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Irreducible proportionally modular numerical semigroups

By JOSE CARLOS ROSALES (Granada)
and JUAN MANUEL URBANO-BLANCO (Granada)

Abstract. We study the minimal generating systems of the irreducible numerical
semigroups that can be represented as the set of solutions to a Diophantine inequality
of the form ax mod b < cx with a, b and ¢ positive integers. In particular we obtain a
simple method to count all these numerical semigroups with a given Frobenius number.

1. Introduction

A numerical semigroup is a subset S of N (here N denotes the set of nonnega-
tive integers) that is closed under addition, contains the zero and its complement
to N is finite.

Following the terminology used in [7], a proportionally modular Diophantine
inequality is an expression of the form ax mod b < cx, where a, b and ¢ are posi-
tive integers. The set S(a, b, ¢) of integer solutions to this inequality is a numerical
semigroup. We say that a numerical semigroup is proportionally modular if it is
the set of integer solutions to a proportionally modular Diophantine inequality.

For a subset A of R{", we denote by (A) the submonoid of (R{, +) generated
by A, that is, (A) = {\a1+- -+ pan | R EN, a1,...,a, € Aand A\q,..., A\, €N}
If A={a,...,an}, wesimply write (ai,...,a,) instead of (A). If A is not empty,
then S(A) = (A) NN is a submonoid of N. It is proved in [10] that the class of
proportionally modular numerical semigroups agrees with the class of numerical
semigroups S(I) with I a non-trivial bounded interval of Ry
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It is well known (see for instance [6]) that every numerical semigroup S is
finitely generated, that is, there exists {ni,...,n,} C S such that S=(n1,...,n,).
The set {n1,...,n,} is called a generating system of S, and if no proper subset of
{n1,...,np} generates S, {n1,...,n,} is said to be a minimal generating system
of S. Every numerical semigroup S admits a unique minimal generating system
(see [6]) and any element in this set is called a minimal generator of S. The
cardinality of the minimal generating system of S is the embedding dimension
of S and is denoted by e(S). The least element in the minimal generating system
of S is called the multiplicity of S and is denoted by m(.S).

We say that a nonempty subset A of N is independent if no element in A can
be expressed as a linear combination of the remaining elements in A with all the
coefficients in N.

The largest integer not belonging to .S is its Frobenius number and we denote
it by g(S) (see [4]). A numerical semigroup is irreducible if it cannot be expressed
as the intersection of two numerical semigroups containing it properly (see [5]).
A numerical semigroup S is symmetric (respectively, pseudo-symmetric), if S is
an irreducible numerical semigroup with g(.5) odd (respectively, with g(S) even).
This kind of numerical semigroups has been widely studied in the literature (see
[1] and the references included there).

The contents of this paper are organized as follows. Taking as starting point
the representations supplied in [10] for symmetric and pseudo-symmetric propor-
tionally modular numerical semigroups and the concept of Bézout sequence intro-
duced in [9], we describe in Section 3 the minimal generating system of symmetric
proportionally modular numerical semigroups. Analogously in Section 4 we study
the minimal generating system of pseudo-symmetric proportionally modular nu-
merical semigroups. Finally in Section 5 we give a simple procedure to obtain
the number of irreducible proportionally modular numerical semigroups with a
given Frobenius number. This method extends the one given in [11] for symmetric
proportionally modular numerical semigroups.

2. Preliminaries and basic results

As we have mentioned in the previous section, proportionally modular nu-
merical semigroups can be defined from nonempty closed intervals of positive real
numbers and alternatively from proportionally modular Diophantine inequalities.
The following result, which is a reformulation of [7, Corollary 9], shows that we
can restrict to closed intervals.



Irreducible proportionally modular numerical semigroups 361

Proposition 1.

(1) Let a, b and ¢ be positive integers such that ¢ < a <b. Then S([%, ﬁ]) =
S(a,b,c).

