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A uniqueness theorem for meromorphic maps with moving
hypersurfaces

By GERD DETHLOFF (Brest)and TRAN VAN TAN (Hanoi)

Abstract. In this paper, we establish a uniqueness theorem for algebraically non-

degenerate meromorphic maps of Cm into CPn and slowly moving hypersurfaces Qj ⊂
CPn, j = 1, . . . , q in (weakly) general position, where q depends effectively on n and on

the degrees dj of the hypersurfaces Qj .

1. Introduction

One of the most striking consequences of Nevanlinna’s theory was his “five

values” theorem, which says that if f and g are non-constant meromorphic func-

tions on C such that f−1(ai) = g−1(ai) for five distinct points ai in the extended

complex plane, then f = g. This theorem is an example of what is now known

as “uniqueness theorem”. In 1975, Fujimoto generalized this result of Nevanlinna

to the case of meromorphic maps of Cm into CPn. In the last years, many uni-

queness theorems for meromorphic maps with hyperplanes (both for fixed and

for moving ones) have been established. For the case of hypersurfaces, however,

there are so far only the uniqueness theorem of Thai and Tan [10] for the case of

Fermat moving hypersurfaces and the one of Dulock and Ru [5] for the case of

(general) fixed hypersurfaces. More precisely, in [5], Dulock and Ru prove that

one has a uniqueness theorem for algebraically non-degenate holomorphic maps

f, g : C → CPn satisfying f = g on ∪q
i=1(f

−1(Qi) ∪ g−1(Qi)), with respect to
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q > (n+ 1) + 2Mn
d̃

+ 1
2 fixed hypersurfaces Qi ⊂ CPn in general position, where

d̃ is the minimum of the degrees of these hypersurfaces and M is the truncation

level in the Second Main Theorem for fixed hypersurface targets obtained by An-

Phuong [1] with ε = 1
2 . Their method of proof comes from their paper [4], where

they prove a uniqueness theorem for holomorphic curves into abelian varieties.

In this paper, by a method different to the one used by Dulock and Ru, we

prove a uniqueness theorem for the case of slowly moving hypersurfaces (Corol-

lary 3.1 below). More precisely, we prove that one has a uniqueness theorem for

algebraically non-degenate meromorphic maps f, g : Cm → CPn satisfying f = g

on ∪q
i=1(f

−1(Qi)∪ g−1(Qi)) with respect to q > (n+1)+ 2nL
d̃

+ 1
2 moving hyper-

surfaces Qi ⊂ CPn in (weakly) general position, where d̃ is the minimum of the

degrees of these hypersurfaces and L is the truncation level in the Second Main

Theorem for moving hypersurface targets obtained by the authors in [2] with

ε = 1
2 . Moreover, under the additional assumption that the f−1(Qi), i = 1, . . . , q

intersect properly, q > (n+ 1) + 2L
d̃

+ 1
2 moving hypersurfaces are sufficient. We

remark that in the special case of fixed hypersurfaces, our result gives back the

uniqueness theorem of Dulock and Ru (remark that L ≤ M in this case). Moreo-

ver, we give our uniqueness theorem in a slightly more general form (Theorem 3.1

below), requiring assumptions on the (p− 1) first derivatives of the maps, which

gives in return a better bound on the number of moving hypersurfaces in CPn,

namely q > (n+ 1) + 2nL
pd̃

+ 1
2 respectively q > (n+ 1) + 2L

pd̃
+ 1

2 .

2. Preliminaries

For z = (z1, . . . , zm) ∈ Cm, we set ‖z‖ =
(∑m

j=1 |zj |2
)1/2

and define

B(r) = {z ∈ Cm : ‖z‖ < r}, S(r) = {z ∈ Cm : ‖z‖ = r},

dc =

√−1

4π
(∂ − ∂), V =

(
ddc‖z‖2)m−1

, σ = dc log ‖z‖2 ∧ (
ddc log ‖z‖)m−1

.

