C A. Set B={l,...,n—m+1}. We have
rank(rg) = m. Lemma 11 implies that there is t € Z* such that t~let = 75.
Observe that

rank(t teft) <m and TpAt~'eft. (3)

Let u = tpt~teftrp = (Ui U Ui/)iel' Then there exists g € I such that B C U,,.
We also have TgAu. Consider two possible cases.

Case 1. B =U,,. Since rank(u) < rank(e), it follows that there is j € T\ {io}
such that U; C N\ B = B and | U; |> 2. Fix 2,y € U;, ¢ # y. It follows
from ur,, = u that 7gAu = ur, ,ATp7T,,. Let now p,q € B, p # q. There
is g € S, such that g(i) = i for all © € B and g(x) = p, g(y) = gq. Then
8 =9 'TBgAg ' TBTs g = TBTp4. Therefore we obtain

TBA H TBTp,q = TBTE-

p,q€B,p#q
This implies that

TBU{e} = TBT1eATBTET12 = TA/-
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Observe that rank(rpuq,3) = m — 1. We have (Eflm_l) X E,(lm_l)) C A by
Lemma 12. The latter, (3) and Lemma 12 imply (ET(Lm) X Ef«bm)) C A, as required.
Case 2. B is a proper subset of U;,. Take w € U;, \ B. We have

TBAU = UTBU (W} ATBTBU{w} = TBU{w)}-

Let j € B. There is g € S,, such that g(i) =i for all i € B and g(w) = j. Then
B = g_lTBgAg_lTBu{w}g = Tpu{,) and

TBAHTBU{j} = TN -
jeB

Applying Lemma 12 we obtain (E,gm) X Eﬁm)) C A, as required.

We have shown that (E&m) X Ey(Lm)) C A whenever eA f for all idempotents e,
f such that e # f and rank(e) = m. Let k € N, k < n, be such that there is
e € E,, of rank k satisfying the condition

eAf for some f € FE,, f#e, (4)

while there is no e € E,, with rank(e) > k satisfying (4). It follows that A =
ug, U (B x ED). 0

Let e € E,, k = rank(e) and A < S;. It is easy to see that H, = Si. It
follows that there is unique A, < H,, such that A, ~ A. Set Ny(A) to be the
union of all subgroups A., where e runs through all idempotents of rank k. We
also set N, 11(A) = & whenever A <8,,41.

Proposition 14. Let K be a normal subsemigroup of I and A a normal
congruence on E,,. Then (K, A) is a congruence pair of T} if and only if there is
k € N such that A = g, U (E,(Lk) X E,(Lk)) and K = E,, U Ngy1(A) U I, for some
A Sk+1.

PrOOF. The sufficiency follows from Lemma 13 and the observation that
E,UNg1(A)U I, k € N, is a normal subsemigroup of Z.

Suppose (K, A) is a congruence pair of Z. Lemma 13 implies that there is
k € N such that A =g, U (E,(Lk) X E,(Lk)).

Assume that k¥ = n. Then A = E,, x E,. In this case we have K = T7.
Indeed, let a € Z%. Since E,, C K, it follows that, in particular, atyr = Tas € K.
We also have 7arAaa™!. The first condition of the definition of a congruence pair
yields a € K. Hence Z; C K.
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Assume now that k < n — 1. Since aty = 7 € E,, C K and tpAala
for all a € Iy, it follows that I, C K. Since d € K implies dd"'Ad~'d for all
d € K, it follows that all elements d € K such that rank(d) > k + 1, belong to
certain subgroups of Z*. Let b € K and rank(b) = m > k + 2. Observe that
m > 3. Show that b must be an idempotent. Since b is a group element, there
exists a partition N’ = (J;c; B; such that b = {(Bl U B;(i))ie[}, |I]> 3, for some
bijection 7 : I — I. Show that 7 is the identity transformation of I. Consider =
as a permutation from S;. Suppose 7 is not the identity map. Consider a cycle
(i1,42,...,4) of m, where 41,...,4 € [ and [ > 2. If [ > 3 then brp, up,, is of
rank m — 1, is not a group element and belongs to K, which is impossible. If
| =2 consider j € I\ {i1,i2} and b7p, up,;. This element is again of rank m — 1,
is not a group element and belongs to K, which is also impossible. Thus 7 is
the identity transformation of I. Therefore b is an idempotent. It follows that
K\ L1 = Ep \ Ips1.

Fix e, f € E, such that rank(e) = rank(f) = k+ 1. Set A, = K N H,
A = KN Hy. Since K is self-conjugate it follows that A, < H, and A’ < Hy.
Take any s € Z such that s7les = f and sfs™! = e (it is easily seen that such
an element exists). Further, from s !Ks C K and sKs~! C K, it follows that
the maps = — s~ lxs from A’ onto A% and y = sys~! from A onto Af are
mutually inverse bijections, whence | A [=| A} [. It follows that an element of
K has rank k + 1 if and only if it lies in Ny41(A) for some A <0 Sg41. Thus
K = E, UN11(A) U I, and the proof is complete. |

For 1 < k < n denote by D, the set of elements of Z of rank k. Let A<1Sg41,
1 <k <n. Let F(A) be the relation on Dy that is defined by (x,y) € Fy(A)
if and only if #Hy and zy~' € Niy1(A). Set pra = tz: U Fp(A) U (I x Ii).
The construction implies that py 4 coincides with pk a), corresponding to the
congruence pair (K, A), where K = E,,UNj;1(A)UI, and A = LETLU(E,(LIC) XE,(Lk)).

