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SoOPDEs and nonlinear connections

By NARCISO ROMAN-ROY (Barcelona), MODESTO SALGADO (Santiago de Compostela)
and SILVIA VILARINO (A Coruiia)

Abstract. The canonical k-tangent structure on T{Q = TQ® .*. ®TQ allows us
to characterize nonlinear connections on T3 @ and to develop Giinther’s (k-symplectic)
Lagrangian formalism. We study the relationship between nonlinear connections and
second-order partial differential equations (SOPDEs), which appear in Giinther’s Lagran-
gian formalism.

1. Introduction

Lagrangian mechanics have been entirely geometrized in terms of symplec-
tic geometry. In this approach there exists certain dynamical vector field on the
tangent bundle of a manifold whose integral curves are the solutions of the Euler-
Lagrange equations. This vector field is usually called second-order differential
equation (SODE to short) or spray (sometimes it is called semispray and the term
spray is reserved to homogeneous second-order differential equations, see for ins-
tance, [1], [8]). Let us remember that a SODE on T'Q is a vector field on T'Q such
that JS = C, where J is the almost tangent structure or vertical endomorphism
and C' is the canonical field or Liouville field.

In [1], [2], [3], GRIFONE studies the relationship among SODEs, nonlinear
connections and the autonomous Lagrangian formalism. This study was extended
to the non-autonomous case by M. DE LEON and P. RODRIGUES [8].

The natural generalization to Classical Field Theory of the concept of SODE
is called second order partial differential equation (SOPDE to short). This concept
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was introduced by GUNTHER in [5] in order to develop his Lagrangian polysymp-
lectic (k-symplectic) formalism. The “phase space” of this formalism is the tan-
gent bundle of k'-velocities T}!Q, that is, the Whitney sum of k-copies of the
bundle T'Q,

TIQ :=TQa .*. ¢TQ.

In this paper we study the relationship between nonlinear connections and
arbitrary SOPDEs on T}Q.

The structure of the paper is the following:

In Section 2 we describe briefly the bundle of k!-velocities T}}@Q of a manifold
Q (see [9], [10]). After, following to GRIFONE [1], [2], [3] and SziLasI [14] we
define a canonical short exact sequence

0——=T1Q xo THQ ——= T(T}Q) —= T1Q x TQ — 0

which allows us to introduce in an alternative way the canonical geometric ele-
ments on T}Q: the Liouwville vector field and the canonical k-tangent structure,
(see also [9]). The usual definition of these geometric elements can be found in
[11], [12], [13].

In Section 3 we give two characterizations of the nonlinear connections on Té :
T!Q — Q. In the first one we use the canonical short exact sequence constructed
in Section 2 in an analogous way to that one in SziLAsI’s Handbook study [14]
for the case £ = 1; in this first characterization our theory is similar to the
theory developed in [9]. In the second one we characterize nonlinear connections
on 75 : TjQ — Q using the canonical k-tangent structure (J',...,J*). In the
particular case k = 1 we reobtain some results given by GRIFONE in [1], [2], [3].

Finally in Section 4 we recall the notion of SOPDEs (second order partial dif-
ferential equations) and we study the relationship between SOPDEs and nonlinear
connections on T} Q.

Along the paper we have used the SziLAsr’'s Handbook study [14] and GRI-
FONE’s papers [1], [3] as principal reference.

All manifolds are real, paracompact, connected and C*°. All maps are C°.
Sum over crossed repeated indices is understood.

2. The canonical short exact sequence

In this section we describe briefly the bundle of k!-velocities T}}Q of a mani-
fold @ (see [9], [10]), that is, the Whitney sum of k-copies of the tangent bundle
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TQ, which is the phase space where the k-symplectic Lagrangian formalism of
classical field theories (GUNTHER’s formalism [5]) is developed. After, following
GRIFONE [1], [2], [3] and SzIiLAsI [14] we define a canonical short exact sequence
which allows us to introduce the canonical geometric elements on TéQ, which are
necessary to develop the k-symplectic Lagrangian formalism: the Liouville vector
field and the canonical k-tangent structure.