Let L be a positive integer or +∞ and ν be a divisor on Cm. Set |ν| =

{z : ν(z) 6= 0}. We define the counting function of ν by

N (L)
ν (r) :=

∫ r

1

n(L)(t)

t2m−1
dt (1 < r < +∞),
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where

n(L)(t) =

∫

|ν|∩B(t)

min{ν, L} · V for m ≥ 2 and

n(L)(t) =
∑

|z|≤t

min{ν(z), L} for m = 1.

Let F be a nonzero holomorphic function on Cm. For a set α = (α1, . . . , αm)

of nonnegative integers, we set |α| := α1+ · · ·+αm and DαF := ∂|α|
∂α1z1...∂αmzm

·F
We define the zero divisor νF of F by

νF (z) = max{p : DαF (z) = 0 for all α with |α| < p}.

Let ϕ be a nonzero meromorphic function on Cm. The zero divisor νϕ of ϕ

is defined as follows: For each a ∈ Cm, we choose nonzero holomorphic functions

F and G on a neighborhood U of a such that ϕ = F
G on U and dim

(
F−1(0) ∩

G−1(0)
) ≤ m− 2, then we put νϕ(a) := νF (a).

Set N
(L)
ϕ (r) := N

(L)
νϕ (r). For brevity we will omit the character (L) in the

counting function if L = +∞.

Let f be a meromorphic map of Cm into CPn. For arbitrary fixed homo-

geneous coordinates (w0 : · · · : wn) of CPn, we take a reduced representation

f = (f0 : · · · : fn), which means that each fi is a holomorphic function on Cm and

f(z) = (f0(z) : · · · : fn(z)) outside the analytic set {z : f0(z) = · · · = fn(z) = 0}
of codimension ≥ 2. Set ‖f‖ = max{|f0|, . . . , |fn|}.

The characteristic function of f is defined by

Tf (r) :=

∫

S(r)

log ‖f‖σ −
∫

S(1)

log ‖f‖σ, 1 < r < +∞.

For a meromorphic function ϕ on Cm, the characteristic function Tϕ(r) of ϕ

is defined by considering ϕ as a meromorphic map of Cm into CP 1.

Let f be a nonconstant meromorphic map of Cm into CPn. We say that a

meromorphic function ϕ on Cm is “small” with respect to f if Tϕ(r) = o(Tf (r))

as r → ∞ (outside a set of finite Lebesgue measure).

Denote by M the field of all meromorphic functions on Cm and by Kf the

subfield of M which consists of all “small” (with respect to f) meromorphic

functions on Cm.

For a homogeneous polynomial Q ∈ M[x0, . . . , xn] of degree d ≥ 1 we write

Q =
∑

I∈Td
aIx

I , where Td :=
{
(i0, . . . , in) ∈ Nn+1

0 : i0 + · · · + in = d
}

and

xI = xi0
0 . . . xin

n for x = (x0, . . . , xn) and I = (i0, . . . , in) ∈ Td. Denote by Q(z) =
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Q(z)(x0, . . . , xn) =
∑

I∈Td
aI(z)x

I the homogeneous polynomial over C obtained

by evaluating the coefficients ofQ at a specific point z ∈ Cm in which all coefficient

functions of Q are holomorphic.

Let Q ∈ M[x0, . . . , xn] of degree d ≥ 1 with Q(f) := Q(f0, . . . , fn) 6≡ 0. We

define

N
(L)
f (r,Q) := N

(L)
Q(f)(r) and f−1(Q) := {z : νQ(f) > 0}.

The First Main Theorem of Nevanlinna theory gives, for Q =
∑

I∈Td
aIx

I

with Q(f) := Q(f0, . . . , fn) 6≡ 0:

N(r,Q) ≤ d · Tf (r) +O

( ∑

I∈Td

TaI (r)

)
.

Let

Qj =
∑

I∈Tdj

ajIx
I (j = 1, . . . , q)

be homogeneous polynomials in Kf [x0, . . . , xn] with degQj = dj ≥ 1. Denote

by K{Qj}q
j=1

the field over C of all meromorphic functions on Cm generated by

all quotients
{ajI1

ajI2
: ajI2 6≡ 0, I1, I2 ∈ Tdj ; j ∈ {1, . . . , q}}. We say that f is

algebraically nondegenerate over K{Qj}q
j=1

if there is no nonzero homogeneous

polynomial Q ∈ K{Qj}q
j=1

[x0, . . . , xn] such that Q(f0, . . . , fn) ≡ 0.