Theorem 15. Let p be a relation on Z);. Then p is a congruence on I, if
and only if p = py a for some k,1 < k < n and normal subgroup A <| Sgy1.

PROOF. The claim follows from Proposition 14 and from [16, Theorem ITI.1.5].
d

We note that the formulation of Theorem 15 resembles the one of the corres-
ponding classic LIBER’s result [12] for Z,,.
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8. Congruences on PZ; and PZ*,

8.1. Congruences on PZ;. Let Y C X. Set ay = {{t7t/}t€X\y}. Notice that
ay is an idempotent for any Y C X and that the element 0 = ax is the zero
element of both PZ% and PZ" x.
Let E, = E(PZ%) and EP = {ee E, : rank(e) < k} = En N Jis1.
Lemma 16. Let ¢, f € E, and rank(f) < rank(e). Then there exists s €
PI’ such that s~ *xexs= f.

PROOF. The proof is analogous to that of Lemma 11. O
As an immediate consequence we obtain the following lemma.

Lemma 17. Let A be a normal congruence on (E,,*). Then aAO implies
bAO for all idempotents b € Jrank(a)+1-

Lemma 18. Let a and b of Z,, be two idempotents with rank(a) > rank(b)
and A — a normal congruence on E(Z,). Then a is A-related to 0.

PROOF. The proof is similar to that of Lemma 13. [

Lemma 19. Let A be a normal congruence on (E,, ). Then there is k € N'
such that A = 1j U (Eﬁlk) X Egk))

PROOF. Suppose A # v . Take distinct e, f € E, such that e # f and
m = rank(e) > rank(f). Show that (E,(Lm) X ES”)) C A. Similarly to as it was
done in the proof of Lemma 13 we show that T Au, where B = {1,...,n—m+1}
and u € En are such that rank(u) < m and w = 7pu = urp. Show that there
exists an element of rank m which is A-related to 0. Set

d= {B U {1/}v {ka k/}kEN\B}-

Consider three possible cases.

Case 1. Suppose u contains a block C' U C’, where C strictly contains B.
Then TpAu = urcATpT7e = 7¢. This and Lemma 13 imply 7pA7a. It follows
that ap = Tpay ATpra; = 0. Since rank(u) < rank(ap) it follows from Lemma 17
that A0, whence T5A0.

Case 2. Suppose u contains a block {t} for some ¢t € B. Then

AU = qyuAayTp = ap = a1 ... Q1.
Therefore

—1 -1
ozB\{l} =0a2...0p—m+1 — d TBdAd a7y ... Oén_m+1d =01...0p_m+1 = OB.
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Both ap\ (1} and ap belong to Z,,. In addition, rank(ap\(1}) = m and rank(ap) =
m — 1. Applying Lemma 18 we obtain s ... ap_me1 AO.

Case 3. Suppose u contains a block BUB'. If u € T* then Lemma 13 ensures
that Tg ATar. Applying the same arguments as in the first case, we conclude that
7A0. Otherwise there is j € A\ B such that TgA7ga;. Then

Ap\{1} = Q2. Qi1 = dilTBdAdferajd = apo;.

Observe that rank(apa;) < rank(ap\(1}) = m. This and Lemma 18 imply
aB\{l}AO.

Lemma 17 implies that E,(Lm) = En N Jm+1 lies in some A-class. Applying the
same arguments as at the end of the proof of Lemma 13, we obtain that there is
k € N such that A = v, U (E,(Lk) X E,(Zk)) O

For A <1 S}, we construct the set Ni(A) and the relation F(A) similarly to
as we constructed Ni(A) and Fj(A) in Section 7. Set px.a = tpr: U Fr(A) U
(Jk+1 X Jk+1). The proof of the following statement is analogous to that of
Proposition 14.

Proposition 20. Let K be a normal subsemigroup of PZ) and A be a
normal congruence on E,. Then (K, A) is a congruence pair of PZ;, if and only if
there is k € N such that A = 15 U (Eff) X E‘,(Lk)) and K = E, U Nj11(A) U Jiiq
for some A < Sk1.

The description of congruences on PZ, can be formulated now in the same
way as Theorem 15.

For the semigroup PI*, the arguments are similar. In particular, we observe
that an analogue of Lemma 19 holds. After this, it is easy to conclude that sets
of congruences on PZ’ and PZ*,, coincide.

9. Completely isolated subsemigroups of Z*, PZ, and PZ*,

From now on suppose that n > 2. Recall that a subsemigroup 7T of a semig-
roup S is called completely isolated provided that ab € T implies either a € T
or b €T for all a,b € S. A subsemigroup T of a semigroup S is called isolated
provided that a* € T, k > 1, implies a € T for all @ € T. A completely isolated
subsemigroup is isolated, but the converse is not true in general.