Moreover, the canonical short exact sequence introduced in this section will
be used, in the following section, to characterize nonlinear connections on T} Q.

The tangent bundle of k'-velocities of a manifold

Let @ be a n-dimensional differential manifold, and let 7 : TQ — @ be the
tangent bundle of Q). Denote by 7}}@Q the Whitney sum TQ® .%. &T'Q of k copies
of T'Q, with projection 7'(]3 Q= Q, Tcg(vlq, ..+, Ukq) = q. The fibre over ¢ € Q
is the nk-dimensional vector space (T} Q), = T,Q® .*. &T,Q . Along this paper
an element of T}}Q will be denoted by v = (v1g, ..., Ug)-

The manifold Jg(R¥, Q) of 1-jets of maps with source at 0 € R* and projec-
tion map 74, : Jg(R*, Q) = Q, 75(jg ,0) = (0) = ¢, can be identified with 7;}Q
as follows:

Jé(RkaQ) ETQEB - ®TQ7 j(ll,qaE (v1q7"'7vkq)a

where ¢ = 0(0), and va, = a*(O)(a%(O)). T!Q is called the bundle of k-
velocities of @, see [10].

If (¢*) are local coordinates on U C @, then the induced local coordinates
(¢*,v%) on TRU = (Tg)_l(U) are given by

qi(vq) = qi(vlqa cee 7Uqu) = qi(Q)7 U%(Vq) = viA(vlm cee 7qu) = qu(qi)'

The vector bundle (T;}Q xq T, Q, (15)*7, T Q)

Let us consider the fibre bundle 7'5 : T}Q — Q and the pull-back bundle
of Tg by T(]f?, that is,
(TxQ %@ ThQ, (18)" 75, T; Q)

where the total space is the fibre product
ThQ %@ TiQ = {(vg,wo) € T{Q x TiQ | 75(vq) = 75(w,)},

and (7’5)*7'5 :TEQ xo TEQ — T Q is the canonical projection on the first factor,
that is, (75)*T5(Vq,wq) =v,.
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The map i:T}Q xo TEQ — T(TLQ)

Let V(TlQ) <8v >1§i§n,1§A§k
7'5 :TEQ — Q and deﬁne the map

be denote the vertical subbundle of

1:TQ xo TLQ — V(T}Q) C T(T{Q)
by

" d
i(vy, wy) g —’ (V1gs--1VAg + SWAg, - - Vkg)-

In coordinates, this map is given by
k
itvow)) = S ul| (1)
z:: ovYy

Canonical vector fields on 7}'Q

The canonical vector field (or Liouville vector field) A € X(T}}Q) is defined
by A(vy) = i(vg,v4). This vector field is used (among others) to introduce
the energy Lagrangian function in the k-symplectic Lagrangian formalism, see
Section 4.2.

From (1) we obtain that its coordinate expression is

The vector bundle (T}}Q xq TQ, (78)*1q, T Q)

Let us consider now the fibre bundle (Tg)*TQ, which is the pull-back of the
tangent bundle T'Q by TCS. This fibre is also called the transverse fibre to Tg. Its
total bundle space is

T Q xQTQ ={(vqg,uy) € TQ x TQ | Té(vq) = 1 (uq)},



SOPDEs and nonlinear connections 301

and (Tg)*TQ : TEQ xg TQ — TQ is the canonical projection
(TS)*TQ(quuq) = Vg

The map j: T(T}Q) — TrQ xo TQ

Let TTiQ T(T{Q) — Ti!Q be the tangent bundle of T}Q and TTCS’ :
T(Tle) — T'Q the tangent map of 75. We define the map

ji= (g, T18) : T(T; Q) = T Q xo TQ,

Zyv, = (v, Tu,75(Zy,,).

Jeberdl)

The map j is a surjective bundle homomorphism and the induced maps jy, :
Ty, (T Q) — {vq} x T,Q are linear, for all v, € T}}Q.

In SziLasr’s Handbook study [14], page 1239, one can be found the definition
of j for an arbitrary vector bundle (E,m, M). In our case E = T}Q, M = Q and
™= 7'5.