We say that a set {Qj}qj=1 (q ≥ n + 1) of homogeneous polynomials in

Kf [x0, . . . , xn] is admissible (or in (weakly) general position) if there exists z ∈ Cm

in which all coefficient functions of all Qj , j = 1, . . . , q are holomorphic and such

that for any 1 ≤ j0 < · · · < jn ≤ q the system of equations



Qji(z)(x0, . . . , xn) = 0

0 ≤ i ≤ n
(2.1)

has only the trivial solution (x0, . . . , xn) = (0, . . . , 0) in Cn+1. We remark that in

this case this is true for the generic z ∈ Cm.

In order to prove our result for (weakly) general position (under the stron-

ger assumption of pointwise general position this can be avoided), we finally will

need some classical results on resultants, see Lang [8], section IX.3, for the pre-

cise definition, the existence and for the principal properties of resultants, as

well as Eremenko-Sodin [6], page 127: Let
{
Qj

}n

j=0
be a set of homogeneous

polynomials of common degree d ≥ 1 in Kf [x0, . . . , xn]

Qj =
∑

I∈Td

ajIx
I , ajI ∈ Kf (j = 0, . . . , n).
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Let T = (. . . , tkI , . . . ) (k ∈ {0, . . . , n}, I ∈ Td) be a family of variables. Set

Q̃j =
∑

I∈Td

tjIx
I ∈ Z[T, x], j = 0, . . . , n.

Let R̃ ∈ Z[T ] be the resultant of Q̃0, . . . , Q̃n. This is a polynomial in the variables

T = (. . . , tkI , . . . ) (k ∈ {0, . . . , n}, I ∈ Td) with integer coefficients, such that the

condition R̃(T ) = 0 is necessary and sufficient for the existence of a nontrivial

solution (x0, . . . , xn) 6= (0, . . . , 0) in Cn+1 of the system of equations



Q̃j(T )(x0, . . . , xn) = 0

0 ≤ i ≤ n.
(2.2)

From equations (2.2) and (2.1) is follows immediately that if

{Qj = Q̃j(ajI)(x0, . . . , xn), j = 0, . . . , n}
is an admissible set,

R := R̃(. . . , akI , . . . ) 6≡ 0. (2.3)

Furthermore, since akI ∈ Kf , we have R ∈ Kf . We finally will use the following

result on resultants, which is contained in Theorem 3.4 in [8] (see also Eremenko-

Sodin [6], page 127, for a similar result):

Proposition 1. There exists a positive integer s and polynomials

{b̃ij}0≤i,j≤n in Z[T, x], which are (without loss of generality) zero or homogenous

in x of degree s− d, such that

xs
i · R̃ =

n∑

j=0

b̃ijQ̃j for all i ∈ {0, . . . , n}.

If we still set

bij = b̃ij
(
(. . . , akI , . . . ), (f0, . . . , fn)

)
, 0 ≤ i, j ≤ n,

we get

fs
i ·R =

n∑

j=0

bij ·Qj(f0, . . . , fn) for all i ∈ {0, . . . , n}. (2.4)

In particular, ifD ⊂ Cm is a divisor contained in all divisors f−1(Qj), j = 0,. . . , n,

then R vanishes on D: This follows from (2.4) since f = (f0 : · · · : fn) is a reduced

representation (and it follows in principle already directly from the definition of

the resultant).
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3. Main result

Let f , g be nonconstant meromorphic maps of Cm into CPn. Let
{
Qj

}q

j=1

be an admissible set of homogeneous polynomials in Kf [x0, . . . , xn] with degQj =

dj ≥ 1. Denote by d, d∗, d̃ respectively the least common multiple, the maximum

number and the minimum number of the dj ’s. Put N=d ·(4(n+1)(2n−1)(nd+1)+

n+ 1). Set t{Qj}q
j=1

= 1 if the field K{Qj}q
j=1

coincides with the complex number

field C (ie. all Qj are fixed hypersurface targets) and

t{Qj}q
j=1

=

((
n+N

n

)2

.