We begin this section with several general observations, which will be needed
for the sequel and are also interesting on their own.



Two generalisations of the symmetric inverse semigroups 269

Lemma 21. Let S be a semigroup with an identity element 1 and the group
of units G. Suppose S\ G is a subsemigroup of S. Then G is completely isolated
and the map T +— T U G is a bijection from the set of all completely isolated
subsemigroups, which are disjoint with G, to the set of all completely isolated
subsemigroups, which contain G as a proper subsemigroup.

PROOF. Obviously, G is a completely isolated subsemigroup. Suppose that
T is a completely isolated subsemigroup such that TN G = &. Observe that
T UG is a subsemigroup of S. Indeed, let ¢ € G and t € T'. Since T is completely
isolated and disjoint with G, the inclusion g~'-gt =t € T implies gt € T C TUG.
Similarly, tg-¢g~' =t € T implies tg € T C TUG. Let now ab € T UG. Consider
two possible cases.

Case 1. Suppose ab € G. Since S\ G is a subsemigroup of .S, it follows that
either a € G or b € G.

Case 2. Suppose ab € T'. Since T is completely isolated, it follows that either
acTorbel.

Therefore, either a € GUT or b € GUT. Hence TUG is completely isolated.

Now suppose that T" is a completely isolated subsemigroup with 7" > G and
prove that T\ G is completely isolated as well. Let a,b € T\ G=TnN(S\G).
Then ab € T\ G as both T and S\ G are subsemigroups of S, proving that T\ G
is a semigroup. Suppose ab € T'\ G and show that at least one of the elements a,
bliesin T\ G. Since T\ G C T and T is completely isolated, it follows that at
least one of the elements a, b belongs to T'. Suppose a € T' (the case when b € T'
is treated similarly). If a € T'\ G, we are done. If a € G we have b=a"'-ab e T.
Moreover, b € T'\ G as the inclusion b € G would imply ab € G. Hence T \ G is
completely isolated. O

Lemma 22. Let S be a semigroup, e € E(S) and G = G(e) — the maximal
subgroup of S with the identity element e. Suppose G is periodic and T is an
isolated subsemigroup of S such that T NG # @. ThenT 2 G.

PrROOF. Let a € TN G. There is m € N such that a™ = e, which implies
ecT. Let b € G. Since G is periodic, b* = e for certain k € N. The statement
follows. 0

Corollary 23. Let S be a semigroup with the group of units G. Suppose
that S\ G is a subsemigroup of S and that G is periodic.
(1) If T;,i € I, is the full list of completely isolated subsemigroups of S, which
are disjoint with G, then T;, i € I, T; UG, i € I, G is the full list of completely
isolated subsemigroups of S.
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(2) If Ty, i € I, is the full list of completely isolated subsemigroups of S, which
contain G as a proper subsemigroup, then T;, i € I, T; \ G, i € I,G is the
full list of completely isolated subsemigroups of S.

PROOF. The proof follows from Lemma 21 and Lemma 22. O

9.1. Completely isolated subsemigroups of 7.

Theorem 24. Let n > 2. The semigroups L, Sy, and I\ S,, and only them
are completely isolated subsemigroups of the semigroup I .

PROOF. For n = 2 the proof is easy. Suppose n > 3. That all the subsemig-
roups given in the formulation are completely isolated follows from the definition.

Let T be a completely isolated subsemigroup of Z; containing S,, as a proper
subsemigroup. Applying Corollary 23, it is enough to prove that T'= Z*. Show
that T' contains some element from S,,&1 2 3S,. Indeed, consider g € T'\ S,,. Due
to I} = (Sy,&1,2,3) ([13, Proposition 12]) we can write

9=091£1,2,392§1,2,3 - - £1,2,30k+1,

where k > 1 and g1...,9k+1 € Sp. If £ > 1 we have that either g1&1,2,392¢1,2,3
- &1,239k € T or £1,2.39k+1 € T, since T' is completely isolated. The claim follows
by induction.

Now we can assert that {123 € T as T D S, by the assumption. This
together with Z)} = (S,,,&1,2,3) implies T' = T7. O

9.2. Completely isolated subsemigroups of PZ.

Theorem 25. Let n > 2. The semigroups PZL), S, and PI; \ S, and only
them are the completely isolated subsemigroups of the semigroup PZ,.

For the proof of Theorem 25 we will need two auxiliary lemmas:

Lemma 26. Let a € PZ, \ Z}. Then there are k > 1 and ¢1,...,g; of S,
such that agiagsa . ..agra = 0.

PROOF. The statement follows from the observation that a has at least one
point. O

Lemma 27. Let T be a completely isolated subsemigroup of PZ}, such that
({0yuS,) cT. Then PT, \Z; CT.

PROOF. Let a € PZ, \ Z;. By Lemma 26 we have agia...gra = 0 for
some ¢i,...,9x € Sp. Since T is completely isolated, it follows that either
agiags ...agy € T or a € T. If a € T then we are done. Otherwise, we have
agi1ags . . .agg—1a € T. The statement follows by induction. O
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PROOF OF THEOREM 25. That all the listed semigroups are completely is-
olated is checked directly. Let T' be a completely isolated subsemigroup of PZ}
strictly containing S,,. In view of Corollary 23 it is enough to show that T = PZ,.