(1) Conversely, if a1, by, as and by are positive integers such that 2—11 < %7 then
S([2, £2]) = S(a1ba, bibe, arbs — azby).

al’ag

An ordered sequence of rational numbers % << Zi is a Bézout sequence
if p,ai,...,ap, b1,...,b, are positive integers, p > 2 and a;b;11 — a;+1b; = 1 for
every ¢ € {1,...,p — 1}. The fractions % and Z—Z are said to be the ends of the
sequence. Note that ged(b;,a;) =1 for every i € {1,...,p}. If 1 <r < s < pare
positive integers, then clearly Z—: <ol

o+ is a Bézout sequence. We will say
s

b, . .
that%<~~~<a—”lsanexten51onofg—r<~~<b—s

as”

D
Bézout sequences are closely related to proportionally modular numerical

semigroups.
Lemma 2 ([9, Theorem 12]). Assume that 2—11 < e < Z—: is a Bézout
sequence. Then
b1 b
(by,...,by) :S({%PD.
ayp ap
If 2—11 < e < Z—Z is a Bézout sequence and b/, .. .,b; is an arrangement of
bi,...,bp, then we say that Z—l < o- < b is g Bézout sequence for by,...,b..
1 ap P
A Bézout sequence Z—i < e < Z—z is proper if a;bjyn — a;+rb; > 2 for all

h > 2 such that i,i +h € {1,...,p}.
The following result is a part of [3, Theorem 7].

Lemma 3. Let a1, as, b1, by be positive integers such that 2—11 < % and
ged(ag, b1) = ged(ag, ba) = 1. Then there exists a unique proper Bézout sequence

with ends Z—l and 2.
1 az
Moreover in [3] is given an algorithm to compute the unique proper Bézout

sequence with two given ends.

Lemma 4 ([9, Corollary 18]). Let 2—11 < < 2—‘; be a proper Bézout se-
quence. Then by, ...,b, is a convex sequence, that is, there exists h € {1,...,p}
such that

by > >by <o < by,

Two fractions Z— < % are said to be adjacent if
i J

b; b; b; b;
J__ <« X and either a; =1 or = < -
aj+1 a; (Zj ai—l
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In view of Lemma 2, the next result is an equivalent version of [9, Theo-
rem 20].

Lemma 5. If Z—ll < e < Z—” is a proper Bézout sequence with adjacent
P

ends, then the numerical semigroup S([%, Z—”}) is minimally generated by the
set {b1,...,bp}.

Note that the assumption “adjacent ends” is necessary in the previous lemma.
The Bézout sequence % < % < % is proper but the set {2, 3,4} is not independent.

The following lemma is an easy consequence of [10, Lemma 2] and will be
used several times in this paper.

Lemma 6. Let I be a non-trivial bounded interval of R(')" and let x be a
positive integer. Then x € S(I) if and only if there exists a positive integer y such
that % el.

Given a numerical semigroup S, we define the set of gaps of S as H(S) = N\ S.
The cardinality of H(.S) is an important invariant of S and is called the singularity
degree or genus of S (see [1]).

Following the notation in [10], a numerical semigroup S is a half-line if there
exists a positive integer m such that S = {0} U{x € Z | x > m}, and it is opened
modular if either S is a half-line or there exist positive integers a and b such that
2§a<bandS:S(]§7a—ElD.

As we will see below, opened modular numerical semigroups are closely re-
lated to irreducible proportionally modular numerical semigroups. The next result

records some properties of these semigroups.

Theorem 7 ([10, Theorem 11]). Let 1 <a<b be integers. ThenS(]2, -2-[)
is a proportionally modular numerical semigroup with Frobenius number b and
singularity degree 4(b—1+d+d'), where d = ged(a, b) and d’ = ged(a — 1,b).

Proposition 8 ([10, Proposition 8]). Let z € N. Then z € S([2, -2;]) and

a’a—1

v ¢8S(]L, 2 [) ifandonly ifz € {A2 [ X e {1,....d}}u{AL | X e {1,...,d}},

a’a—1
where d, d’ are as in Theorem 7.

