
Publ. Math. Debrecen

78/2 (2011), 283–296

DOI: 10.5486/PMD.2011.4556

Multilinear Calderón–Zygmund operators on Morrey space
with non-doubling measures

By LIANG LI (YiNing), BOLIN MA (JiaXing) and JIANG ZHOU(Urumqi)

Abstract. Under the assumption that µ is a non-negative Radon measure on Rd

which only satisfies some growth condition, the authors proved the multilinear Calderón–

Zygmund operators are bounded from Mp1
q1 (k, µ) × · · · ×Mpm

qm (k, µ) into Mp
q(k, µ) for

some fixed q1, . . . , qm ∈ (1,∞) and 1/q = 1/q1 + · · ·+ 1/qm. Furthermore, the authors

established the same bounded estimates for the commutators generated by multilinear

Calderón–Zygmund operators and RBMO(µ) functions. Some of the results are also

new even when the measure µ is the d-dimensional Lebesgue measure.

1. Introduction

We will work on Rd with a non-negative Radon measure µ which only satisfies

the following growth condition that there exists a positive constant C0 and fixed

n ∈ (0, d] such that

µ(B(x, l)) ≤ C0l
n (1.1)

for all x ∈ Rd and l > 0, where B(x, l) = {y ∈ Rd : |y − x| < l}. Such a measure

µ is not necessary to be doubling. We recall that µ is said to satisfy the doubling

condition if there exists a positive constant C such that µ(B(x, 2l)) ≤ Cµ(B(x, l))

for all x ∈ suppµ and l > 0. It is well known that the doubling condition is an

essential assumption in the classical theory of harmonic analysis. But recently,
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many classical results have been proved still valid if the underlying measure µ is

substituted by a non-doubling Radon measure as in (1.1); see [1]–[8] and their

references. The analysis on spaces with non-doubling measures is proved to play

a striking role in solving the famous Painlevé’s problem by X. Tolsa in [3]; see

also [4] for more background.

Let K(x, y1, . . . , ym) be a locally function defined away from the diagonal on

x = y1 = · · · = ym in (Rd)m+1, which satisfies the size condition that

|K(x, y1, . . . , ym)| ≤ C(∑m
i=1 |x− yi|

)nm (1.2)

for all (x, y1, . . . , ym) ∈ (Rd)m+1 with x 6= yj for some j. Furthermore, assume

that

|K(x, y1, . . . , yj , . . . , ym)−K(x, y1, . . . , y
′
j , . . . , ym)|

≤ C
|yj − y′j |δ(∑m

i=1 |x− yi|
)nm+δ

(1.3)

for max1≤i≤m{|x− yi|} ≥ 2|yj − y′j |, where 1 ≤ j ≤ m, 0 < δ ≤ 1 and C > 0. We

define the multilinear Calderón–Zygmund operator T by

T (~f)(x) := T (f1, . . . , fm)(x)=

∫

Rm

K(x, y1, . . . , ym)f1(y1) . . . fm(ym)dµ(~y), (1.4)

where f1, . . . , fm are C∞−functions with compact supports and x /∈ ∩m
j=1suppfj .

For ε > 0, the truncated operator Tε(f1, . . . , fm) is defined as

Tε(~f)(x) =

∫
∑m

i=1 |x−yi|2>ε2
K(x, y1, . . . , ym)

m∏

i=1

fi(yi)dµ(~y).

We say that T is bounded on Lp(µ) if the operators Tε are bounded on Lp(µ)

uniformly on ε > 0, and T satisfies the weak type estimate if Tε satisfy the same

weak type estimate uniformly on ε > 0.

The analysis of multilinear singular integrals has much of its origins in seve-

ral works by Coifman and Meyer in the 70’s, see for example [9]. In [10]–[13],

an updated systematic treatment of multilinear singular integral operators was

presented in light of some new developments. L. Grafakos and R. Torres est-

ablished some boundedness of multilinear Calderón–Zygmund operators and its

commutators on the products of Lebesgue spaces. More recently, the multilinear

Calderón–Zygmund operator was studied on spaces with non-doubling measures.
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In [16], Xu established the boundedness of the multilinear Calderón–Zygmund

operator on Rd, then Xu and Li obtained the boundedness of commutators gene-

rated by multilinear Calderón–Zygmund operator and RBMO(µ) defined as (3.1)

and (4.1) below, see [17], [18] for a detailed description. For other works about

the multilinear operators with nondoubling measures, see [19], [20].