First assume that 7'\ Z}) # @. Take any a € T'\ Z}'. Since a € PZ,, \ I}, it
follows from Lemma 26 that 0 € T. Applying Lemma 27 we obtain the inclusion
P \ZI:CT.

Consider the element

w="2= {{L 2,1}, {tat/}tGN\{l,Q}} € PIL,,.

Since w? = (w™1)? = ajay € Z,, C T, we conclude that w € T and w=! € T,
which implies ww ™! € T. From the other hand, ww™! = 11 5 € Z}\ S,.. It follows
that ww™' € TN (Z; \'S,). Observe that 7nr € (Sy,712) € T. It is easy to
see that T'NZ; is a completely isolated subsemigroup of Z. In addition, T'NZ}
contains S, as a proper subsemigroup. Applying Theorem 24 we obtain Z} C T.
It follows that T'= PZ;.

Assume now that T\Z;; = @, that is, T C 7. Let a = {(A;UB)ics} € T\S,.
Since a ¢ S, there exists j € I such that |B;| > 2. Fix some x € B; and consider
the elements

of PZ; \ Z;. We have bc = a € T by the construction. Therefore, b € T C I or
c €T C1;. We obtained a contradiction, which shows that the inclusion T" C 7}
is impossible. The proof is complete. O

9.3. Completely isolated subsemigroups of PZ*,,.

Theorem 28. Let n > 2. All completely isolated subsemigroups of PT*,
are exhausted by the following list: PZ*,,, S, and PZ",, \ S,.

Lemma 29. Let e € E(PT*,)\ S,. Then there exists a € PL*, such that
aa"! =eand a®> = (a1)? € Z,\ S,.

PROOF. If e € Z,, we can set a = e. Otherwise, let e = {(A7 U AYier,
{t,t'}ies}, where N\ ((U,e; Ai) U J) is non-empty and |A;| > 2, i € I. Since
e ¢ I,, it follows that I # @. Take x; € A;, i € I. Set a = {(Ai U z)ier,
{t,t'}1cs}. We have that aa™! = e and a® = (a7 1)? = {{t,t'}hes} €L, \Sn. O

The following statement follows from Lemma 29.

Corollary 30. Let T be an isolated subsemigroup of PZ*,,. If T,\S,, C T,
then PZ*,\ S, CT.
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We will need the following fact, see [6, Chapter 5].

Lemma 31. All completely isolated subsemigroups of Z,, are exhausted by
the following list: Z,,, S,, and Z,, \ S,,.

PROOF OF THEOREM 28. It is straightforward to verify that PZ*,, S,, and
PI*, \ S, are completely isolated. Let now T be a completely isolated subsemig-
roup of PZ%,. If TNS,, # @ then T O S,, by Lemma 22. Assume that T\S, # 2.
It is enough to prove that PZ*, \ S, C T.

Let b € T\ S,,. There is k such that b* = e is an idempotent. Let a € Wn
be such that aa™! = e and f = a® = (a!)? € Z,,\ S, (such an element exists by
Lemma 29). Then f € TNZ,. Applying Lemma 31 we have Z,,\ S,, C T. Finally,
PI*,\'S, C T by Corollary 30. O

10. Isolated subsemigroups of Z*, PZ, and PI*,

10.1. Isolated subsemigroups of Z7.

Proposition 32. Let e € I} be an idempotent of rank n— 1, that is, e = 74
for some A C N with |A| = 2. Then G(e) is an isolated subsemigroup of .

PROOF. Assume that a € Z; is such that a* € G(e) for some k > 1. Since
G(e) is finite, we can assume that a* = e. We are to show that a € G(e). Since
rank(a®) = n — 1, it follows that rank(a) > n — 1. Hence rank(a) = n — 1.
But rank(a) = rank(a”) implies that aDa?, which implies that aHa? (since I} is
finite), which means that a € G(e). O

Theorem 33. The semigroups I, S,, I \ S, and G(e), where e is an
idempotent of rank n — 1 and only them are isolated subsemigroups of I .

PRrROOF. That all the listed subsemigroups are isolated follows from Propo-
sition 32 and Theorem 24.

Assume that T # S, is an isolated subsemigroup of Z. Then T\ S,, # &.
Let a € T\ S,,. Going, if necessary, to some power of a, we may assume that a is
an idempotent. Let us show that T' contains some idempotent of rank n — 1.

Suppose first that a has some block AU A’ with A C N, |[A] > 3. Let A =
{t1,...tx}. Consider b € I} such that it contains all the blocks of a, except AUA’,
and instead of AU A’ it has two blocks: {t1,...,tx—1,t1} and {¢x,t5,...,¢,.}. The
construction implies b2 = (b~!)? = a, whence b,b~! € T. It follows that bb=! € T.
This element is an idempotent, contains all the blocks of a, except AU A’, and
instead of AU A’ it contains two blocks: (A \ {tx}) U (A\ {tx})" and {tg,t}}.
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Applying the described procedure as many times as needed we obtain that there
T contains an idempotent e such that |A| < 2 for each block AUA’, A C N, of e.