(
q

n

)

+

[((
n+N
n

)2
.
(
q
n

)− 1
)
. log

((
n+N
n

)2
.
(
q
n

))

log
(
1 + 1

4(n+N
n )N

) + 1

]2)(n+N
n )

2
.(qn)−1

if K{Qj}q
j=1

6= C, where we denote [x] := max{k ∈ Z : k ≤ x} for a real number x.

Let L =
[d∗·(n+N

n )t{Qj}
q
j=1

−d∗

d + 1
]
.

With these notations, we state our main result:

Theorem 3.1. a) Assume that f , g are algebraically nondegenerate over

K{Qj}q
j=1

and satisfy

i) Dα
(
fk
fs

)
= Dα

(
gk
gs

)
on

(∪q
i=1 (f

−1(Qi)∪g−1(Qi))
)\(Zero(fs.gs)

)
, for all

|α| < p, 0 ≤ k 6= s ≤ n, where p is a positive integer and (f0 : · · · : fn),
(g0 : · · · : gn) are reduced representations of f, g respectively.

Then for q > n+ 2nL
pd̃

+ 3
2 , we have f ≡ g.

b) Assume that f, g as in a) satisfy i) and

ii) dim
(
f−1(Qi) ∩ f−1(Qj)

) ≤ m− 2 for all 1 ≤ i < j ≤ q.

Then for q > n+ 2L
pd̃

+ 3
2 , we have f ≡ g.

We note that if p = 1 the condition i) becomes the following usual condition:

f = g on ∪q
i=1(f

−1(Qi)∪g−1(Qi)), and we state this case again explicitly because

of its importance:

Corollary 3.1. a) Assume that f , g are algebraically nondegenerate over

K{Qj}q
j=1

and satisfy

i) f = g on ∪q
i=1(f

−1(Qi) ∪ g−1(Qi)).

Then for q > n+ 2nL
d̃

+ 3
2 , we have f ≡ g.
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b) Assume that f , g as in a) satisfy i) and

ii) dim
(
f−1(Qi) ∩ f−1(Qj)

) ≤ m− 2 for all 1 ≤ i < j ≤ q.

Then for q > n+ 2L
d̃

+ 3
2 , we have f ≡ g.

In order to prove Theorem 3.1, we need the following two results. The first

one is similar to Lemma 5.1 in Ji [7], the second one is a special case of our main

result in [2].

Proposition 2. Let A1, . . . , Ak be pure (m−1)-dimensional analytic subsets

of Cm. Let f1, f2 be meromorphic maps of Cm into CPn. Then there exists a

dense subset C ⊂ Cn+1\{0} such that for any c = (c0, . . . , cn) ∈ C the hyperplane

Hc defined by c0w0+ · · ·+ cnwn = 0 satisfies: dim
(∪k

j=1Aj ∩ f−1
i (Hc)

) ≤ m− 2,

i ∈ {1, 2}.
Proof of Proposition 2. For any irreducible pure (m − 1)-dimensional

component σ of ∪k
j=1Aj we set

Ki
σ =

{
(t0, . . . , tn) ∈ Cn+1 :

n∑
s=0

tsfis = 0 on σ
}
, i ∈ {1, 2},

where (fi0 : · · · : fin) are reduced representations of fi. Then Ki
σ is a complex

vector subspace of Cn+1. Since dim{fi0 = · · · = fin = 0} ≤ m − 2, we get that

σ\⋃i∈{1,2}{fi0 = · · · = fin = 0} 6= ∅. This implies that dimKi
σ 6 n. Let

K =
⋃

i∈{1,2}
⋃

σ K
i
σ, then K is a union of at most a countable number of at

most n-dimensional complex vector subspaces in Cn+1. Let C = Cn+1\K. Then

C meets the requirement of the Proposition. ¤

Theorem 3.2. Under the same assumption as in Theorem 3.1, we have

(
q − n− 3

2

)
Tf (r) ≤

q∑

j=1

1

dj
N

(L)
f (r,Qj),

for all r ∈ [1,+∞) excluding a Borel subset E of [1,+∞) with
∫
E
dr < +∞.