The aim of this paper is to establish some estimates for the multilinear Cal-

derón–Zygmund operator and its commutator on the Morrey space with measure

only satisfying the growth condition (1.1).

Throughout this paper, by a cube Q ⊂ Rd, we mean a closed cube in Rd

with sides parallel to the axes and centered at some point of supp(µ), and we

denote its side length by `(Q) and its center by xQ. For α > 0, αQ will denote

a cube concentric to Q with its sidelength α`(Q). The set of all cubes Q ⊂ Rd

with positive µ−measure will be denoted by Ω(µ). We recall the definition of the

Morrey space with non-doubling measure.

Definition 1.1. Let k > 1 and 1 ≤ q ≤ p < ∞. We define the Morrey space

Mp
q(k, µ) as

Mp
q(k, µ) := {f ∈ Lq

loc(µ) | ‖f | Mp
q(k, µ)‖ < ∞}, (1.5)

where the norm ‖f | Mp
q(k, µ)‖ is given by

‖f | Mp
q(k, µ)‖ := sup

Q∈Ω(µ)

µ(kQ)
1
p− 1

q

(∫

Q

|f |qdµ
) 1

q

. (1.6)

By using Hölder inequality to (1.6), it is easy to see that

Lp(µ) = Mp
p(k, µ) ⊂ Mp

q1(k, µ) ⊂ Mp
q2(k, µ)

for 1 ≤ q2 ≤ q1 ≤ p < ∞. The definition of space Mp
q(k, µ) is independent of the

constant k > 1. The norms for different choices of k > 1 are equivalent, see [14].

The Morrey space Mp
q(k, µ) was introduced by Yoshihiro Sawano and

Hitoshi Tanaka in [14], [15], where they investigated the bounded behavior of

the singular integral operator, the fractional integral operator and their commu-

tators.

Main theorems are stated in each section. Section 2 is devoted to the study of

the multilinear Calderón–Zygmund operators. In Section 3, we focus on the boun-

dedness of the commutator defined as (3.1). Finally, in Section 4, we investigate

an other commutator defined as (4.1).

In what follows, we use the constant C with subscripts to indicate its depen-

dence on the parameters in the subscripts. We denote simply by A . B if there

exists a constant C > 0 such that A ≤ CB; and A ∼ B means that A . B and

B . A. For a µ-measurable set E, χE denotes its characteristic function. For

any p ∈ [1,∞], we denote by p′ its conjugate index, namely, 1
p + 1

p′ = 1.
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2. Boundedness of multilinear operator

Theorem 2.1. Assume that T is an operator defined by (1.4) and satisfying

conditions (1.2) and (1.3). Let pi ∈ (1,∞) and fi ∈ Lpi(µ) for i = 1, 2, . . . ,m.

If T is a bounded operator from L1(µ)× · · · × L1(µ) to L1/m,∞(µ), then

‖T (f1, . . . , fm) | Mp
q(k, µ)‖ . ‖f1 | Mp1

q1 (k, µ)‖ × · · · × ‖fm | Mpm
qm (k, µ)‖,

where 1 < qi ≤ pi and
∑m

i=1
1
pi

= 1
p ,

∑m
i=1

1
qi

= 1
q .

We will use the following results in our proof.

Lemma 2.1 (see e.g. [16]). Suppose T as in (1.4) and satisfying conditions

(1.2) and (1.3). Let pi ∈ (1,∞) and fi ∈ Lpi(µ) for i = 1, 2, . . . ,m. If T is a

bounded operator from L1(µ)× · · · × L1(µ) to L1/m,∞(µ), then

‖T (f1, . . . , fm) | Lp(µ)‖ . ‖f1 | Lp1(µ)‖ × · · · × ‖fm | Lpm(µ)‖.