In coordinates,

)
i(Zv,) =] (Z ¢

.0
ZY —
Vg + Aa’l)i‘

The short exact sequence arising from 7'5

Lemma 2.1. The sequence

0—>T}Q xo TIQ — > T(T}Q) — = T}Q xo TQ —=0 (5

~.

is a short exact sequence of vector bundle maps, that we will be called the cano-

T,Q

nical short exact sequence arising from 75.

PROOF. This result can be proved for a general vector bundle (E, 7, M), see
[14]. In any case the principal point of the proof is that joi = 0, which is an
immediate consequence of (1) and (4). O



302 Narciso Romén-Roy, Modesto Salgado and Silvia Vilarifio

Canonical k-tangent structure on 7}Q

The canonical k-tangent structure is a certain family of k£ tensor fields of
type (1,1). This structure was introduced in [6], [9]. Next we will describe an
alternative definition of this structure.

We introduce the maps ka from T} Q xo TQ to TEQ x ¢ T} Q as follows

ka :TEQ xoTQ — TQ xo TiQ

A 1< A<LE.
(Vgsug) — (vg,(0,...,0,74,0,...,0)

The composition J4 = ioka oj is a tensor field on T}Q of type (1,1)
displayed by the following diagram:
JA
T(T}Q) —= TiQ x TQ 2 T}Q xq TiQ —> T(T}Q).

In coordinates,

A

zZ" a?f' v, T Zy Bffq v (va, Zlaiqi q) — (vq,(0,...,2° 8?11- o ,0) —Z2° 353'4 v’
or equivalently

Jt= — ®@dq'. 6

gu, © 4 (6)

The set (J%,...,J*) is called the canonical k-tangent structure on TLQ, see [6],

[11], [13]. Along this paper we will use this structure to characterize nonlinear
connections on 75 THQ = Q.

. . k.l
3. Nonlinear connections on TG T.Q — Q

Let us remember that an Ehresmann connection or nonlinear connection
on 7'5’ : TEQ — @ is a differentiable subbundle H (T} Q) of T(T}Q), called the
horizontal subbundle of the connection, which is complementary to the vertical
subbundle V(T}}Q), that is, T(T}}Q) = H(T{ Q) & V(T Q).

In this section we give two characterizations of the nonlinear connections
on 75 : TEQ — Q. In the first one we use the canonical short exact sequence
constructed in the above section in an analogous way to that one in Szilasi’s
Handbook study [14] for the case k = 1. This first characterization also appears
in [9]. After we characterize nonlinear connections on T(g : THQ — Q using the
k-tangent structure (J1,...,J*). In the particular case k = 1 this second result
was obtained by Grifone [1], [2], [3].
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3.1. The horizontal maps.

Definition 3.1. A right splitting of the short exact sequence

0 — TIQ xq T}Q ——> T(T}Q) ——>T}Q xo TQ —> 0,

is called a horizontal map for 765. This map is a Tj}@-morphism K : T}/Q xq

TQ — T(T}Q) of vector bundles (i.e.q the morphism over the base is idriq)
satisfying
j O j'( = 1TéQ><QTQ'

Next it will be shown that to give a horizontal map for Té is equivalent to
give a nonlinear connection on 74 : TAQ — Q.

Proposition 1. The horizontal map H : T{Q xqo TQ — T(T}Q) is locally

given by
) @

where v, € T}Q, uy € TQ and the functions Nﬁu are called the components of

0

. : o
:H:(V(huq) =u <8ql y

N~ —_—
Az(Vq) 8’[)54

Vq

the connection defined by H.