A numerical semigroup S is symmetric if z € Z\S implies g(S) —z € S, and
it is pseudo-symmetric if g(S) is even and the only integer such that © € Z\ S
and g(S) —zx ¢ Sisx = @ (see [1] and [2]).

The starting point for our study of the minimal generating systems of irre-
ducible proportionally modular numerical semigroups is the following classifica-
tion theorem.
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Theorem 9 ([10, Theorem 20]). Let S be a proportionally modular numer-

ical semigroup. Then:

(1) S is symmetric if and only if either S = N, S = (2,3) or S = S(]%, -5 ])

-1,
(2) S is pseudo-symmetric if and only if either S = (3,4,5) or S = S(]g 2

where a and b are integers such that 2 < a < b and ged(a, b) = ged(a

1
where a and b are integers such that 2 < a < b and {ged(a,b),ged(a—1,b)} =

{1,2).

3. The minimal generating system of a symmetric proportionally

modular numerical semigroup

In view of Theorem 9 any symmetric proportionally modular numerical semi-

group other than N and (2,3) is of the form S(] 2 [) where a and b are

a’a—1

integers such that 2 < a < b and ged(a,b) = ged(a — 1,b) = 1. Thus through-
out this section a and b will represent two integers such that 2 < a < b and
ged(a,b) = ged(a —1,b) = 1.

Lemma 10. Let g < 2‘—11 < < % < afﬁl be a proper Bézout sequence.
P

Then:

(1)
(2)
3)
(4)

(1)

g < ”*1 <e < Z—” is a proper Bézout sequence with adjacent ends.
P

([a, = J) is minimally generated by {b,n1,...,np}.
If p=1, then n; = 2.

Ifp > 2, then {2b,b+nq,...,b+ny} C (n1,...,ny).

PrOOF. Let S =8S(]%,-2[) and S =S([2,-1;]).

a’a—1
Clearly the Bézout sequence g < m << %;’ is proper. We show that its
ends are adJacent As by hypothesm we know that ”p < 2, we only have
to check tha

The inequahty 2 < %1 implies that an, < bc, 4+ n,. Since by hypoth-
P

a

. z b n b .
esis the Bézout sequence < Z—ll << 7: < 77 is proper, by Lemma 4

we get that n, < b. Hence an, < bc,

As we are assuming that 2 < 22 < ... < Z—: < -2+ is a Bézout sequence,
Lemma 2 assures that S = (b, n1,...,n,). By assertion (1) we know that 2 <
Z—ll << Z—; is a proper Bézout sequence with adjacent ends. By applying

Lemma, 5 to this Bézout sequence we get that S is minimally generated by
{b,n1,...,np}.
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(3) Ifg < 2—11 < aﬁl is a Bézout sequence, then any —bc;=1 and be; — (a—1)n1=1,

and this leads to n; = 2.

(4) The assumption ged(a,b) = ged(a — 1,b) = 1 and Proposition 8 lead to
S =S\ {b}. By part (1) in Theorem 9 and Theorem 7 we have that S is a
symmetric numerical semigroup with Frobenius number b.

By (2) we have that n; and b are different minimal generators of S. This
implies that n; —b ¢ S and so n; —b & S. From this we deduce that 2b—n; €
SCS. As S=(bn,...,n,), we get that 20 —ny = Xb+aing + -+ ayn,
for some A, aq,...,a, € N. Clearly, Lemma 6 implies that (ni,...,n,) C S
and by Theorem 7 we have that b ¢ S. We deduce from this that A = 0 and
$0 2b € (ny,...,np).