Proof of Theorem 3.2. This is the special case of the Main Theorem and

Proposition 1.2. in [2] for ε = 1
2 and where we estimate the different dj ’s in the

numerators of the expressions entering into the truncation level L by d∗. ¤

Proof of Theorem 3.1. Assume that f 6≡ g. We first prove the following

Claim: There exist (fixed) hyperplanes Hi : ai0w0 + . . . ainwn = 0 (i = 1, 2)

in CPn such that S = SH1,H2(f, g) :=
H1(f)
H2(f)

− H1(g)
H2(g)

6≡ 0 and

dim(f−1(Qj) ∩ f−1
(
Hi)

) ≤ m− 2, dim(g−1(Qj) ∩ g−1
(
Hi)

) ≤ m− 2 (3.1)
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for all j ∈ {1, . . . , q}, i ∈ {1, 2}.
Proof of the Claim: By assumption i) of Theorem 3.1 we have pure (m− 1)-

dimensional analytic sets

Aj := f−1(Qj) = g−1(Qj) ⊂ Cm, j = 1, . . . , q. (3.2)

By Proposition 2 there exists a dense subset C ⊂ Cn+1\{0} such that for any

c = (c0, . . . , cn) ∈ C the hyperplane Hc defined by c0w0 + · · ·+ cnwn = 0 satisfies

(3.1), that is

dim(Aj ∩ f−1
(
Hc)

) ≤ m− 2, dim(Aj ∩ g−1
(
Hc)

) ≤ m− 2

for all j ∈ {1, . . . , q}. Since f , g are algebraically nondegenerate over K{Qj}q
j=1

,

so in particular algebraically nondegenerate over C, we have that Lc(f) 6≡ 0 and

Lc(g) 6≡ 0 are holomorphic functions for all c = (c0, . . . , cn) ∈ C, where Lc(f) :=∑n
i=0 cifi with a reduced representation f = (f0 : · · · : fn) and Lc(g) :=

∑n
i=0 cigi

with a reduced representation g = (g0 : · · · : gn). Finally for c(1), c(2) ∈ C, we put

Sc(1),c(2)(f, g) :=
L

c(1)
(f)

L
c(2)

(f) −
L

c(1)
(g)

L
c(2)

(g) . In order to prove the Claim it suffices to show

that for some c(1), c(2) ∈ C, Sc(1),c(2)(f, g) 6≡ 0. Assume the contrary. Then for all

0 ≤ i < j ≤ n there exist sequences (c(1))ν , (c
(2))ν , ν ∈ N, of elements in C such

that L(c(1))ν (f) → fi and L(c(2))ν (f) → fj . From this we get

0 ≡ S(c(1))ν ,(c(2))ν (f, g) →
fi
fj

− gi
gj

,

what implies 0 ≡ fi
fj

− gi
gj

for all 0 ≤ i < j ≤ n, contradicting the assumption

f 6≡ g. This proves the claim. ¤

Since f = g on ∪q
j=1f

−1(Qj), for any generic point

z0 ∈ ∪q
j=1f

−1(Qj)\
(
f−1(H2) ∪ g−1(H2)

)

(outside an analytic subset of codimension at least 2), there exists s ∈ {0, . . . , n}
such that both of fs(z0) and gs(z0) are different from zero. Then by assumption

i) we have

DαS(z0) = Dα

(
H1(f)

H2(f)
− H1(g)

H2(g)

)
(z0)

= Dα

(∑n
v=0

fv
fs
a1v∑n

v=0
fv
fs
a2v

−
∑n

v=0
gv
gs
a1v∑n

v=0
gv
gs
a2v

)
(z0) = 0
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for all |α| < p.

This implies that

νS ≥ p on ∪q
j=1 f

−1(Qj)\
(
A ∪ f−1(H2) ∪ g−1(H2)

)
. (3.3)

where A is an analytic subset of codimension at least 2.