PROOF. We write

i 0
- NA(quuq)

. 0
H(vg,ug) = H'(vg, ug) v
Vg A

oq*

Vq

for some functions on H®, N defined only locally on T} Q x¢o TQ.
Since jo H = 1714y, 1q, from (4), we obtain

0 i 0
o”?qi - NA(Vqu)

H(v,, u,) = u* —
( q» q) va 8’034

On the other hand, the induced maps

:qu : (Tle XQ TQ)vq = {Vq} X TqQ — Tvq (Tle)

)
L) )

are linear for all v, € T}}Q, so from (8) we obtain that

;0 ; 0
X =X t =u'H —_
(Vg,uq) (vq,u aql‘q> u <vq, o

(0 . 0 0
=u'l =—=| —N,(vg,=—| )—
(3(]1 e alve q’ q)avf4
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Now defining the functions N Z\i on the domain of an induced chart of T} Q by
j j 9 -
Nii(vq) = N3 V‘I’aiqi’ , 1<d,5<n, 1<A<E
q

we obtain (7). O

To each horizontal map H : TEQ xo TQ — T(T}}Q) we associate a horizontal
and a vertical projector as follows:

(1) The horizontal projector is given by h:= Ho j: T(T}Q) — T(T}Q).
From (4) we deduce that the local expression of h is

o 0 .
h= (L N 2 ) gdg, 10
(aql A’av;) ! (10

and we have h? = h,Kerh = V(T}!Q) and

Imh = < o —NZ”6.> :
an avi i=1,...,n

(2) The vertical projector is given by v := lrriq) — h and it satisfies

v =v, Kerv =Imh, Imv = V(TLQ).

From (10) we obtain
9 i NI
v =—Q (dv} + N3,dq"). (11)
oy
Since v := lp(71g) — h and h? = h we obtain that vh = hv = 0.
The following Lemma is well known.
Lemma 3.1. Let M be an arbitrary manifold and I" an almost product structure,

i.e., I' is a tensor field of type (1,1) such that I'? = 1pys. If we put

1 1
h = 5(1TM +F), VvV = 5(1TM - F)

then
h?=h hv=vh=0 v?’=v. (12)

Conversely if h and v are two tensor fields of type (1,1) and they satisfy (12)
then I' = h — v is an almost product structure, and we have TM =Imh & Imv.



SOPDEs and nonlinear connections 305
Then, in our case M = Tle we have
T(T{Q) =Imh @ Imv =Imh @ V(TLQ)

Thus Im h is the nonlinear connection associated to J.

We have seen that to each horizontal map H corresponds a horizontal pro-
jector h which defines a nonlinear connection on T} Q. The converse of this is
given in Lemma 1, page 1249 SzivLasI [14], for an arbitrary vector bundle; in our
case one obtains.

Lemma 3.2. If h € T{(T}}Q) is a horizontal projector for 7f,, that is h®> = h and
Kerh = V(T Q), then there exists an unique horizontal map H : TLQ x o TQ —
T (T Q) such that H o j=h. O

9
oqt

; 0
N,]M(Vq)i

X (v,) = 940wy, X o) = X 5
VA

Vq

Let X € X(Q) be a vector field on Q. Then the horizontal lift X" of X to
X(T!Q) is defined by
) o
Vq
where X = X? aai.
q

The curvature : X(T}Q) x X(T{Q) — X(T1Q) of the horizontal map H is
defined as @ = —3[h, h] and it is locally given by

ONY, N’ \ @ :
! N Ai N Ak , da® A d k. 14
aqz 8qk + Bk 6’0%1 Bi (911? 6’034 ® aq q ( )

2

3.2. Nonlinear connections and canonical k-tangent structure on 7}Q.
In this section we characterize nonlinear connections on Tle using the canonical
k-tangent structure (J*, ..., J*).

Proposition 2. Let I' be a tensor field of type (1,1) on T}}Q satisfying
J4I=J% and ToJ*=-J4 1<A<Ek. (15)
Then T is an almost product structure, that is, I'? = 1T(T,§Q)-

PROOF. For each vector field Z on T}Q we have JA(T'Z)=JA(Z), 1< A<k.
Then JA(T'(Z) — Z) = 0, that is, the vector field I'(Z) — Z is vertical, hence it
can be written as follows:
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where Wy, ..., W}, are vector fields on T}}Q. Finally we obtain

k k
I%(Z)=T(N(2)) =T(Z+ Y _ J?(Wp)) =T(2) + Y _ T(J?(Wp))
B=1 B=1
k
=I(2)-Y_ J?(Wg) =2 0

B=1
From (15) we deduce that I is locally given by

0 ;0 ; 0 ;
r={—+1%,— dq" — — @ dv’ 1
(8q1+ Alavg)(@ T 1o

where Fiu are functions defined in a neighbourhood of T}} @ called the components
of T.

