
Publ. Math. Debrecen

78/2 (2011), 359–375

DOI: 10.5486/PMD.2011.4768

Irreducible proportionally modular numerical semigroups

By JOSE CARLOS ROSALES (Granada)
and JUAN MANUEL URBANO-BLANCO (Granada)

Abstract. We study the minimal generating systems of the irreducible numerical

semigroups that can be represented as the set of solutions to a Diophantine inequality

of the form ax mod b ≤ cx with a, b and c positive integers. In particular we obtain a

simple method to count all these numerical semigroups with a given Frobenius number.

1. Introduction

A numerical semigroup is a subset S of N (here N denotes the set of nonnega-

tive integers) that is closed under addition, contains the zero and its complement

to N is finite.

Following the terminology used in [7], a proportionally modular Diophantine

inequality is an expression of the form ax mod b ≤ cx, where a, b and c are posi-

tive integers. The set S(a, b, c) of integer solutions to this inequality is a numerical

semigroup. We say that a numerical semigroup is proportionally modular if it is

the set of integer solutions to a proportionally modular Diophantine inequality.

For a subset A of R+
0 , we denote by 〈A〉 the submonoid of (R+

0 ,+) generated

by A, that is, 〈A〉 = {λ1a1+· · ·+λnan | n ∈ N, a1, . . . , an ∈A and λ1, . . . , λn ∈N}.
If A = {a1, . . . , an}, we simply write 〈a1, . . . , an〉 instead of 〈A〉. If A is not empty,

then S(A) = 〈A〉 ∩ N is a submonoid of N. It is proved in [10] that the class of

proportionally modular numerical semigroups agrees with the class of numerical

semigroups S(I) with I a non-trivial bounded interval of R+
0 .
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It is well known (see for instance [6]) that every numerical semigroup S is

finitely generated, that is, there exists {n1, . . . , np}⊆S such that S= 〈n1, . . . , np〉.
The set {n1, . . . , np} is called a generating system of S, and if no proper subset of

{n1, . . . , np} generates S, {n1, . . . , np} is said to be a minimal generating system

of S. Every numerical semigroup S admits a unique minimal generating system

(see [6]) and any element in this set is called a minimal generator of S. The

cardinality of the minimal generating system of S is the embedding dimension

of S and is denoted by e(S). The least element in the minimal generating system

of S is called the multiplicity of S and is denoted by m(S).

We say that a nonempty subset A of N is independent if no element in A can

be expressed as a linear combination of the remaining elements in A with all the

coefficients in N.
The largest integer not belonging to S is its Frobenius number and we denote

it by g(S) (see [4]). A numerical semigroup is irreducible if it cannot be expressed

as the intersection of two numerical semigroups containing it properly (see [5]).

A numerical semigroup S is symmetric (respectively, pseudo-symmetric), if S is

an irreducible numerical semigroup with g(S) odd (respectively, with g(S) even).

This kind of numerical semigroups has been widely studied in the literature (see

[1] and the references included there).

The contents of this paper are organized as follows. Taking as starting point

the representations supplied in [10] for symmetric and pseudo-symmetric propor-

tionally modular numerical semigroups and the concept of Bézout sequence intro-

duced in [9], we describe in Section 3 the minimal generating system of symmetric

proportionally modular numerical semigroups. Analogously in Section 4 we study

the minimal generating system of pseudo-symmetric proportionally modular nu-

merical semigroups. Finally in Section 5 we give a simple procedure to obtain

the number of irreducible proportionally modular numerical semigroups with a

given Frobenius number. This method extends the one given in [11] for symmetric

proportionally modular numerical semigroups.

2. Preliminaries and basic results

As we have mentioned in the previous section, proportionally modular nu-

merical semigroups can be defined from nonempty closed intervals of positive real

numbers and alternatively from proportionally modular Diophantine inequalities.

The following result, which is a reformulation of [7, Corollary 9], shows that we

can restrict to closed intervals.
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Proposition 1.

(1) Let a, b and c be positive integers such that c < a < b. Then S
([

b
a ,

b
a−c

])
=

S(a, b, c).

(1) Conversely, if a1, b1, a2 and b2 are positive integers such that b1
a1

< b2
a2
, then

S
([

b1
a1
, b2
a2

])
= S(a1b2, b1b2, a1b2 − a2b1).

An ordered sequence of rational numbers b1
a1

< · · · < bp
ap

is a Bézout sequence

if p, a1, . . . , ap, b1, . . . , bp are positive integers, p ≥ 2 and aibi+1 − ai+1bi = 1 for

every i ∈ {1, . . . , p − 1}. The fractions b1
a1

and
bp
ap

are said to be the ends of the

sequence. Note that gcd(bi, ai) = 1 for every i ∈ {1, . . . , p}. If 1 ≤ r < s ≤ p are

positive integers, then clearly br
ar

< · · · < bs
as

is a Bézout sequence. We will say

that b1
a1

< · · · < bp
ap

is an extension of br
ar

< · · · < bs
as
.

Bézout sequences are closely related to proportionally modular numerical

semigroups.

Lemma 2 ([9, Theorem 12]). Assume that b1
a1

< · · · <
bp
ap

is a Bézout

sequence. Then

〈b1, . . . , bp〉 = S

([
b1
a1

,
bp
ap

])
.