Suppose now that e € E(T) contains two blocks {t1,t2} U {t1,t2} and
{ts,ta} U {t3,t4}', t1,t2,t3,t4 € N. Let a € ZF be the element whose blocks
are all the blocks of e, except {t1,t2} U {t1,t2}" and {ts,t4} U {t3,t4}’, and ins-
tead of these two blocks it contains the following three blocks: {t1,t5}, {t2,t}},
{t3,t4,t],t5}. The construction of a implies that a? = (a~!)? = e, which implies
a,a”! € T. Tt follows that aa=! € T. Observe that aa=! € E(T). This element
contains all the blocks of e, except {t1,t2} U {t1,t2}’. In addition, it has two
blocks {t1,t}} and {ta,t5}. Therefore, aa~! has fewer blocks of the form AU A’
with A C N, |A| = 2 than e. Applying this procedure as many times as required
we obtain that T contains some idempotent e = 74 with |A| = 2. Therefore, T
contains some idempotent e of rank n — 1.

If e is the only idempotent of T we have T' = G(e). Suppose now that,
except e, T has some other idempotent, say, f. We will show that 7, € T. If
n = 2 this is obvious. Suppose n > 3. In view of Lemma 22 G(e), G(f) C T. Let
e =74, where A = {t1,t2}. Consider two possible cases.

Case 1. Suppose rank(f) < n — 1. Since f # e it follows that f has a block
BUB with BCN, |B| > 2 and B\ A # @. Fix some t3 € B\ A and s € B,
s # t3. For each i € N'\ {t1,t2} consider the transposition m; of G(e) which swaps
i and t3. Then the idempotent e; = (m; f)(m; f)~! has a block CUC’, C C N with
i,s € C. Now consider the transposition m; € G(e) which switches the blocks
{t1,t2} and {t3}. Then the idempotent e; = (w1 f)(m1f)~* has a block C U C’,
C C N, with t1,t2,s € C. The product of all the constructed idempotents e;,
i € N\ {t2}, equals 7.

Case 2. Suppose rank(f) = n, that is, f = 1. Then S,, C T. Conjugating e
by each transposition of S,,, that moves ¢1, and taking the product all the obtained
elements outputs 7.

Show that E,S”‘” CT. Take e € Ey(,"_l). Suppose

e={A1UAL, ... AL UALL,

where k = rank(e) < n—1 and |A;| > 2. Let 4; = {t},...t,, .}, 1 < i < k.
Construct the blocks By, ..., By as follows: By = {t}}, By consists of |A] ele-
ments of

oottt (5)
which follow ¢}, Bs consists of |A3| elements of (5) which follow the last element
of Bs, and so on, finally By consists of the remaining |Ag| + |A1] — 1 elements

of (5). Set a={A,UB,,..., Ay UB}.
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The construction implies that some powers of a and of a™! equal 7or. Hence,
a,a”' €T, and thus e = aa™' € T.

Finally, since some power of every element of Z* \ S, is an idempotent of
E"™D c T and T is isolated, we have Z* \ S, C T. The statement follows. [

10.2. Isolated subsemigroups of PZ*,,.

Theorem 34. The semigroups PZ*,, S,, PL*, \ S, and G(e), e is an
idempotent with corank(e) < 1, and only them, are isolated subsemigroups of
PL*,.

For the proof of this theorem we need some preparation. The observation
below follows from the definition of o.

Lemma 35. Let a € PZ*,. Then every block of dom(a*) coincides with
some block of dom(a) and every block of ran(a*) coincides with some block of
ran(a) for each k > 1.

Let e € E(PZ;). Set corank(e) = | codom(e)| = | coran(e)|.

Lemma 36. Let e € E(PZ*,) be such that corank(e) < 1. Then G(e) is an
isolated subsemigroup of PL*,,.

PROOF. Similarly to as in the proof of Proposition 32 it is enough to prove
that a € G(e) under the assumption that a® = e for some k > 1. Consider two
possible cases.

Case 1. corank(e) = 0. Since coran(e) 2 coran(a) and codom(e) 2 codom(a)
it follows that | coran(a)| = | codom(a)| = 0. Thus dom(a), dom(e), ran(a), ran(e)
are some partitions of A. This and Lemma 35 imply dom(a) = dom(e) and
ran(a) = ran(e). Therefore, aHe, implying a € G(e).

Case 2. corank(e) = 1. Assume that codom(e)={t}. By Lemma 35 there
are two possibilities: either dom(a) = dom(e) and ran(a) = ran(e), or dom(a) =
dom(e) U {t} and ran(a) = ran(e) U {¢'}. In the first case we have aHe, which
yields a € G(e), as required. In the second case we would have aH f and then
e € G(f), where f is an idempotent such that each generalised line of e is a
generalised line of f and, besides, f has the block {¢,¢'}, which is impossible. [

To proceed, we need to recall the description of isolated subsemigroups of Z,
which is taken from [6, Chapter 5]:

Lemma 37. The semigroups Z,, S,, I, \ Sn, and G(e), where e is an
idempotent of rank n — 1, and only them are isolated subsemigroups of Z,,.
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PrOOF OF THEOREM 34. Applying Lemma 36 and Theorem 28, it is enough
to prove the sufficiency. Let T be an isolated subsemigroup of PZ*,, such that
T # S, and T # G(e) for any idempotent e of corank 0 or 1. We are to show
that T 2 PZ*, \ Sn.