Proposition 3. To give a nonlinear connection N on Tg : T,iQ — (@ is equivalent
to give a tensor field I' of type (1, 1) satisfying (15).

PROOF. Let NV be a nonlinear connection on 7-5 : TEQ — Q with horizontal
projector h. Then I' = 2h — 1711, satisfies (15). In fact, one obtains:

JAol =2(J%h) —JA =274 — g4 =J4
where we have used that J4 o h = J4. On the other hand, since ho J4 = 0 we
FoJ%=2(oJ4) - J4=—J4
Conversely, given I' satisfying (15) from the above proposition we obtain

that I'2 = lr(T1Q) then from Lemma 3.1 we deduce that there exists a horizontal
projector h = %(1T(T]3Q) + 1), with local expression

1 o 1., 0 2-
h=S(rae +1) = (W + 2FA¢M> ®dq",

which defines a nonlinear connection Ny. Moreover the components of the non-
linear connection Nr are given by

, 1 .
(NF)in = _§FJAi- O
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4. k-vector fields. Second order partial differential
equations (SOPDEs)

Second order differential equations, usually called SODEs play an important
role in the geometric description of Lagrangian mechanics.

In this section we introduce SOPDEs (second order partial differential equa-
tions) which are a generalization of the concept of SODE. We study the relati-
onship between SOPDEs and nonlinear connections on 7@ and we also indicate
the role of SOPDEs in Lagrangian classical field theories. Let us note that the role
of SOPDE’s in the k-symplectic [5], [11], [13] and k-cosymplectic [7] Lagrangian
formalisms of classical field theories is very important and similar to the role of
second-order differential equations, SODE’s, in Lagrangian mechanics.

Definition 4.1. Let M be a manifold and 7§, : T!M — M the bundle of k!-

velocities. A k-vector field on M is a section & : M —s TiE M of the projection Tk .

Since T} M is the Whitney sum TM@ .*. &@TM of k copies of TM, we
deduce that a k-vector field £ defines a family of k vector fields {1, ..., &} on M
by projecting £ onto every factor. For this reason we will denote a k-vector field

& by (51""7516)'

Definition 4.2. An integral section of a k-vector field £ = (&1, ..., &) passing th-
rough a point z € M is amap ¢ : Uy C R¥ — M, defined on some neighbourhood
Up of 0 € RF, such that

d(0) =z, @u(t) (8(314’) =E&a(o(t)) for every t € Uy, (17)

or equivalently, ¢ satisfies £ o ¢ = ¢!, where ¢(1) is the first prolongation of ¢
defined by

oW Uy cRF — T M
t — () = jodr, e(t) = o(E +t),
for every t,t € R¥ such that t +t € Up.

A k-vector field £ = (&1,...,&k) on M is said to be integrable if there is an
integral section passing through each point of M.

In local coordinates one obtains

pMI (L, ... tF) = (¢i(t1,...,tk), gfj (tl,...,tk)). (18)
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Let us observe that in the case k = 1, an integral section is an integral curve
and the first prolongation is the tangent lift from a curve on M to T'M.

Next we will introduce the notion of SOPDE, which is a class of k-vector fields
on T, le We shall see that the integral sections of SOPDEs are first prolongations
¢ of maps ¢ : RF — Q.

If F: M — N is a differentiable map between the manifolds M and N, then
TLF : TEM — TN is defined by TEF (v1y, - . ., vkg) = (Fu(@)(v1g)s - -, Fu(q)vig),
or equivalently T} F(jlo) = ji(F o o).