If b1
a1

< · · · < bp
ap

is a Bézout sequence and b′1, . . . , b
′
p is an arrangement of

b1, . . . , bp, then we say that b1
a1

< · · · < bp
ap

is a Bézout sequence for b′1, . . . , b
′
p.

A Bézout sequence b1
a1

< · · · < bp
ap

is proper if aibi+h − ai+hbi ≥ 2 for all

h ≥ 2 such that i, i+ h ∈ {1, . . . , p}.
The following result is a part of [3, Theorem 7].

Lemma 3. Let a1, a2, b1, b2 be positive integers such that b1
a1

< b2
a2

and

gcd(a1, b1) = gcd(a2, b2) = 1. Then there exists a unique proper Bézout sequence

with ends b1
a1

and b2
a2
.

Moreover in [3] is given an algorithm to compute the unique proper Bézout

sequence with two given ends.

Lemma 4 ([9, Corollary 18]). Let b1
a1

< · · · < bp
ap

be a proper Bézout se-

quence. Then b1, . . . , bp is a convex sequence, that is, there exists h ∈ {1, . . . , p}
such that

b1 ≥ · · · ≥ bh ≤ · · · ≤ bp.

Two fractions bi
ai

<
bj
aj

are said to be adjacent if

bj
aj + 1

<
bi
ai
, and either ai = 1 or

bj
aj

<
bi

ai − 1
.
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In view of Lemma 2, the next result is an equivalent version of [9, Theo-

rem 20].

Lemma 5. If b1
a1

< · · · <
bp
ap

is a proper Bézout sequence with adjacent

ends, then the numerical semigroup S
([

b1
a1
,
bp
ap

])
is minimally generated by the

set {b1, . . . , bp}.

Note that the assumption “adjacent ends” is necessary in the previous lemma.

The Bézout sequence 2
1 < 3

1 < 4
1 is proper but the set {2, 3, 4} is not independent.

The following lemma is an easy consequence of [10, Lemma 2] and will be

used several times in this paper.

Lemma 6. Let I be a non-trivial bounded interval of R+
0 and let x be a

positive integer. Then x ∈ S(I) if and only if there exists a positive integer y such

that x
y ∈ I.

Given a numerical semigroup S, we define the set of gaps of S as H(S) = N\S.
The cardinality of H(S) is an important invariant of S and is called the singularity

degree or genus of S (see [1]).

Following the notation in [10], a numerical semigroup S is a half-line if there

exists a positive integer m such that S = {0}∪ {x ∈ Z | x ≥ m}, and it is opened

modular if either S is a half-line or there exist positive integers a and b such that

2 ≤ a < b and S = S
( ]

b
a ,

b
a−1

[ )
.

As we will see below, opened modular numerical semigroups are closely re-

lated to irreducible proportionally modular numerical semigroups. The next result

records some properties of these semigroups.

Theorem 7 ([10, Theorem 11]). Let 1<a<b be integers. Then S
( ]

b
a ,

b
a−1

[ )

is a proportionally modular numerical semigroup with Frobenius number b and

singularity degree 1
2 (b− 1 + d+ d′), where d = gcd(a, b) and d′ = gcd(a− 1, b).

Proposition 8 ([10, Proposition 8]). Let x ∈ N. Then x ∈ S
([

b
a ,

b
a−1

])
and

x 6∈ S
( ]

b
a ,

b
a−1

[ )
if and only if x ∈ {

λ b
d | λ ∈ {1, . . . , d}}∪{λ b

d′ | λ ∈ {1, . . . , d′}},
where d, d′ are as in Theorem 7.

A numerical semigroup S is symmetric if x ∈ Z\S implies g(S)− x ∈ S, and

it is pseudo-symmetric if g(S) is even and the only integer such that x ∈ Z \ S

and g(S)− x 6∈ S is x = g(S)
2 (see [1] and [2]).

The starting point for our study of the minimal generating systems of irre-

ducible proportionally modular numerical semigroups is the following classifica-

tion theorem.
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Theorem 9 ([10, Theorem 20]). Let S be a proportionally modular numer-

ical semigroup. Then:

(1) S is symmetric if and only if either S = N, S = 〈2, 3〉 or S = S
( ]

b
a ,

b
a−1

[ )

where a and b are integers such that 2≤ a< b and gcd(a, b)= gcd(a−1, b)= 1.

(2) S is pseudo-symmetric if and only if either S = 〈3, 4, 5〉 or S = S
( ]

b
a ,

b
a−1

[ )

where a and b are integers such that 2 ≤ a < b and {gcd(a, b), gcd(a−1, b)} =

{1, 2}.

3. The minimal generating system of a symmetric proportionally

modular numerical semigroup

In view of Theorem 9 any symmetric proportionally modular numerical semi-

group other than N and 〈2, 3〉 is of the form S
( ]

b
a ,

b
a−1

[ )
where a and b are

integers such that 2 ≤ a < b and gcd(a, b) = gcd(a − 1, b) = 1. Thus through-

out this section a and b will represent two integers such that 2 ≤ a < b and

gcd(a, b) = gcd(a− 1, b) = 1.

Lemma 10. Let b
a < n1

c1
< · · · < np

cp
< b

a−1 be a proper Bézout sequence.

Then:

(1) b
a < n1

c1
< · · · < np

cp
is a proper Bézout sequence with adjacent ends.

(2) S
([

b
a ,

b
a−1

])
is minimally generated by {b, n1, . . . , np}.

(3) If p = 1, then n1 = 2.