First show that 7' has an idempotent of corank at least 2. Assume the

converse. Then T contains at least two distinct idempotents e, f such that
corank(e) < 1, corank(f) < 1. Since ef € T and corank(ef) < 1, one of e, f must
be equal to ef. Hence we can assume that e > f. We have G(e),G(f) C T by
Lemma 22. Observe that among all the products of elements of G(e) and G(f)
there are elements some powers of which are idempotents of corank at least 2.
Let f € T be an idempotent of corank at least 2. Fix ty,t5 € N, t; # t3, such
that t1,t2 € codom(f). Define a € PZ*,, as follows. Each generalised line of f is
a generalised line of a. Besides, a has one more generalised line: {t1,t5}. Then

a? = (a71)? = f, the element f = aa~! is an idempotent, and each generalised
line of f is a generalised line of f In addition, fv has exactly one more line:
{t1,t,}. Since T is isolated, G(f) C T. Multiplying all the products of elements
from G(f) by f we obtain 0. This shows that 0 € T..

Since T'NZ, # @, it follows that TN Z, is an isolated subsemigroup of Z,,,
which by Lemma 37 and 0 € T implies Z,, \ S, € T. Thus PZ*, \ S, C T by

Corollary 30. O

10.3. Isolated subsemigroups of PZ;. Let Y C N and a € PZ,. We will call
the set Y invariant with respect to a if either AC YUY’ or AN(YUY') = @ for
each block A of a. If Y is invariant with respect to a denote by a|y the element of
Py whose blocks are all blocks of a which are contained in Y UY”. The element
aly will be called the restriction of a to Y. The semigroup Z; embeds into Z7 via
the map sending a € Zy- to the element of 7 whose generalised lines are precisely
the generalised lines of a, and all the other blocks are points. We will identify Zs-
with its image under this embedding.

Lemma 38. Let n > 3. The semigroups
1) Z¥, T \ Sn, Sn, G(e), where e is an idempotent of rank n — 1 of T;
2) I3, I3\ Sy, Sy, G(e), where e is an idempotent of rank n — 2 of I3, where
Y =N\ {t},teN;
3) PZL;, PL,\Sn
are isolated subsemigroups of PZ,.

PROOF. The proof is a straightforward verification. It resembles the proofs
of Proposition 32 and Lemma 36. (|
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Theorem 39. Let n > 3. The semigroups listed in Lemma 38 and only
them are isolated subsemigroups of PZL,.

PROOF. Let T be an isolated subsemigroup of PZ,,. If T C Z* then T must
be an isolated subsemigroup of Z). Therefore, applying Theorem 33, we see that
T is one of the semigroups listed in the first item of Lemma 38.

Suppose T'\ Z; # @. Then T contains an idempotent of corank 1 (this can
be shown using arguments similar to those from the third paragraph of the proof
of Theorem 34, where an idempotent fis being constructed by f). It follows that
thereis Y C N, Y = N\ {t}, t € N, such that TNZ} # @. It follows that TNZ;
is an isolated subsemigroup of Z5-. If T' C 73, then T is one of the semigroups of
the second item of Lemma 38.

Suppose that T\ Zy # @. Then T has at least two idempotents e and f such
that there is no proper subset Z of N for which e, f € Z},. Since e, f,ef € T it
follows that we may assume e > f. Now, G(e), G(f) C T imply 0 € T. Hence
T NZ, is an isolated subsemigroup of Z,, containing the zero. This and Lemma 37
show that Z,, \ S, C T.

To complete the proof show that PZ; \ S, C T. It is enough to show that
EP ™D CT. Letee PL; \ I, be an idempotent. Let Z = N \ codom(e). If
Z = N then e € T by arguments at the end of the proof of Theorem 33. Let
N\ Z # @. We have that e|z € F(Z} \ Sz). We claim that it is enough to
show that the element Tz, having the only generalised line Z U Z’ and all the
other blocks points, belongs to T'. Indeed, if 7z € T then applying the arguments
similar to those at the end of the proof of Theorem 33, we obtain that e|z € T'|z,
implying that f € T for some f € PZ; with e|z = f|z. Since we also know that
llz € T, \ Sn € T, we have that e = 1|zf € T as well. Take t € Z. Set a to
be the element of PZ, with the only one generalised line Z U {¢'}, and all the
other blocks points. Then a? = (a=!)? = 0, while aa~! = 7z. The statement
follows. O

11. Automorphisms of PZ% and PZ*x

11.1. Automorphisms of PZ%. Let ¥ C X. We will need to consider the
following subsemigroups of PZ%:

Sy = {a € Sx : a contains the blocks {t,t'}, t € X \ Y},

Iy = {a € Ix : a contains the blocks {t,t'}, t€ X\ Y} and
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ITry = {a € Ik : a contains the blocks {t,t'}, t € X \ V}.
Let Aut(S) denote the group of automorphisms of a semigroup S.