Lemma 2.2. Let 1 < q < p < ∞ and f ∈ Mp
q(k, µ) for x = xQ, we have

∫

Rd\2Q

|f(z)|
|z − x|n dµ(z) . `(Q)−n/p‖f | Mp

q(k, µ)‖.

Proof. We denote Q as Q = Q(x, `(Q)) := {y ∈ Rd : |y − x| < `}. It is

evident that
∫

Rd\2Q

|f(z)|
|z − x|n dµ(z) .

∫

Rd\Q
2

(∫ ∞

|z−x|
|f(z)|r−n−1dr

)
dµ(z)

.
∫

Rd\Q
2

(∫ ∞

0

|f(z)|χB(x,r)r
−n−1dr

)
dµ(z)

.
∫ ∞

`
2

(∫

B(x,r)\Q
2

|f(z)|dµ(z)
)
r−n−1dr

.
∫ ∞

`
2

[(∫

B(x,r)

|f(z)|qdµ(z)
)1/q

µ(B(x, r))1/q
′
r−n−1

]
dr

. sup
B(x,r)∈Ω(µ)

µ(B(x, 2r))1/p−1/q

(∫

B(x,r)

|f(z)|qdµ(z)
)1/q

×
∫ ∞

2`

[
µ(B(x, r))1/q

′
µ(B(x, 2r))1/q−1/pr−n−1

]
dr

. `(Q)−n/p‖f | Mp
q(k, µ)‖.

Here we used Hölder inequality and condition (1.1). ¤
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Proof of Theorem 2.1. For simplicity and without loss of generality, we

restrict m = 2.

We only have to prove the case that qi < pi for i = 1, 2. Firstly, we rewrite

T (f1, f2)(x) = T
(
f1χ 4

3Q
, f2χ 4

3Q

)
(x) + T

(
f1χ 4

3Q
, f2χRd\ 4

3Q

)
(x)

+ T
(
f1χ 4

3Q
, f2χRd\ 4

3Q

)
(x) + T

(
f1χRd\ 4

3Q
, f2χRd\ 4

3Q

)
(x)

= T1(f1, f2)(x) + T2(f1, f2)(x) + T3(f1, f2)(x) + T4(f1, f2)(x).

For T1(f1, f2), by Lemma 2.1, 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2
, we have

‖T1(f1, f2) | Mp
q(k, µ)‖ . sup

Q∈Ω(µ)

µ(2Q)1/p−1/q

(∫

Q

|T1(f1, f2)(x)|qdµ(x)
)1/q

. sup
Q∈Ω(µ)

µ(2Q)1/p−1/q‖T1(f1, f2) | Lq(µ)‖

. sup
Q∈Ω(µ)

µ(2Q)1/p−1/q‖f1 | Lq1(µ)‖ ‖f2 | Lq2(µ)‖

. sup
Q∈Ω(µ)

µ(2Q)1/p−1/q

(∫
4
3Q

|f1(y1)|q1dµ(y1)
)1/q1(∫

4
3Q

|f2(y2)|q2dµ(y2)
)1/q2

. ‖f1 | Mp1
q1 (2, µ)‖ × ‖f2 | Mp2

q2 (2, µ)‖. (2.1)

For T2, we make to use condition (1.2) and Lemma 2.2, then

(∫

Q

|T2(f1, f2)(x)|qdµ(x)
)1/q

.
(∫

Q

[ ∫
4
3Q

∫

Rd\ 4
3Q

|f1(y1)f2(y2)|
(|x− y1|+ |x− y2|)2n dµ(y2)dµ(y1)

]q
dµ(x)

)1/q

.
(∫

Q

[ ∫
4
3Q

|f1(y1)|dµ(y1)×
∫

Rd\ 4
3Q

|f2(y2)|
|x− y2|2n dµ(y2)

]q
dµ(x)