(4) If p ≥ 2, then {2b, b+ n1, . . . , b+ np} ⊆ 〈n1, . . . , np〉.
Proof. Let S = S

( ]
b
a ,

b
a−1

[ )
and S = S

([
b
a ,

b
a−1

])
.

(1) Clearly the Bézout sequence b
a < n1

c1
< · · · < np

cp
is proper. We show that its

ends are adjacent. As by hypothesis we know that
np

cp
< b

a−1 , we only have

to check that
np

cp+1 < b
a .

The inequality
np

cp
< b

a−1 implies that anp < bcp + np. Since by hypoth-

esis the Bézout sequence b
a < n1

c1
< · · · < np

cp
< b

a−1 is proper, by Lemma 4

we get that np ≤ b. Hence anp < bcp + b, that is,
np

cp+1 < b
a .

(2) As we are assuming that b
a < n1

c1
< · · · < np

cp
< b

a−1 is a Bézout sequence,

Lemma 2 assures that S = 〈b, n1, . . . , np〉. By assertion (1) we know that b
a <

n1

c1
< · · · < np

cp
is a proper Bézout sequence with adjacent ends. By applying

Lemma 5 to this Bézout sequence we get that S is minimally generated by

{b, n1, . . . , np}.
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(3) If b
a < n1

c1
< b

a−1 is a Bézout sequence, then an1−bc1=1 and bc1−(a−1)n1=1,

and this leads to n1 = 2.

(4) The assumption gcd(a, b) = gcd(a − 1, b) = 1 and Proposition 8 lead to

S = S \ {b}. By part (1) in Theorem 9 and Theorem 7 we have that S is a

symmetric numerical semigroup with Frobenius number b.

By (2) we have that n1 and b are different minimal generators of S. This

implies that n1−b 6∈ S and so n1−b 6∈ S. From this we deduce that 2b−n1 ∈
S ⊆ S. As S = 〈b, n1, . . . , np〉, we get that 2b− n1 = λb+ a1n1 + · · ·+ apnp

for some λ, a1, . . . , ap ∈ N. Clearly, Lemma 6 implies that 〈n1, . . . , np〉 ⊆ S

and by Theorem 7 we have that b 6∈ S. We deduce from this that λ = 0 and

so 2b ∈ 〈n1, . . . , np〉.
Now we fix i ∈ {1, . . . , p} and choose j ∈ {1, . . . , p} \ {i}. Then ni and

nj are different minimal generators of S. This implies that nj − ni 6∈ S

and so nj − ni 6∈ S. From this we get that b + ni − nj ∈ S ⊆ S, that

is, b + ni − nj = λb + a1n1 + · · · + apnp for some λ, a1, . . . , ap ∈ N. Since
{b, n1, . . . , np} is the minimal generating system of S, we obtain that λ = 0

and hence b+ ni ∈ 〈n1, . . . , np〉. ¤

Theorem 11. Let b
a < n1

c1
< · · · < np

cp
< b

a−1 be a proper Bézout sequence.

(1) If p = 1, then {2, b+ 2} is the minimal generating system of S
( ]

b
a ,

b
a−1

[ )
.

(2) If p ≥ 2, then {n1, . . . , np} is the minimal generating system of S
( ]

b
a ,

b
a−1

[ )
.

Proof. Let S = S
( ]

b
a ,

b
a−1

[ )
and S = S

([
b
a ,

b
a−1

])
.

(1) Suppose that p = 1. By parts (2) and (3) in Lemma 10 we know that S is

minimally generated by {2, b}. As by Proposition 8 we have that S = S \{b},
we deduce that S = 〈2, b+ 2〉.

(2) Suppose that p ≥ 2. We know from assertion (2) in Lemma 10 that S is

minimally generated by {b, n1, . . . , np}, and from Proposition 8 that S =

S \ {b}. By taking into account part (4) in Lemma 10, it is easy to prove

that S is minimally generated by {n1, . . . , np}. ¤

Remark 12. Given integers 2 ≤ a < b such that gcd(a, b) = gcd(a− 1, b) = 1,

and in view of Lemma 3, we can use [3, Algorithm 5] to get the only proper

Bézout sequence with ends b
a and b

a−1 . Hence by applying Theorem 11 we obtain

at once the minimal generating system of the symmetric proportionally modular

numerical semigroup S
( ]

b
a ,

b
a−1

[ )
.

Remark 13. Let b
a < n1

c1
< · · · < np

cp
< b

a−1 be a proper Bézout sequence with

p ≥ 2. By Theorem 11 and Lemma 2 we have S
( ]

b
a ,

b
a−1

[ )
= S

([
n1

c1
,
np

cp

])
. By
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applying Proposition 1 we get

S

( ] b
a
,

b

a− 1

[ )
= {x ∈ N | c1npx mod n1np ≤ (c1np − n1cp)x}.

We close this section with an example.

Example 14. Let b = 5, a = 2 and consider the numerical semigroup S =

S
( ]

b
a ,

b
a−1

[ )
. As gcd(a, b) = gcd(a−1, b) = 1, by Theorems 7 and 9 we have that

S is a symmetric proportionally modular numerical semigroup with Frobenius

number 5.

It can be easily checked that 5
2 < 3

1 < 4
1 < 5

1 is a proper Bézout sequence.

Hence, by Theorem 11 we get that S = 〈3, 4〉. Finally, by Remark 13 we have

S = S

([
3

1
,
4

1

])
= {x ∈ N | 4x mod 12 ≤ x} = S(4, 12, 1).