Theorem 40. Aut(PZ%) = Sx. Moreover, for every ¢ € Aut(PZL) there
is € Sx such that a¥ = 7~ tar, a € PTY.

PRrROOF. Let ¢ € Aut(PZ%). Take z € X. Since Sx is the group of units
of PI%, in should be preserved by ¢: ¢(Sx) = Sx. For u € PI% and a
subsemigroup T' C PZ% let

Sth(u) ={s €T |us =u}, Sth(u)={seT|su=u}.

Recall that for € X by a, we denote the idempotent {{t,#};ex\(2}} € PT%-

Observe that for an idempotent u € PIY |Sts, (u)| = 1 if and only if
u = o, for some z € X. It follows that for each # € X there is g(z) € X such
that p(au) = agy(z). This defines a permutation g € Sx.

Show that ¢(Zx) = Zx. Let a = {{t,7(t)'}1er} € Zx, where w: I — 7(I)
is a bijection. For all z € X \ I and r € X \ n(I) we have a,a = a = aq;.
Passing in this equality to ¢-images, we see that ¢(a) should contain the blocks
{q}, g € g(X\I), and {r'}, r € g(X \ 7(I)). Let to € I. Notice that the equality

Qg = Oty * Qg @+ Ol (6)
holds if and only if z € (X \ I) U{to} and r € (X \ 7(I)) U{r(to)}. Going in (6)

to ¢-images, we obtain

Qg (1)P(@) = g(z) * Qg(1e)P(a) - Qg ().

Similarly as above we have that the equality

Qg(t)P(a) = - ageg)p(a) - ar

holds if and only if z € g((X \ I) U{to}) and r € g((X \ 7(1)) U{m(to)}). The
latter implies that ¢(a) contains a block {g(to), g(7(to))}. Now we can assert that
p(a) = {{g(t),g(w(t))’}}tel. It follows that ¢(Zx) = Zx. Moreover, for every
Y C X we have
e(Iy) = Zyv)- (7)
Show that p(Z%) = I%. Observe that the elements of Z% may be characte-
rized as follows: b € Z% if and only if a,b # b and ba, # b for all z € X. Let
b= {(Ai U Bg)ig} € I%. The equality a,b = a,b holds if and only if u and v
belong to A; for some i € I, the equality ba, = ba, holds if and only if u and
v belong to B; for some i € I, and the equality a,b = ba,, holds if and only if
u € A; and v € B; for some i € I. Going to y-images and using the fact that



278 Ganna Kudryavtseva and Victor Maltcev

o(ag) = ay(z), © € X, we can assert that o(b) = {(g(4;) U g(Bi)/)z‘eI}' Thus
»(T%) = T% and, moreover,

P(Z*y) =T* vy (8)
for every Y C X. Since Sy = Zy NZ*y, applying (7) and (8) we obtain
0(Sy) = o(Iy) Np(Ty) = gg(Y)~ 9)

Let a = {(U; UV)ier} € PTX. Observe that

Stll}(a) = (i'v*X\U Ui) S (@f;U>» Stg}(a) = (jv*X\U v) S (@ﬁv)

i€l i€l

iel i€l
Str (@) = (T y o) @ (@5}); Stz (@) = (Tey v) @ (@3}5).
et i€l el i€l

We observe that the equalities
Stlz; (a) = Stlz;( (), Stg;( (a) = St%;( (),
St (a) = Sth (b), Sty (a) = Sty (b)
hold for some b € PZ% if and only if dom(a) = dom(b) and ran(a) = ran(b),

which by Proposition 3, is equivalent to aHb.
By (7), (8) and (9) we have

p(a) = {9(Ui) Ug(Va(i))'}ics (10)

for some bijection 7 : I — I. Let us show that 7w should be the identity map. Let
Jj€l. Fix u; € U;. We compute

Qo ; & = {(Ul U ‘/i/)}ief\{j}.

By (7), (8) and (9) we have

coran(a,)) = { {03, ¢ UVt 1< 9} (1)
iel
From the other hand, p(av,;a) = ay,)p(a), and thus
coran(p(au,,a)) = {{t’}, t¢ U Vi, {t'}, te g(VW(j))}. (12)
iel

It follows from (11) and (12) that 7(j) = j, and then 7 is the identity map. Hence
o(a) = g tag, a € PT%. The proof is completed. 0
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11.2. Automorphisms of PZ*x. LetY C X. Setey = {YUY’}. The element
ey is an idempotent of rank 1. If € is an idempotent of rank 1, denote by Y'(¢)
such a subset Y C X that EY () = E-

Theorem 41. Aut(PZ"x) = Sx.

PROOF. Let ¢ € Aut(PZ"x). The maps ey +— Y and Y + (V) are mutu-
ally inverse bijections between the idempotents of rank 1 of PZ* x and nonempty
subsets of X. It follows that ¢ induces some permutation 7 on 2% \ {@}.