)1/q

.
(∫

Q

[ ∫
4
3Q

|f1(y1)|dµ(y1)× `(
4

3
Q)−n

∫

Rd\ 4
3Q

|f2(y2)|
|x− y2|n dµ(y2)

]q
dµ(x)

)1/q

. `(
4

3
Q)−n

(∫

Q

[(∫
4
3Q

|f1(y1)|q1dµ(y1)
)1/q1

µ(
4

3
Q)1/q

′
1

×
∫

Rd\ 4
3Q

|f2(y2)|
|x− y2|n dµ(y2)

]q
dµ(x)

)1/q

. `(
4

3
Q)−n

(∫

Q

[(∫
4
3Q

|f1(y1)|q1dµ(y1)
)1/q1

µ(
4

3
Q)1/q

′
1
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× `

(
4

3
Q

)−n/p2

‖f2 | Mp2
q2 (2, µ)‖

]q
dµ(x)

)1/q

. `

(
4

3
Q

)−n+n/q′1−n/p2

µ(Q)1/q
(∫

4
3Q

|f1(y1)|q1dµ(y1)
)1/q1

‖f2 | Mp2
q2 (2, µ)‖

. `(Q)n/q2−n/p2

(∫
4
3Q

|f1(y1)|q1dµ(y1)
)1/q1

‖f2 | Mp2
q2 (2, µ)‖.

Thus we have

‖T2(f1, f2) | Mp
q(k, µ)‖ . sup

Q∈Ω(µ)

µ(2Q)1/p−1/q

(∫

Q

|T2(f1, f2)(x)|qdµ(x)
)1/q

. sup
Q∈Ω(µ)

µ(2Q)1/p−1/q`(Q)n/q2−n/p2‖f2 | Mp2
q2 (2, µ)‖

×
(∫

4
3Q

|f1(y1)|q1dµ(y1)
)1/q1

. µ(2Q)1/p2−1/q2`(Q)n/q2−n/p2‖f1 | Mp1
q1 (2, µ)‖ ‖f2 | Mp2

q2 (2, µ)‖
. ‖f1 | Mp1

q1 (2, µ)‖ ‖f2 | Mp2
q2 (2, µ)‖. (2.2)

On the other hand, via an argument similar to the estimate for T2(f1, f2)

gives that

‖T3(f1, f2) | Mp
q(k, µ)‖ . ‖f1 | Mp1

q1 (2, µ)‖ ‖f2 | Mp2
q2 (2, µ)‖. (2.3)

Finally, by the Minkowski inequality, condition (1.2) and the fact that

|y − x| > 1
4`
(
4
3Q

)
for each x ∈ Q, y ∈ Rd\4

3Q, we have

(∫

Q

|T4(f1, f2)(x)|qdµ(x)
)1/q

.
(∫

Q

[ ∫

Rd\ 4
3Q

∫

Rd\ 4
3Q

|f1(y1)f2(y2)|
(|x− y1|+ |x− y2|)2n dµ(y2)dµ(y1)

]q
dµ(x)

)1/q

.
(∫

Q

[ ∫

Rd\ 4
3Q

|f1(y1)|
|x− y1|n dµ(y1)×

∫

Rd\ 4
3Q

|f2(y2)|
|x− y2|n dµ(y2)

]q
dµ(x)

)1/q

.
(∫

Q

[
`

(
4

3
Q

)−n/p1

‖f1 | Mp1
q1 (2, µ)‖

× `

(
4

3
Q

)−n/p2

‖f2 | Mp2
q2 (2, µ)‖

]q
dµ(x)

)1/q
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. `

(
4

3
Q

)−n/p

µ(Q)1/q‖f1 | Mp1
q1 (2, µ)‖ ‖f2 | Mp2

q2 (2, µ)‖

. `(Q)n/q−n/p‖f1 | Mp1
q1 (2, µ)‖ ‖f2 | Mp2

q2 (2, µ)‖.