4. The minimal generating system of a pseudo-symmetric

proportionally modular numerical semigroup

By Theorem 9 any pseudo-symmetric proportionally modular numerical semi-

group other than 〈3, 4, 5〉 is of the form S
( ]

b
a ,

b
a−1

[ )
, where a and b are integers

such that 2 ≤ a < b and {gcd(a, b), gcd(a − 1, b)} = {1, 2}. In this section we

use this representation to determine the minimal generating systems of pseudo-

symmetric proportionally modular numerical semigroups.

Let a and b be integers such that 2 ≤ a < b. We note that 2 ≤ b+1− a < b,

gcd(a, b) = gcd(b− a, b) and gcd(a− 1, b) = gcd(b+ 1− a, b).

Lemma 15. If a and b are integers such that 2 ≤ a < b, then S
( ]

b
a ,

b
a−1

[ )
=

S
( ]

b
b+1−a ,

b
b−a

[ )
.

Proof. By Lemma 6, it is enough to observe that b
a < x

y < b
a−1 if and only

if b
b+1−a < x

x−y < b
b−a . ¤

As a consequence of Lemma 15 and Theorem 9 we obtain the following propo-

sition.

Proposition 16. Let S be a numerical semigroup. Then S is propor-

tionally modular and pseudo-symmetric if and only if either S = 〈3, 4, 5〉 or

S = S
( ]

b
a ,

b
a−1

[ )
where a and b are integers such that 2 ≤ a < b, gcd(a, b) = 2

and gcd(a− 1, b) = 1.
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In view of Proposition 16, in the rest of this section a and b will represent

integers such that 2 ≤ a < b, gcd(a, b) = 2 and gcd(a− 1, b) = 1.

Lemma 17. If b/2
a/2 < n1

c1
< · · · < np

cp
< b

a−1 is a proper Bézout sequence,

then:

(1) b/2
a/2 < n1

c1
< · · · < np

cp
is a proper Bézout sequence with adjacent ends.

(2) S
([

b
a ,

b
a−1

])
is minimally generated by

{
b
2 , n1, . . . , np

}
.

(3) b/2
a/2 <

b
2+n1
a
2+c1

< n1

c1
< · · · < np

cp
< b

a−1 is a Bézout sequence.

(4) 〈n1, . . . , np,
b
2 + n1〉 ⊆ S

( ]
b
a ,

b
a−1

[ )
.

(5) 3 b
2 = (a1 + 1)n1 + a2n2 + · · ·+ apnp for some a1, a2, . . . , ap ∈ N.

(6) 2b ∈ 〈n1, . . . , np,
b
2 + n1〉.

(7) If p = 1, then n1 = 3.

(8) If p ≥ 2, then b+ np ∈ 〈n1, . . . , np,
b
2 + n1〉.

(9) If p ≥ 2, then S
( ]

b
a ,

b
a−1

[ )
= 〈n1, . . . , np,

b
2 + n1〉.

Proof. Let S = S
( ]

b
a ,

b
a−1

[ )
and S = S

([
b
a ,

b
a−1

])
. As gcd(a, b) = 2 and

gcd(a − 1, b) = 1, by Proposition 8 we have S = S \ {b, b
2} and by Theorems 7

and 9, we know that S is a pseudo-symmetric numerical semigroup with Frobenius

number b.

(1) It is immediate from hypothesis that b/2
a/2 < n1

c1
< · · · < np

cp
is a proper Bézout

sequence. If a > 2, as b
a−1 <

b
2

a
2−1 , we get that

np

cp
<

b
2

a
2−1 . By proceeding as

in the proof of part (1) in Lemma 10, we obtain that
np

cp+1 < b
a = b/2

a/2 , and

this proves (1).

(2) The proof is similar to that of assertion (2) in Lemma 10.

(3) It can be easily checked from hypothesis.

(4) It is immediate from Lemma 6 and (3).

(5) As n1 and b
2 are different elements of the minimal generating system of S, we

have that n1− b
2 6∈ S, and so n1− b

2 6∈ S. This implies either b− (n1− b
2 ) ∈ S

or n1− b
2 = b

2 . If n1− b
2 = b

2 , then n1 = b which is in contradiction with b 6∈ S.

Hence 3 b
2 −n1 ∈ S. By part (2) S is minimally generated by

{
b
2 , n1, . . . , np

}
,

so there exist λ, a1, . . . , ap ∈ N such that 3 b
2 − n1 = λ b

2 + a1n1 + · · ·+ apnp,

that is, (3− λ) b2 = (a1 + 1)n1 + a2n2 + · · ·+ apnp. Since
{

b
2 , b

} ∩ S = ∅ we

deduce that λ = 0, and therefore 3 b
2 = (a1 + 1)n1 + a2n2 + · · ·+ apnp.

(6) We know from (2) that n1 is a minimal generator of S and from Lemma 6

that b ∈ S, so n1 6= b. This implies that n1 − b 6∈ S. From this we get either
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b− (n1 − b) ∈ S or n1 − b = b
2 . Note that the case n1 − b = b

2 is not possible,

because this would contradict the fact that n1 is a minimal generator of S.