Show that ANB = & implies 7(A)N7(B) = & for all A, B C X. Consider the
idempotent e = {AUA’, BUB'}. Let f = p(e) = {CUC’,DUD'} (rank(f) =2
because rank(e) = 2, and ranks of idempotents are preserved by automorphisms
as they may be characterised in terms of the natural order). Since eq4e = €4 and
epe = €p, going to p-images, we obtain ex(a)f = €x(a) and ex(p)f = ex(p)- It
follows that f has the blocks m(A)Un(A)" and w(B)Um(B)’. Taking into account
that rank(f) = 2, we see that {C, D} = {n(A),n(B)}. Since C N D = &, than
also m(A) N7(B) = @.

Show now that 7 maps one-element subsets of X to one-element subsets.
Assume the converse. Let z € X be such that 7({z}) = M, where |M| > 2.
Take y,z € M, y # z. Let M, and M, denote the sets satisfying =(M,) = {y}
and w(M,) = {z}, respectively. Since {y} N {z} = &, by the argument from
the previous paragraph we obtain M, N M, = @. On the other hand, using
{y} N M # @ and {z} N M # @, we obtain that it must be M, N {z} # & and
M, N{z} # @. But then x € M, N M, which is impossible. The restriction of =
to one-element subsets of X defines a permutation g € Sx.

We proceed by showing that w(M) = g(M) = {g(m) | m € M} for each
subset M of X. Indeed, since M N {t} = &, t € X \ M, it follows that
7(M) C g(M). Similar arguments applied for the automorphism ¢! ensure that
7 Yg(M)) C M, and thus g(M) C 7(M). The reverse inclusion is established
similarly.

Let a € PZ*x. Suppose that a has a block AU B’. Show that o(a) has
the block g(A) U g(B)’. Indeed, eqacp # 0. Going to @-images, we obtain
gg(ayp(a)egpy # 0. The latter implies that ¢(a) has the block g(A) U g(B)', as
required. It follows that AU B’ is a generalised line of a if and only if g(A)Ug(B)’
is a generalised line of ¢(a), which completes the proof. |
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12. PZ; and PZ*, are embeddable into Zpn_4

Let S be an inverse semigroup with the natural partial order g on it. The
following definitions are taken from [8, p. 188]. An inverse subsemigroup H of S
is called a closed inverse subsemigroup of S if Ho = H. Let

C=Cy={(Hs)o:ss' € H} (13)

be the set of all right p-cosets of H.
Let, further,

ou(s) ={((Hz)o, (Hzs)o) : (Hz)o, (Hxs)o € C} (14)

be the effective transitive representation ¢y : S — Ze. If K and H are two
closed inverse subsemigroups of S, the representations ¢ and ¢y are equivalent
if and only if there exists a € S such that e 'Ha C K and aKa~* C H (see [16,
Proposition IV.4.13)).

Theorem 42. Let n > 2. Up to equivalence, there is only one faithful
effective transitive representation of PZ, (respectively PZ*, ), namely to Zon_1.
In particular, PZ; and PI*, embed into Zon_;.

PROOF. We prove the statement for the case of PZ;, the other case being
treated analogously. Suppose H is a closed inverse subsemigroup of PZ;,. Denote
by w the natural partial order on PZ). First we observe that H = Gw for
some subgroup G of PZ;. Indeed, since PZ; is finite, E(H) contains a zero
element. It remains to apply [16, Proposition IV.5.5], which claims that if the set
of idempotents of a closed inverse subsemigroup contains a zero element, then this
subsemigroup is a closure of some subgroup of the original semigroup. Denote
by f the identity element of the group G.

Now we prove that if f = 0 then ¢ is not faithful. We have H = 0w = PZ,
and hence (Hz)w 2 Ow = PZ;, for all x € PZ;. Thus (Hz)w = PZ,, for all
x € PI,,. Then |¢u(PZ;)|=1 and so ¢y is not faithful.

Let now rank(f) > 2. We will show that in this case ¢y is not faithful
either. Take b € D where Dy denotes the set of elements of PZ of rank 1. Since
bb~—! € Dy we have that bb=! ¢ H and therefore (Hb)w ¢ C. This implies that
¢ (b) is equal to the zero element of Zc. Then due to | Dy |> 2 we obtain that
¢y is not faithful.

Let finally rank(f) = 1. We will show that in this case ¢ is faithful. Observe
that H = fw. Let f = ey = {EUE'} where E # @. Suppose that ¢y (s) = ¢ (t)
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for some s and ¢ from PZ;,. Without loss of generality assume that s # 0. Suppose
that s contains a block AU B’. Consider the element z = {EUA’}. Then (Hz)w
and (Hxs)w belong to C. This implies that (Hzs)w = (Hxt)w. The latter means
that ¢ contains some generalised lines whose union is the block AU B’. Changing
the roles of s and ¢ we obtain that both s and ¢ contain the block AU B’. Thus
s =t, as required.

Observe that all the idempotents of PZ% of rank 1 are precisely the primitive
idempotents. Let g be a primitive idempotent of PZ;. We will show that |Cy., |=
2" — 1. Note that Cg, = {(gs)w : ss™! > g}. We have (gs)w = (gt)w if and only
if gs = gt, that is, the number of different sets (gs)w, ss™! > g, is equal to the
number of different nonempty subsets of A/, which equals 2" — 1.

To complete the proof we note that for two primitive idempotents fi, fo €
PZ; we have that ¢y, and ¢y, are equivalent by the definition of equivalent
representations. O
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