From the estimate above, it is easy to deduce that

‖T4(f1, f2) | Mp
q(k, µ)‖ . sup

Q∈Ω(µ)

µ(2Q)1/p−1/q

(∫

Q

|T4(f1, f2)(x)|qdµ(x)
)1/q

. sup
Q∈Ω(µ)

µ(2Q)1/p−1/q`(Q)n/q−n/p‖f1 | Mp1
q1 (2, µ)‖ ‖f2 | Mp2

q2 (2, µ)‖

. ‖f1 | Mp1
q1 (2, µ)‖ ‖f2 | Mp2

q2 (2, µ)‖. (2.4)

Thus combining these inequalities from (2.1) to (2.4), we finally get the result of

Theorem 2.1. ¤

3. Estimate for commutators

In this section, we will consider commutators of the multilinear Calderón–

Zygmund operator T defined as

T~b(
~f)(x) =

∫ m∑

i=1

(bi(x)− bi(yi))K(x, ~y)f1(y1) . . . fm(ym)dµ(~y), (3.1)

where ~b = (b1, b2, . . . , bm) be a vector valued function with each component bj is

a locally integrable function on Rd, f1, . . . , fm are C∞(µ) functions with compact

support and x /∈ ∩m
j=1suppfj .

When m = 1, T (~f) and T~b recapture the singular integral operator T and Tb

studied by X. Tolsa in [2].

Now, we recall some notations and definitions. Let α and βd be positive

constants such that α > 1 and βd > αn. For a cube Q, we say that Q is (α, βd)-

doubling if µ(αQ) ≤ βdµ(Q), where αQ denotes the cube concentric with Q and

having side length α`(Q). For two cubes Q ⊂ R, set

SQ,R = 1 +

NQ,R∑

k=1

µ(2kQ)

`(2kQ)
,

where NQ,R is the first positive integer k such that `(2kQ) ≥ `(R).
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Definition 3.1. Let ρ > 1 and b be a µ-locally integrable function on Rd. We

say b belongs to the space RBMO(µ) if there is a constant B > 0 such that

sup
Q

1

µ(ρQ)

∫

Q

|b(x)−mQ̃(b)|dµ(x) ≤ B < ∞, (3.2)

and if Q ⊂ R are doubling cubes,

|mQ(b)−mR(b)| ≤ BSQ,R, (3.3)

where the supremum is taken over all cubes centered at some point of supp(µ),

Q̃ is the smallest (α, βd)-doubling cube of the form 2kQ with k ∈ N ∪ {0}, and
mQ̃(b) is the mean value of b on Q̃, namely,

mQ̃(b) =
1

µ(Q̃)

∫

Q̃

b(x)dµ(x).

The minimal constant B appeared in (3.2) and (3.3) is the RBMO(µ) norm of b

and is denoted by ‖b‖∗.
The space RBMO(µ) was introduced by X. Tolsa [2]. It is showed that

the definition of RBMO(µ) does not depend on the choices of numbers ρ, α and

βd provided that ρ > 1, α > 1 and βd > αn. In the proof of our theorem, we

will choose ρ = α = 2 and βd > 2d+1. Also, it can be seen that one obtains

an equivalent definition for the space RBMO(µ) if instead of cubes centered at

point suppµ by all the cubes in Rd. Furthermore, RBMO(µ) is small enough to

fulfil the properties enjoyed by the classical BMO space introduced by John and

Nirenberg; see Sections 2–3 of [2] for details.

We will use the following Lemmas for the commutator.

Lemma 3.1 (see e.g. [18]). Suppose T~b as in (3.1) and T satisfying conditions

(1.2) and (1.3). Let ~b = (b1, b2, . . . , bm) and bi ∈ RBMO(µ), fi ∈ Lpi(µ) for

i = 1, 2, . . . ,m. If T is bounded from L1(µ)× · · · × L1(µ) to L1/m,∞(µ), then

‖T~b(~f) | Lp(µ)‖ .
( m∑

i=1

‖bi‖∗
) m∏

i=1

‖fi | Lpi(µ)‖,

where pi > 1 and
∑m

i=1
1
pi

= 1
p .