Hence 2b−n1 ∈ S and this implies that 2b−n1 = λ b
2 + a1n1+ · · ·+ apnp for

some λ, a1, . . . , ap ∈ N. Taking into account that
{

b
2 , b

} ∩ S = ∅, it follows

that λ ∈ {0, 1} and so 2b ∈ 〈
n1, . . . , np,

b
2 + n1

〉
.

(7) If b/2
a/2<

n1

c1
< b

a−1 is a Bézout sequence, then a
2n1− b

2c1=1 and bc1−n1(a−1)=1.

It is straightforward to check from this that n1 = 3.

(8) Since n1 and np are different minimal generators of S, we have that n1−np 6∈
S and so n1 −np 6∈ S. This leads to either b− (n1 −np) ∈ S or n1 −np = b

2 .

We note that the case n1 − np = b
2 is not possible because by (2) we know

that n1, np,
b
2 are minimal generators of S. So b+np−n1 ∈ S and there exist

λ, a1, . . . , ap ∈ N such that b+np −n1 = λ b
2 + a1n1 + · · ·+ apnp. We deduce

from this that λ ∈ {0, 1} and in consequence that b+np ∈ 〈n1, . . . , np,
b
2+n1〉.

(9) We already know from (4) that 〈n1, . . . , np,
b
2 + n1〉 ⊆ S. Now we prove the

other inclusion. Let x ∈ S. By Lemma 6 there exists a positive integer k

such that b/2
a/2 < x

k < b
a−1 . We consider the following three cases:

(a) If n1

c1
≤ x

k ≤ np

cp
, then by Lemma 6 we get that x ∈ S

([
n1

c1
,
np

cp

])
. By

Lemma 2 this implies that x ∈ 〈n1, . . . , np〉.
(b) If

np

cp
< x

k < b
a−1 , then by Lemma 6 we obtain that x ∈ S

([np

cp
, b
a−1

])
.

As
np

cp
< b

a−1 is a Bézout sequence, by Lemma 2 we get that x ∈ 〈np, b〉.
Note that x 6= b because x ∈ S, so x = λb + µnp with λ, µ ∈ N and

(λ, µ) 6= (1, 0). By using assertions (5), (6) and (8) we reach that x ∈
〈n1, . . . , np,

b
2 + n1〉.

(c) If b/2
a/2 < x

k < n1

c1
, then by Lemma 6 we obtain that x ∈ S

([ b/2
a/2 ,

n1

c1

])
.

Since b/2
a/2 < n1

c1
is a Bézout sequence, by Lemma 2 we get that x ∈〈

b
2 , n1

〉
. As we are assuming that x ∈ S, this implies that x 6∈ {

b
2 , b

}

and so x = λ b
2 +µn1 with λ, µ ∈ N and (λ, µ) 6∈ {(1, 0), (2, 0)}. By using

parts (5) and (6) we obtain that x ∈ 〈
n1, . . . , np,

b
2 + n1, b+ n1

〉
.

Hence we have that S ⊆ 〈
n1, . . . , np,

b
2+n1, b+n1

〉
. Note that b+n1 ∈ S and

consequently S =
〈
n1, . . . , np,

b
2+n1, b+n1

〉
. To conclude the proof, we show

that b + n1 is not a minimal generator of S. By proceeding as in the proof

of (8) we deduce that np −n1 6∈ S. From this we get either b− (np −n1) ∈ S

or np − n1 = b
2 . The equality np − n1 = b

2 contradicts the fact that np is

a minimal generator of S. Thus b + n1 − np ∈ S and we see from this that

b+ n1 cannot be a minimal generator of S. ¤

Lemma 18 ([5, Theorem 7]). The following conditions are equivalent:
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(1) S is an irreducible numerical semigroup with m(S) = e(S) = 3,

(2) S is generated by {3, x+ 3, 2x+ 3} with x not a multiple of 3.

Remark 19. Under the notation of the previous Lemma, we point out that

the integer g(S) is even and x = g(S)
2 .

Theorem 20. Let b/2
a/2 < n1

c1
< · · · < np

cp
< b

a−1 be a proper Bézout sequence.

(1) If p=1, then
{
3, b

2+3, b+3
}
is the minimal generating system of S

( ]
b
a ,

b
a−1

[ )
.

(2) If p ≥ 2, then {n1, . . . , np,
b
2 + n1} is the minimal generating system of

S
( ]

b
a ,

b
a−1

[ )
.

Proof.

(1) Let S = S
( ]

b
a ,

b
a−1

[ )
and suppose that p = 1. From parts (7) and (4) in

Lemma 17 it follows that n1 = 3 and
{
3, b

2+3
} ⊆ S. We know from Theorem

7 that g(S) = b and so b+ 3 ∈ S. Hence
〈
3, b

2 + 3, b+ 3
〉 ⊆ S. As b/2

a/2 < n1

c1

is a Bézout sequence, we have gcd( b2 , 3) = 1. From this observation and

the fact that 2
(
b
2 + 3

)
> b + 3, it is straightforward to check that the set{

3, b
2 + 3, b + 3

}
is independent. This in particular implies that e(S) = 3.

Now the conclusion follows by applying Lemma 18 and Remark 19.

(2) We first prove that
{
n1, . . . , np,

b
2 + n1

}
is an independent set. Note that by

Lemma 17 (2), b
2 6= n1. We distinguish two cases:

(a) Suppose that n1 > b
2 . Then by Lemma 4 we have b

2 < n1 < · · · < np < b.