Definition 4.3. A k-vector field £ = (&1,...,&) on TEQ is a second order partial
differential equation (SOPDE) if it is also a section of the projection Tkl(TCS) :
THTEQ) — T Q; that is,

Ti(78) 0 & = 1p1q- (19)

Let us observe that {4 € X(T}Q) and (19) means

(TS)*(Vq)(EA(Vq)) =va, A=1,... k.

where vq = (Vig,. .., Ukg)-

Let (¢*) be a local coordinate system on U C @ and (g*, v%) the induced local
coordinate system on TklU . From (19), a direct computation shows that the local
expression of a SOPDE & = (&1,...,&;) is

o ) .0
ald' i) = vh g + (€. LSASH (20)
where (£4)% € € (TLU).
If o : R¥ — T!Q is an integral section of a SOPDE ({1, ..., &) locally given
by ¢(t) = (¢'(t), p3(t)) then £a(p(t)) = @« (t)[0/0t4 ()] and thus
9o , , 9ot ‘
OO0 = vh(p(t) =60, B = (€whle(). (@)

From (18) and (21) we obtain:

Proposition 4. Let £ = (&,...,&) be an integrable SOPDE on T} Q. If ¢ is an
integral section of & then ¢ = ¢V, where ¢V is the first prolongation of the map
k

o= Tg op:RF% TIQ 3 Q@ and it is a solution to the system

DO 0 = (E05(0®) = (€5 (6'®), 2 (1), (22)

Conversely, if ¢ : R¥ — Q is any map satisfying (22), then ¢V is an integral
section of £ = (&1,...,&k). a
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For an integrable SOPDE we have (£4)% = (£g)4.
The following characterization of SOPDEs can be given using the canonical
k-tangent structure of T} Q (see (3), (6) and (20)):

Proposition 5. A k-vector field = (&1,...,&;) on T}Q is a SOPDE if, and only
if, SA(T4) = Ay, forall A {1,... k} . |
Ezample 1. Let us consider the following SOPDE (&1, &) on T4 R | with coordinates
(q7'l)1,’U2), glVen by 5 . ﬁ_ﬁv i_ﬁv i

R VR C R TN Ch T

0 k 0 1 0

_,, 9 k0 1 0 P
S TR VA ma S (23)

Let ¢ : (t,z) € R? = R be a map. If ¢(V) : R? — TJR is an integral section of
(£1,&2) then from (22) we obtain

k 0¢ 0%¢

o o (24)
R )

X290z Otox (25)
19¢ 0%
T (26)

Equation (26) is the one-dimensional heat equation where k& is the thermal diffu-
sivity and the solutions ¢(¢, x) represents the temperature at the point = of a rod
at time ¢.

Any integral section of this SOPDE is the first prolongation of a solution of
the heat equation. The general solution of (26) is

o(t,x) = e 37" {CCOS (§> + Dsin (%)} = Ae>?"sin (§ + 5)
where \, C' and D are arbitrary constants and A = /C?2 + D2, tand = %. Thus

any solution of (26) is solution of (24) and (25).

4.1. Relationship between SOPDEs and nonlinear connections. In this
section we prove that each nonlinear connection defines a second order partial
differential equation (SOPDE) on T}}Q and conversely, given a SOPDE ¢ on T Q a
nonlinear connection N¢ on TCS : TEQ — Q can be defined.

SOPDE associated to a nonlinear connection

Let us consider a nonlinear connection on TCS : T,gQ — @ with horizontal
map H : T}Q xg TQ — T(T}Q). For each A =1,...,k we define &4+ € X(T}Q)
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as follows
&t (vq) = H(vg,va,) where vgq = (vig,..., V) € ThQ.
From (7) we obtain that the SOPDE &3¢ = (&, ..., &%) associated to H is
; [0 0
ehtv) = (5, ~Nbogoel, ) 1)

Nonlinear connection associated to a SOPDE

Theorem 4.1. To each SOPDE & on T}'Q) a nonlinear connection N¢ may be
associated, with horizontal projector

k
1 A
he = <1T<T;Q> - Az:l Le,J ) (28)

PROOF. Let £ = (&1,...,&) be a SOPDE on T} Q locally given by

.0 ;0
gszAaiqijL(fA)BT%a A=1,... k.