Now we will estimate the divisors νQj◦f by making use of the resultants:

In fact, for any J = {j0, . . . , jn} ⊂ {1, 2, . . . , q}, let RJ be the resultant of

Qj0 , . . . , Qjn . Then if D ⊂ Cm is a divisor contained in all divisors f−1(Qjk),

k = 0, . . . , n, then RJ vanishes on D. Thus, we get

q∑

j=1

min{1, νQj◦f} ≤ n ·min{1,
q∑

j=1

νQj◦f}+ (q − n) ·min{1,
∑

|J|=n+1

νRJ
} (3.4)

By (3.1), (3.2),(3.3), (3.4), by the First Main Theorem and since RJ ∈ Kf ,

we have

q∑

j=1

N (1)
g (r,Qj) =

q∑

j=1

N
(1)
f (r,Qj) ≤ n

p
NS(r) + o(Tf (r)) (3.5)

Furthermore, by the First Main Theorem

NS(r) ≤ TH1(f)

H2(f)
−H1(g)

H2(g)

(r) +O(1) ≤ TH1(f)

H2(f)

(r) + TH1(g)

H2(g)

(r) +O(1)

≤ Tf (r) + Tg(r) +O(1). (3.6)

Thus,

q∑

j=1

(
N

(1)
f (r,Qj) +N (1)

g (r,Qj)
) ≤ 2n

p

(
Tf (r) + Tg(r)

)
+ o(Tf (r)). (3.7)

By Theorem 3.2 and by the First Main Theorem, we have

(
q − n− 3

2

)
Tf (r) ≤

q∑

j=1

1

dj
N

(L)
f (r,Qj)

≤
q∑

j=1

L

dj
N

(1)
f (r,Qj) =

q∑

j=1

L

dj
N (1)

g (r,Qj) ≤ qLTg(r) + o(Tf (r)) (3.8)

for all r ∈ [1,+∞) excluding a Borel subset E of (1,+∞) with
∫
E
dr < +∞ (note

that Qj ∈ Kf [x0, . . . , xn]).
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This implies that Kf ⊂ Kg. Then {Qj}qj=1 ⊂ Kg[x0, . . . , xn]. So we can apply

Theorem 3.2 for both meromorphic maps f and g with moving hypersurfaces

{Qj}qj=1. By Theorem 3.2 and by the First Main Theorem, we have

(q − n− 3

2
)
(
Tf (r) + Tg(r)

) ≤
q∑

j=1

1

dj

(
N

(L)
f (r,Qj) +N (L)

g (r,Qj)
)

≤ L

d̃

q∑

j=1

(
N

(1)
f (r,Qj) +N (1)

g (r,Qj)
)

(3.9)

for all r ∈ [1,+∞) excluding a Borel subset E of (1,+∞) with
∫
E
dr < +∞.

Combining with (3.7), we get

(
q − n− 3

2

)(
Tf (r) + Tg(r)

) ≤ 2nL

pd̃

(
Tf (r) + Tg(r)

)
+ o(Tf (r)) (3.10)

for all r ∈ [1,+∞) excluding a Borel subset E of (1,+∞) with
∫
E
dr < +∞. This

is a contradiction, since q > n+ 2nL
pd̃

+ 3
2 , thus finishing the proof of part a).

In order to prove b), we observe that under the additional assumption ii), we

can improve (3.5), namely we get, by using (3.1), (3.2), (3.3) and assumption ii)

q∑

j=1

N (1)
g (r,Qj) =

q∑

j=1

N
(1)
f (r,Qj) ≤ 1

p
NS(r) (3.11)

This improves (3.7), namely we get from (3.6) and (3.11):

q∑

j=1

(
N

(1)
f (r,Qj) +N (1)

g (r,Qj)
) ≤ 2

p

(
Tf (r) + Tg(r)

)
+O(1). (3.12)

Using this (3.10) becomes, by using now (3.9) and (3.12):

(
q − n− 3

2

)(
Tf (r) + Tg(r)

) ≤ 2L

pd̃

(
Tf (r) + Tg(r)

)
+O(1) (3.13)

for all r ∈ [1,+∞) excluding a Borel subset E of (1,+∞) with
∫
E
dr < +∞. This

is a contradiction, since q > n+ 2L
pd̃

+ 3
2 , thus finishing the proof of part b). ¤
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