Lemma 3.2. Suppose that 1 < q ≤ p < ∞, for all f ∈ Mp
q(k, µ), b ∈

RBMO(µ), Q ∈ Ω(µ) and x ∈ Q, then

∫

Rd\2Q

|mQ̃(b)− b(y)| |f(y)|
|x− y|n dµ(y) . `(Q)−n/p‖b‖∗‖f | Mp

q(k, µ)‖.
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Proof. By an elementary calculation and Fubini’s theorem, we have

∫

Rd\2Q

|mQ̃(b)− b(y)| |f(y)|
|x− y|n dµ(y)

.
∫

Rd\B(x,`(Q)/2)

(∫ ∞

|x−y|
|mQ̃(b)− b(y)| |f(y)|l−n−1dl

)
dµ(y)

.
∫

Rd\B(x,`(Q)/2)

(∫ ∞

0

χB(x,l)|mQ̃(b)− b(y)| |f(y)|l−n−1dl

)
dµ(y)

.
∫ ∞

0

(
l−n−1

∫

B(x,l)\B(x,`(Q)/2)

|mQ̃(b)− b(y)| |f(y)|dµ(y)
)
dl

.
∫ ∞

`(Q)/2

l−n−1

(∫

B(x,l)

|mQ̃(b)− b(y)|q′dµ(y)
)1/q′(∫

B(x,l)

|f(y)|qdµ(y)
)1/q

dl

. ‖f | Mp
q(k, µ)‖

∫ ∞

`(Q)/2

l−1−n/p

(
l−n

∫

B(x,l)

|mQ̃(b)− b(y)|q′dµ(y)
)1/q′

dl.

Let k be the least integer satisfying 2kQ ⊃ B(x, l). Then, by the growth

condition (1.1), we get

(
l−n

∫

B(x,l)

|mQ̃(b)− b(y)|q′dµ(y)
)1/q′

.
(

1

µ( 322
kQ)

∫

2kQ

|mQ̃(b)− b(y)|q′dµ(y)
)1/q′

.
{(

1

µ( 322
kQ)

∫

2kQ

|m
2̃kQ

(b)− b(y)|q′dµ(y)
)1/q′

+ |m
2̃kQ

(b)−mQ̃(b)|
}

. S
Q̃,2̃kQ

‖b‖∗.
It follows from John–Nirenberg inequality as

sup
Q∈Ω(µ)

(
1

µ(ρQ)

∫

Q

|mQ̃(b)− b(y)|rdµ(y)
)1/r

+ sup
Q⊂R,Ω(2,µ)

|mQ(b)−mR(b)|
SQ,R

. ‖b‖∗,

and the fact proved in [2,Lemma 2.1] that,

S
Q̃,2̃kQ

≤ C(1 + k) .
(
1 + log

l

`(Q)/2

)
.

Thus we obtain
∫

Rd\2Q

|mQ̃(b)− b(y)f(y)|
|x− y|n dµ(y)
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. ‖b‖∗‖f | Mp
q(k, µ)‖

∫ ∞

`(Q)/2

l−n/p−1

(
1 + log

l

`(Q)/2

)
dl

. `(Q)−n/p‖b‖∗‖f | Mp
q(k, µ)‖.

This is precisely the assertion of Lemma 3.2. ¤

Theorem 3.1. Suppose T~b as in (3.1) and T satisfying conditions (1.2) and

(1.3). Let ~b = (b1, b2, . . . , bm) and bi ∈ RBMO(µ), fi ∈ Lpi(µ) for i = 1, 2, . . . ,m.

If T is bounded from L1(µ)× · · · × L1(µ) to L1/m,∞(µ), then

‖T~b(~f) | Mp
q(k, µ)‖ .

( m∑

i=1

‖bi‖∗
)
‖f1 | Mp1

q1 (k, µ)‖ × · · · × ‖fm | Mpm
qm (k, µ)‖,

where 1 < qi ≤ pi and
∑m

i=1 1/pi = 1/p,
∑m

i=1 1/qi = 1/q.

Proof. For simplicity and without loss of generality, we restrict m = 2.