Since L¢, JA(Z) = [€a, JAZ] — JA[€a, Z] for all vector field Z on T}Q, we
obtain

k k j
0 A(a)s O 4 0 ,
Le SA:_<k -+ iB—, ®dq' + 7 @ dvyp.
,42:1 A dq Agl oYy ) ov'y

Then a straightforward computation in local coordinates shows that h is
locally given by

0 1 <~ 9(Ea)l, O .
h; = | — + AB—Z. ® dg’, (29)
¢ <8q3 k+1AZ::1 ovl, vl

and satisfies

hi =h: and Kerh: =V(7;Q).

So defining v¢ = lp(r1q) — he we obtain, see Lemma 3.1, that T(T'Q)
Imhe & V(TLQ).

ol
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In the case k = 1, the horizontal projector he given in (28), coincides with
the projector given by GRIFONE [1], [3] and by SzIiLAsI [14]. From (10) and (29)
we deduce that the components of the connection V¢ are given by

1 = 0,
N =~ 2 ff‘A)B (30)

We can associate to each SOPDE £ the almost product structure I'c = 2hg —
1T(T,§Q)7 locally given by

k
1 A
Pe=717 ((1 — W) lprig) =2 Lead ))

A=1

In the case k = 1, this tensor field is I'y = —L¢J, where J is the canonical
tangent structure on 7'Q). The nonlinear connection associated to this structure
was introduced by GRIFONE in Proposition 1.41 of [1] and Proposition 1.3 of [3].

A turned out that there is a correspondence such that to each nonlinear
connection on T} Q a SOPDE ¢ is associated and conversely, given a SOPDE on
Tle there exists a nonlinear connection associated to this SOPDE. Is this cor-
respondence a bijection? In general the answer to this question is negative. In
fact:

(1) Let £ be a SOPDE and N¢ be the nonlinear connection associated to {&. We

denote by 3¢ the horizontal map associated to Ne. From (27) and (30) we
deduce that £ = {¢, if and only if

k

o) |
b=y X My 1capsnisica
k+lc v,

When k = 1 we obtain §5¢, = £ if and only if % gﬂ v' = ¢* which means

that the functions ¥ are positive-homogeneous of degree 2 (see [3]).

(2) Let us consider now a nonlinear connection N defined from a horizontal
map H, the SOPDE &g5¢ associated to this connection and the connection Ng,,
associated to the SOPDE &y.

From (27) and (30) we obtain that N = N, if and only if

J
Nj _v%aNBl
Bi — i
ovy

1<4,j<n, 1<B<k.
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4.2. SOPDEs in Classical Field Theory. In this subsection, we recall the
Lagrangian formalism developed by GUNTHER [5], see also [11]. Here we show
the role of SOPDEs and its integral sections in the Lagrangian Field Theory.

Let L : T}Q — R be a Lagrangian, that is a function L(¢?,0¢'/0t*) that
depend on the components of the field and on its first partial derivatives. This
Lagrangian is called autonomous in the sense that not depends on the time-space
variables (4).

The generalized Euler-Lagrange equations for L are:

o oL . O
; 57‘ (87}14 )) = 87(11 o) UA(¢(t)) = OtA (31)

whose solutions are maps 1 : R¥ — T1Q with ¥(t) = (¢(t), % (t)). Let us
observe that 9(t) = ¢(M(t), for ¢ = 7'5 o 1. Using the canonical k-tangent
structure, one introduces a family of 1-forms 6% on T}Q, and a family of 2-forms

wit on TLQ , as follows
0 =dLoJ?, wi=-dby, 1<A<E. (32)

In natural local coordinates we have

oL 0L . A 2L _ .
oA = wh = 7 d¢t Adg? + ———dg* A dv. 33
L avA L aq‘]avk q q a’[)JBa’UA q B ( )

We also introduce the energy function E;, = A(L) — L € C®(T}Q), whose
local expression is

; 0L
A

Definition 4.4. The Lagrangian L : T} Q — R is said to be regular if the matrix
o’L
( v, Bul,

) is not singular at every point of T} Q.
Let (&1,...,&) be a k-vector field on T}}@Q locally given by