Note that as a consequence of part (2) in Lemma 17 the set {n1, . . . , np}
is independent. Thus it is enough to show that b

2 + n1 6∈ 〈n1, . . . , np〉.
If b

2 + n1 ∈ 〈n1, . . . , np〉, then taking into account the inequalities b
2 <

n1 < · · · < np < b we get that b
2 + n1 = nj for some j ∈ {2, . . . , p}. But

this is impossible because b
2 + n1 > b, so the set

{
n1, . . . , np,

b
2 + n1

}
is

independent.

(b) Assume now that b
2 > n1. We show that

b
2+n1
a
2+c1

< n1

c1
< · · · < np

cp
< b

a−1 is

a proper Bézout sequence with adjacent ends. To see that this sequence

is proper, it is enough to check that
(
a
2 + c1

)
ni −

(
b
2 + n1

)
ci ≥ 2 for

all i ≥ 2 and
(
a
2 + c1

)
b − (

b
2 + n1

)
(a − 1) ≥ 2. As by hypothesis we

have a
2ni − b

2ci ≥ 2 and c1ni − n1ci ≥ 1 for all i ≥ 2, we get that(
a
2 + c1

)
ni −

(
b
2 +n1

)
ci =

a
2ni − b

2ci + c1ni −n1ci ≥ 2 for all i ≥ 2. The

inequality
(
a
2 + c1

)
b− (

b
2 + n1

)
(a− 1) ≥ 2 follows easily by taking into

account that n1

c1
< b

a−1 , and so that bc1 + n1 − an1 ≥ 1.
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Now we prove the condition on adjacent ends. We know from assump-

tion that b/2
a/2 < n1

c1
. This implies that b/2

a/2 <
b
2+n1
a
2+c1

< n1

c1
and so that

b
(
a
2 + c1

)
< a

(
b
2 + n1

)
.

Now we check that b
a−1 <

b
2+n1

a
2+c1−1 , that is, b

(
a
2 + c1

)− b < a
(
b
2 + n1

)−(
b
2 + n1

)
. But this is clear from the hypothesis b

2 > n1 and from the

inequality b
(
a
2 + c1

)
< a

(
b
2 + n1

)
.

Thus
b
2+n1
a
2+c1

< n1

c1
< · · · < np

cp
< b

a−1 is a proper Bézout sequence with

adjacent ends. By applying Lemma 5 we deduce that the set
{

b
2 + n1,

n1, . . . , np, b
}
is independent, and so also is the set

{
b
2 +n1, n1, . . . , np

}
.

Finally, in view of assertion (9) in Lemma 17, the conclusion follows.

Remark 21. Given integers 2 ≤ a < b such that gcd(a, b) = 2 and

gcd(a − 1, b) = 1, and in view of Lemma 3 we can apply [3, Algorithm 5] to

get the only proper Bézout sequence with ends b/2
a/2 and b

a−1 . Hence by using

Theorem 20 we obtain directly the minimal generating system of the pseudo-

symmetric proportionally modular numerical semigroup S
( ]

b
a ,

b
a−1

[ )
.

Remark 22. As a consequence of Theorem 20, Lemma 2 and assertion (3)

in Lemma 17, if b/2
a/2 < n1

c1
< · · · <

np

cp
< b

a−1 is a proper Bézout sequence,

then we have S
( ]

b
a ,

b
a−1

[ )
=

〈
n1, . . . , np,

b
2 + n1

〉
= S

([ b
2+n1
a
2+c1

,
np

cp

])
. By using

Proposition 1 we get that

S

( ]
b

a
,

b

a− 1

[ )

=

{
x ∈ N : np

(a
2
+ c1

)
x mod np

(
b

2
+ n1

)
≤
(
np

(a
2
+ c1

)
− cp

(
b

2
+ n1

))
x

}
.

Example 23. Let S = S
( ]

14
4 , 14

3

[ )
. Since gcd(4, 14) = 2 and gcd(4− 1, 14) =

1, by Theorems 7 and 9 we know that S is a pseudo-symmetric proportionally

modular numerical semigroup with Frobenius number 14. Note that 7
2 < 4

1 <
9
2 < 14

3 is a proper Bézout sequence. By Theorem 20 we obtain that {4, 9, 14
2 +4}

is the minimal generating system of S and so S = 〈4, 9, 11〉. Finally by Remark

22 we get S = S([113 , 9
2 ]) = {x ∈ N | 27x mod 99 ≤ 5x} = S(27, 99, 5).

5. The number of irreducible proportionally modular numerical

semigroups with a given Frobenius number

In [11] it is presented an easy algorithm to compute the number of symmetric

proportionally modular numerical semigroups with a given Frobenius number. In
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this section we obtain a similar method to get the number of pseudo-symmetric

proportionally modular numerical semigroups with a given Frobenius number.

Hence we have an algorithm to compute the number of irreducible proportion-

ally modular numerical semigroups with a given Frobenius number. In view of

Theorem 7, this procedure also counts the number of irreducible proportionally

modular numerical semigroups with a given genus or singularity degree.

For two positive integers x, y such that gcd(x, y) = 1, we denote by x−1

mod y the least positive integer u such that xu ≡ 1 mod y.

Given a numerical semigroup S, if {n1, n2, . . . , np} is the minimal generating

system of S, with n1 < n2 < · · · < np and p ≥ 2, we will denote n2 by r(S).

The next result is an easy consequence of the definitions and Lemmas 3 and 4

and is the key to prove Proposition 26.