Firstly, we rewrite

|T~b(f1, f2)(x)| ≤
∣∣T~b

(
f1χ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣+ ∣∣T~b
(
f1χRd\ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣
+
∣∣T~b

(
f1χ 4

3Q
, f2χRd\ 4

3Q

)
(x)

∣∣+
∣∣T~b

(
f1χRd\ 4

3Q
, f2χRd\ 4

3Q

)
(x)

∣∣= I + II + III + IV.

To estimate I, by Lemma 2.2, we conclude that

‖I | Mp
q(k, µ)‖ . sup

Q∈Ω(µ)

µ(2Q)
1
p− 1

q

(∫

Q

∣∣T~b
(
f1χ 4

3Q
, f2χ 4

3Q

)∣∣qdµ
) 1

q

. sup
Q∈Ω(µ)

µ(2Q)
1
p− 1

q

∥∥T~b
(
f1χ 4

3Q
, f2χ 4

3Q

)∥∥
q

. ‖~b‖∗ sup
Q∈Ω(µ)

µ(2Q)
1
p− 1

q

(∫
4
3Q

|f1(x)|q1dµ(x)
)1/q1(∫

4
3Q

|f2(x)|q2dµ(x)
)1/q2

. ‖~b‖∗‖f1 | Mp1
q1 (k, µ)‖ ‖f2|Mp2

q2 (k, µ)‖. (3.4)

Then we estimate term II, by expanding b(x)−b(y) = b(x)−mQ̃(b)+mQ̃(b)−
b(y), we yield

∣∣T~b
(
f1χRd\ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣ ≤
∣∣(b1(x)−mQ̃(b1))T

(
f1χRd\ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣
+
∣∣(b2(x)−mQ̃(b2))T

(
f1χRd\ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣
+
∣∣T ((mQ̃(b1)− b1(y1))f1χRd\ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣
+
∣∣T (f1χRd\ 4

3Q
, (mQ̃(b2)− b2(y2))f2χ 4

3Q

)
(x)

∣∣ = II1 + II2 + II3 + II4.
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By Lemma 2.1, Hölder inequality and condition (1.1), we have

II1 ≤ |(b1(x)−mQ̃(b1))|
∣∣T (f1χRd\ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣

. |(b1(x)−mQ̃(b1))|
∫

Rd\ 4
3Q

∫
4
3Q

|f1(y1)f2(y2)|
(|x− y1|+ |x− y2|)2n dµ(y2)dµ(y1)

. |(b1(x)−mQ̃(b1))|
∫

4
3Q

|f2(y2)|dµ(y2)× `

(
4

3
Q

)−n ∫

Rd\ 4
3Q

|f1(y1)|
|x− y1|n dµ(y1)

. `(Q)−n/p|(b1(x)−mQ̃(b1))| ‖f1 | Mp1
q1 (k, µ)‖ ‖f2 | Mp2

q2 (k, µ)‖.

By (3.2), it is easily to check that

‖II1 | Mp
q(k, µ)‖ . sup

Q∈Ω(µ)

µ(2Q)−
1
q

(∫

Q

|(b1(x)−mQ̃(b1))|qdµ
) 1

q

× ‖f1 | Mp1
q1 (k, µ)‖ ‖f2 | Mp2

q2 (k, µ)‖
. ‖b1‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.5)

The same proof remains valid for II2,

‖II2 | Mp
q(k, µ)‖ . ‖b2‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.6)

For II3, by Lemma 3.2 and the estimate for II1, we have

II3 .
∣∣T ((b1 −mQ̃(b1))f1χRd\ 4

3Q
, f2χ 4

3Q

)
(x)

∣∣

.
∫

4
3Q

|f2(y2)|dµ(y2)× `

(
4

3
Q

)−n ∫

Rd\ 4
3Q

|(b1(y1)−mQ̃(b1))f1(y1)|
|x− y1|n dµ(y1)

. `(Q)−n/p‖b1‖∗‖f1 | Mp1
q1 (k, µ)‖ ‖f2 | Mp2

q2 (k, µ)‖.