9 ‘
€a= (€A)lafqi + (5A)338 :

Then from (33) and (34) we deduce that (1,...,&) is a solution to the equation

k

D e, wit =dEy (35)
A=1



SOPDEs and nonlinear connections 313

if, and only if, (€4)° and (£4)% satisfy the system of equations

0?L 0?L , 0?L ; ; 0°L oL
(2 PR

— — - - _ v . i )
dqiov?, 07 O0vyy Yy ovy Aogiovt,  Oq'
0?L i o?L
EY (€a)' = PRI
v 0vYy Ov Ovly

If the Lagrangian is regular, the above equations are equivalent to the equa-
tions

L ;. 9L oL

- — V4 + - - i - 36
dg7 vy A Yy ovy () aq’ (36)
(a)'=vh, 1<i<n, 1<A<E. (37)

Thus, if L is a regular Lagrangian, we deduce:

o If (&1,...,&) is a solution of (35) then it is a SOPDE, (see (37)).

e Since (&1,...,&k) is a SOPDE, from Proposition 4 we know that, if it is in-
tegrable, then its integral sections are first prolongations ¢ : R — TIQ
of maps ¢ : R¥ — @, and from (36) we deduce that ¢ is a solution to the
Euler-Lagrange equations (31).

» Equation (36) leads us to define local solutions to (35) in a neighbourhood
of each point of T} Q and, using a partition of unity, global solutions to (35).

o In the case k = 1, equation (35) reduces to tewy, = dEy, which is the Euler-
Lagrange equation in mechanics.

Example 2. Let L : TfR — R be a Lagrangian given by

L:TyR =R, L(q,v1,v2,v3) = = (v — (v +13)). (38)

1
2

Let us suppose that (£1,&2,&3) is a solution of the equation (35):

3
Z N wf =dEy.
A=1

Since L is regular we know that (£1,&2,&3) is a SOPDE satisfying (36). Then each
&4 is locally given by

0 1<A<L3.

0 0 0
€a :UA%+(§A)1671}1+(§A)287U2+(§A)367v37 <
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From (36) we have
9L
a 6’0,481}3

From (22) and (39) we obtain that if ¢(!)(t) is an integral section of the
3-vector field (£, &2, &3) then ¢ : RF — Q satisfies the equation

82(;5 5 62¢ 82¢)
B <a<t2>2 - a<t3>2)

which is the 2-dimensional wave equation.

0 (€a)B = (&)1 — [(&)2 + (&3)3)- (39)

0:

4.3. Linearizable SOPDESs. In this section we introduce the definition of li-
nearizable SOPDE and we establish a necessary condition so that a SOPDE is li-
nearizable.

Definition 4.5. A SOPDE & = (&1,...,&;) on T1Q is said to be linearizable if in
a neighbourhood of each point on T} @, its components (€a)’; can be written as

follows
c

(a)l = (Ahp), v& + (Bhp), d" + Chp (40)
with (A%5), (B,) | €, €R.

Proposition 6. If ¢ is linearizable then the curvature of the nonlinear connection
JH¢ vanishes.

PROOF. Since ¢ is linearizable, from (30) and (40) we obtain that the com-
ponents of the nonlinear connection H, are

k
3 1 3 A
(NE)szik_;'_l Z ( AB)j'
A=1

Now from (14) we deduce that the curvature {2 vanishes. O

In the particular case of a linearizable SOPDE, Proposition 4 can be formula-
ted as follows.

Proposition 7. Let £ = (&1,...,&;) be a linearizable and integrable SOPDE. If
the first prolongation of ¢ : R*¥ — @Q is an integral section of ¢ = (£y,. .., &) then
we have

0?7 c O™

W(t) = <§A)é(¢(l)(t)) = (AQB)m pel + (B£B>m ¢m(t) + eJAB (41)

Conversely, if ¢ : R¥ — Q is a map satisfying (41), then ¢(!) is an integral section
of €.
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Ezample 3. From (23) and (40) we deduce that the SOPDE (23) is linearizable.
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