Lemma 24. Let {n1, n2, . . . , np} be the minimal generating system of a

proportionally modular numerical semigroup S with n1 < n2 < · · · < np. Then

gcd(n1, n2) = 1. Moreover, if u ∈ {1, . . . , n1 − 1} and v ∈ {1, . . . , n2 − 1} are

such that un2 − vn1 = 1, then any proper Bézout sequence for n1, . . . , np, with

fractions greater than one, is an extension of either n1

u < n2

v or n2

n2−v < n1

n1−u .

Under the same setting as in Lemma 24, we note that u = n−1
2 mod n1.

The next result is an immediate consequence of Lemma 24.

Lemma 25. Let n1 < n2 < · · · < np be positive integers, let σ be a per-

mutation of the set {1, . . . , p} and let
nσ(1)

c1
< · · · < nσ(p)

cp
be a proper Bézout

sequence with 1 <
nσ(1)

c1
. Then

{
n1

n−1
2 mod n1

,
n1

n1 − (n−1
2 mod n1)

}
∩
{
nσ(1)

c1
, . . . ,

nσ(p)

cp

}
6= ∅.

Proposition 26. Let b ≥ 3 be an integer and let a, a′ ∈ {2, . . . , b− 1}. Let
S = S

( ]
b
a ,

b
a−1

[ )
and S′ = S

( ]
b
a′ ,

b
a′−1

[ )
. If m(S) = m(S′) and r(S) = r(S′),

then either a = a′ or a+ a′ = b+ 1.

Proof. Suppose that {n1, . . . , np} is the minimal generating system of S.

By [9, Lemma 22 and Theorem 23], there exist positive integers c1, . . . , cp such

that n1

c1
< · · · < np

cp
is a proper Bézout sequence with adjacent ends and b

a < n1

c1
<

· · · < np

cp
< b

a−1 . In view of Lemma 25 we consider the following cases:

(1) If b
a < m(S)

r(S)−1 mod m(S) < b
a−1 , since these inequalities are equivalent to

b(r(S)−1 mod m(S))
m(S) < a < b(r(S)−1 mod m(S))

m(S) + 1, it follows that there is at

most one positive integer a such that b
a < m(S)

r(S)−1 mod m(S) <
b

a−1 .
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(2) If b
a < m(S)

m(S)−(r(S)−1 mod m(S)) < b
a−1 , as these inequalities are equivalent to

b(m(S)−(r(S)−1 mod m(S)))
m(S) < a < b(m(S)−(r(S)−1 mod m(S)))

m(S) + 1, it follows that

there is at most one positive integer a such that b
a < m(S)

m(S)−(r(S)−1 mod m(S)) <
b

a−1 .

Hence, if m(S) = m(S′), r(S) = r(S′) and a 6= a′, we can assume without any

loss of generality that

b(r(S)−1 mod m(S))

m(S)
< a <

b(r(S)−1 mod m(S))

m(S)
+ 1 and

b(m(S)− (r(S)−1 mod m(S)))

m(S)
< a′ <

b(m(S)− (r(S)−1 mod m(S)))

m(S)
+ 1.

By adding the corresponding parts in the inequalities above we get that b <

a+ a′ < b+ 2, and so a+ a′ = b+ 1. ¤

Theorem 27. Let b and b′ be integers both greater than or equal to 3.

Let a ∈ {2, . . . , b − 1} and a′ ∈ {2, . . . , b′ − 1} and let S = S
( ]

b
a ,

b
a−1

[ )
and

S′ = S
( ]

b′
a′ ,

b′
a′−1

[ )
. The following statements are equivalent:

(1) S = S′,

(2) g(S) = g(S′), m(S) = m(S′) and r(S) = r(S′),

(3) b = b′ and either a = a′ or a+ a′ = b+ 1.

Proof. The equivalence of assertions (1) and (2) is proved in [11, Corol-

lary 24]. The equivalence of assertions (2) and (3) is a consequence of Theorem 7,

Proposition 26 and Lemma 15. ¤

Given a set A, we denote by #A its cardinality. The following corollaries

follow from Theorem 27.

Corollary 28. Let b ≥ 3 be an integer.

(1) If b is odd, then the number of symmetric proportionally modular numerical

semigroups with Frobenius number b is equal to

#
{
a ∈

{
2, . . . ,

b+ 1

2

}
: gcd(a, b) = gcd(a− 1, b) = 1

}
.

(2) If b is even, then the number of pseudo-symmetric proportionally modular

numerical semigroups with Frobenius number b is equal to

#
{
a ∈ {2, . . . , b− 1} : gcd(a, b) = 2, gcd(a− 1, b) = 1

}
.
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Assertion (1) in Corollary 28 is [11, Corollary 25]. The proof of (2) in Corol-

lary 28 is an easy consequence of Theorems 7, 9 and 27, and Proposition 16. Note

that the case a+ a′ = b+ 1 is not possible when b is even.

Corollary 29. Let b ≥ 3 be an odd integer. Then b is prime if and only if

there are exactly b+1
2 −1 symmetric proportionally modular numerical semigroups

with Frobenius number b.

For any positive integer b we define the set

X(b) =




{a ∈ {1, . . . , b} | gcd(a, b) = gcd(a− 1, b) = 1} if b is odd,

{a ∈ {1, . . . , b} | gcd(a, b) = 2, gcd(a− 1, b) = 1} if b is even,

and the function χ(b) = #X(b).