Then, it is clear that

‖II3 | Mp
q(k, µ)‖ . ‖b1‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.7)

The estimate above carries more, we get

‖II4 | Mp
q(k, µ)‖ . ‖b2‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.8)

Combining from with, we deduce that

‖II | Mp
q(k, µ)‖ . (‖b1‖∗ + ‖b2‖∗)‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.9)
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By an argument similar to the above, we can obtain

‖III | Mp
q(k, µ)‖ . (‖b1‖∗ + ‖b2‖∗)‖f1 | Mp1

q1 (k, µ)‖ ‖f2|Mp2
q2 (k, µ)‖. (3.10)

Finally, we estimate IV ,
∣∣T~b

(
f1χRd\ 4

3Q
, f2χRd\ 4

3Q

)
(x)

∣∣ ≤
∣∣(b1(x)−mQ̃(b1))T

(
f1χRd\ 4

3Q
, f2χRd\ 4

3Q

)
(x)

∣∣
+
∣∣(b2(x)−mQ̃(b2))T

(
f1χRd\ 4

3Q
, f2χRd\ 4

3Q

)
(x)

∣∣
+
∣∣T ((mQ̃(b1)− b1)f1χRd\ 4

3Q
, f2χRd\ 4

3Q

)
(x)

∣∣
+
∣∣T (f1χRd\ 4

3Q
, (mQ̃(b2)− b2)f2χRd\ 4

3Q

)
(x)

∣∣ = IV1 + IV2 + IV3 + IV4.

By Lemma 2.1, Lemma 3.2 and condition (1.2), we deduce that

‖IV1 | Mp
q(k, µ)‖ . ‖b1‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.11)

‖IV2 | Mp
q(k, µ)‖ . ‖b2‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.12)

‖IV3 | Mp
q(k, µ)‖ . ‖b1‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.13)

‖IV4 | Mp
q(k, µ)‖ . ‖b2‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.14)

Thus we get

‖IV | Mp
q(k, µ)‖ . ‖~b‖∗‖f1 | Mp1

q1 (k, µ)‖ ‖f2 | Mp2
q2 (k, µ)‖. (3.15)

Combining with (3.4), (3.9), (3.10) and (3.15), which completed the proof of

Theorem 3.1. ¤

4. Appendix

In this section, we will consider another type commutator defined as

T ?
~b
(~f)(x) =

∫ m∏

i=1

(bi(x)− bi(yi))K(x, ~y)f1(y1) . . . fm(ym)dµ(~y). (4.1)

For T ?
~b
, Xu proved the Lp(µ)-boundedness as follows.

Lemma 4.1 (see e.g. [17]). Suppose T~b as in (4.1) and T satisfying conditions

(1.2) and (1.3). Let ~b = (b1, b2, . . . , bm) and bi ∈ RBMO(µ), fi ∈ Lpi(µ) for

i = 1, 2, . . . ,m. If T is bounded from L1(µ)× · · · × L1(µ) to L1/m,∞(µ), then

‖T ?
~b
(~f) | Lp(µ)‖ .

m∏

i=1

‖bi‖∗‖fi||Lpi(µ)‖,

where 1 < pi and
∑m

i=1
1
pi

= 1
p .
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The following result is true for the commutator defined by (4.1).

Theorem 4.1. Suppose T~b as in (4.1) and T satisfying conditions (1.2) and

(1.3). Let ~b = (b1, b2, . . . , bm) and bi ∈ RBMO(µ), fi ∈ Lpi(µ) for i = 1, 2, . . . ,m.

If T is bounded from L1(µ)× · · · × L1(µ) to L1/m,∞(µ), then

‖T ?
~b
(~f) | Mp

q(k, µ)‖ .
m∏

i=1

‖bi‖∗‖fi | Mpi
qi (k, µ)‖,

where 1 < qi ≤ pi and
∑m

i=1
1
pi

= 1
p ,

∑m
i=1

1
qi

= 1
q .

The proof of Theorem 4.1 is just linguistic iterations with a slight modifica-

tion of the proof of Theorem 3.1. We leave the details to the reader.
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