Now we fix ¢ € {1,...,p} and choose j € {1,...,p} \ {¢}. Then n,; and
n; are different minimal generators of S. This implies that n; —n; & S
and so n; —n; € S. From this we get that b +n; —n; € S C S, that

is, b+ n; —n; = Ab+aini + -+ + apn, for some A, ai,...,a, € N. Since
{b,n1,...,n,} is the minimal generating system of S, we obtain that A = 0
and hence b+ n; € (n1,...,ny). O

Theorem 11. Let g < 2—11 << Z—p < % be a proper Bézout sequence.
P

(1) If p=1, then {2,b+ 2} is the minimal generating system of S(]%,-t-]).

a’a—1

(2) Ifp > 2, then {n1,...,n,} is the minimal generating system of S(] 2, aEI [)

PrOOF. Let S =8S(]%,-2[) and S =S([2,-2;]).
(1) Suppose that p = 1. By parts (2) and (3) in Lemma 10 we know that S is
minimally generated by {2,b}. As by Proposition 8 we have that S = S\ {b},

we deduce that S = (2,b+ 2).

(2) Suppose that p > 2. We know from assertion (2) in Lemma 10 that S is
minimally generated by {b,n1,...,n,}, and from Proposition 8 that S =
S\ {b}. By taking into account part (4) in Lemma 10, it is easy to prove
that S is minimally generated by {ni,...,np}. a

Remark 12. Given integers 2 < a < b such that ged(a,b) = ged(a—1,0) = 1,
and in view of Lemma 3, we can use [3, Algorithm 5] to get the only proper
Bézout sequence with ends g and %. Hence by applying Theorem 11 we obtain
at once the minimal generating system of the symmetric proportionally modular

numerical semigroup S(] g, aﬁl [)

Remark 13. Let 3 < Z—ll << :—p < a—fl be a proper Bézout sequence with
p > 2. By Theorem 11 and Lemma 2 we have S(] b _b [) = S([ﬂ &]) By

a’ a— )
a’a—1 c1’ ¢y
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applying Proposition 1 we get

b b
S < } b [ ) ={z e N|cinpz mod nin, < (ciny, — nicy)x}.

We close this section with an example.

Example 14. Let b = 5, a = 2 and consider the numerical semigroup S =
S(]%,-t5[). Asged(a,b) = ged(a—1,b) = 1, by Theorems 7 and 9 we have that

a’a—1

S is a symmetric proportionally modular numerical semigroup with Frobenius
number 5.

It can be easily checked that % < % < % < % is a proper Bézout sequence.
Hence, by Theorem 11 we get that S = (3,4). Finally, by Remark 13 we have

4
SzS(ﬁ,J) ={x eN|4z mod 12 <z} =S5(4,12,1).

4. The minimal generating system of a pseudo-symmetric
proportionally modular numerical semigroup

By Theorem 9 any pseudo-symmetric proportionally modular numerical semi-
group other than (3,4, 5) is of the form S(} g, fﬁl D, where a and b are integers
such that 2 < a < b and {gcd(a,b),ged(a — 1,b)} = {1,2}. In this section we
use this representation to determine the minimal generating systems of pseudo-
symmetric proportionally modular numerical semigroups.

Let a and b be integers such that 2 < a < b. We note that 2 < b+1—a < b,

ged(a, b) = ged(b — a,b) and ged(a — 1,b) = ged(b+ 1 — a,b).

Lemma 15. Ifa and b are integers such that 2 < a < b, then S(] 3, % [) =
Sl st 22 L)

PROOF. By Lemma 6, it is enough to observe that g < % < % if and only

<z o< b O

: b
if b+1l—a T—y b—a

As a consequence of Lemma 15 and Theorem 9 we obtain the following propo-
sition.

Proposition 16. Let S be a numerical semigroup. Then S is propor-
tionally modular and pseudo-symmetric if and only if either S = (3,4,5) or
S = S(] g, ﬁ [) where a and b are integers such that 2 < a < b, ged(a,b) = 2

and ged(a —1,0) = 1.
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In view of Proposition 16, in the rest of this section a and b will represent
integers such that 2 < a < b, ged(a,b) = 2 and ged(a — 1,0) = 1.

Lemma 17. If Zﬁ < Z—ll <--- < ZTI: < a—fl is a proper Bézout sequence,
then:

(1) % < ’Z—ll << Z—; is a proper Bézout sequence with adjacent ends.