By using this notation Corollary 28 can be reformulated as follows.

Corollary 30. Let b ≥ 3 be an integer.

(1) If b is odd, then the number of symmetric proportionally modular numerical

semigroups with Frobenius number b is equal to χ(b)+1
2 .

(2) If b is even, then the number of pseudo-symmetric proportionally modular

numerical semigroups with Frobenius number b is equal to χ(b).

Assertion (1) in Corollary 30 is [11, Corollary 26].

We now study some properties of the function χ which determine it com-

pletely.

Lemma 31.

(1) χ(1) = χ(2) = χ(4) = 1.

(2) χ(2k) = 2k−2 for any integer k ≥ 3.

(3) If p is an odd prime number, then χ(pk) = pk−1(p − 2) for any positive

integer k.

(4) If b is an odd positive integer, then χ(b) = χ(2b) = χ(4b).

(5) If b is an odd positive integer, then χ(2kb) = 2 · χ(2k−1b) for any integer

k ≥ 3.

Proof.

(1) These equalities are immediate from definitions.

(2) The number of integers a such that 1 ≤ a ≤ 2k and a = 2t with t odd is

the same that the number of odd integers t such that 1 ≤ t ≤ 2k−1. The

conclusion follows.
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(3) See the proof of [11, Proposition 27].

(4) Let b be an odd positive integer. First we show that χ(b) = χ(2b). To achieve

this, we define a map f from X(b) to X(2b) as follows:

f(a) =

{
a if a is even,

a+ b if a is odd.

One can easily check that f is well-defined. It is also immediate to show that

the map g from X(2b) to X(b) given by

g(a′) =

{
a′ if a′ < b,

a′ − b otherwise,

is well-defined and is the inverse of f . This implies that f is bijective and in

particular that χ(b) = χ(2b).

Now we prove that χ(2b) = χ(4b). To attain this, we define a map f

from X(2b) to X(4b) as follows:

f(a) =

{
a if a is not a multiple of 4,

a+ 2b otherwise

It is easy to see that f is well-defined and that the map g from X(4b) to

X(2b) given by

g(a) =

{
a if a < 2b,

a− 2b otherwise,

is well-defined and is the inverse of f . Hence f is bijective and as a conse-

quence we have χ(2b) = χ(4b).

(5) Let b be an odd positive integer and let k ≥ 3 be an integer. First of all

we show that X(2k−1b) ⊆ X(2kb). If a ∈ X(2k−1b), then 1 ≤ a ≤ 2k−1b,

gcd(a, 2k−1b) = 2 and gcd(a − 1, 2k−1b) = 1. As we are assuming that

b is odd and k ≥ 3, it is clear that 1 ≤ a ≤ 2kb, gcd(a, 2kb) = 2 and

gcd(a− 1, 2kb) = 1. This means that a ∈ X(2kb).

Next we show that {a + 2k−1b | a ∈ X(2k−1b)} ⊆ X(2kb). To see this,

consider an element a such that 1 ≤ a ≤ 2k−1b, gcd(a, 2k−1b) = 2 and

gcd(a− 1, 2k−1b) = 1. Note that gcd(a+2k−1b, 2kb) = gcd(a+2k−1b, 2k−1b)

because a + 2k−1b is an integer of the form 2t with t odd. Moreover we

have gcd(a + 2k−1b, 2k−1b) = gcd(a, 2k−1b) = 2. Thus we get that gcd(a +
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2k−1b, 2kb) = 2. Similarly as a+2k−1b−1 is odd, we have that gcd(a+2k−1b−
1, 2kb) = gcd(a+2k−1b− 1, 2k−1b) and this is equal to gcd(a− 1, 2k−1b) = 1.

Thus gcd(a+ 2k−1b− 1, 2kb) = 1.

Hence we have that

X(2k−1b) ∪ {a+ 2k−1b | a ∈ X(2k−1b)} ⊆ X(2kb).

Now we show the opposite inclusion. Suppose that a′ ∈ X(2kb). If a′ < 2k−1b,

since we are assuming that gcd(a′, 2kb) = 2 and gcd(a′ − 1, 2kb) = 1, we get

that gcd(a′, 2k−1b) = 2 and gcd(a′−1, 2k−1b) = 1, and so that a′ ∈ X(2k−1b).

If a′ > 2k−1b, then we call a = a′ − 2k−1b. Analogously it is immediate to

see that a ∈ X(2k−1b). Hence we have

X(2k−1b) ∪ {a+ 2k−1b | a ∈ X(2k−1b)} = X(2kb).

To conclude the proof, we note that X(2k−1b)∩{a+2k−1b | a∈X(2k−1b)}= ∅.
¤

A multiplicative number theoretic function is a function whose domain is the

set of positive integers and such that f(m · n) = f(m) · f(n) for all pairs of

relatively prime positive integers m and n.

The following result extends [11, Proposition 28] and is a consequence of the

Chinese Remainder Theorem and Lemma 31.

Corollary 32. χ is a multiplicative number theoretic function.

Taking into account Corollary 30, Lemma 31 and Corollary 32 we can easily

compute the number of irreducible proportionally modular numerical semigroups

with a given Frobenius number.

Example 33. The number of irreducible proportionally modular numerical

semigroups with Frobenius number 1000 is equal to χ(1000) = χ(2353) =

χ(23)χ(53) = 2152(5− 2) = 150.
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