S(P b }) is minimally generated by {%,nl, e ,np}.

a’a—1

b/2 24ny
a/2 < 44c1

)
)
) (n1 np72+n1>CS(]aaab1[)
5) 3b (a1 + 1)n1 + agng + - - - + apn, for some aq,as,...,a, € N.
)
)
)
)

<HE << n—p < a—ﬁl is a Bézout sequence.

2b€<n1,...,np,§+n1>.

If p=1, then ny = 3.

Ifp>2, thenb+n, € <n1,...,np,g+n1>.

Ifp > 2, thenS(]a,a 1[):<n1,...,np,g+n1>.

PrROOF. Let S = S(]a,a 1[) and S = S([a,a J) As ged(a,b) = 2 and

ged(a — 1,b) = 1, by Proposition 8 we have S = 5\ {b, 2} and by Theorems 7
and 9, we know that S is a pseudo-symmetric numerical semigroup with Frobenius

number b.

(1) Tt is immediate from hypothesis that bég ”11 << :—;’ is a proper Bézout

. By proceeding as

b/2
a/2>

b
sequence. If a > 2, as a— < z25, we get that -2

and

in the proof of part (1) in Lemma 10, we obtam that < .=

Cp +1
this proves (1).

The proof is similar to that of assertion (2) in Lemma 10.

(2)

(3) Tt can be easily checked from hypothesis.
(4) Tt is immediate from Lemma 6 and (3).
(5)

As ny and g are different elements of the minimal generating system of S, we
have that n —g ¢ S, and soni — % ¢ S. This implies either b— (ny — 7) es
orni—2 =25 1fn;—% = & then ny = b which is in contradiction with b & S.
Hence 3% —ny € S. By part (2) S is minimally generated by {g, ni,..., np},
so there exist A, aq,...,a, € N such that 3% —ny = )\% +ainy + -+ apny,
that is, (3 — )\)% = (a1 + 1)n1 + agng + - -+ + apn,. Since {g,b} NS =0we
deduce that A = 0, and therefore 3% = (a1 + 1)n1 +agng + - - + apny.

(6) We know from (2) that n; is a minimal generator of S and from Lemma 6
that b € S, so ny # b. This implies that n; — b ¢ S. From this we get either
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b—(ni—b)eSorn —b= %. Note that the case ny — b = g is not possible,
because this would contradict the fact that n; is a minimal generator of S.
Hence 2b—n, € S and this implies that 2b —n; = /\% +aini +---+apn, for
some A, ai,...,a, € N. Taking into account that {£,b} NS = 0, it follows
that A € {0,1} and so 2b € (ny,...,np, & +n1).

If% sc1=land be;—ny(a—1)=1.

It is straightforward to check from this that n; = 3.

<m< —_ is a Bézout sequence, then %n;—2

Since ny and n,, are different minimal generators of S, we have that n; —n, ¢
S and so nq —ny, & S. This leads to either b— (ny —n,) € S or ng —n, = %.
% is not possible because by (2) we know
that ny,ny, % are minimal generators of S. So b+n,—n; € S and there exist
A,ai,...,ap € Nsuch that b+n, —ny = )\% +aing +---+apn,. We deduce

from this that A € {0, 1} and in consequence that b+n, € (n1,...,n,, g+n1>.

We note that the case ny —n, =

We already know from (4) that (ni,...,n,, 2 +ny) C S. Now we prove the
other inclusion. Let x € S. By Lemma 6 there exists a positive integer k

such that % <zE< a—ﬁl We consider the following three cases:

(a) If 2 < ¢ < Z—ﬁ, then by Lemma 6 we get that = € S([%,Z—:D By
Lemma 2 this implies that @ € (n1, ..., n,).

(b) If Z—;’ < 2 < -2 then by Lemma 6 we obtain that z € S([%’j7 —£-1).

As % < ﬁfl is a Bézout sequence, by Lemma 2 we get that « € (np, b).
Note that  # b because z € S, so z = Ab + un, with A\, € N and
(A, 1) # (1,0). By using assertions (5), (6) and (8) we reach that = €

(ni,...,np, 3 +m).
(c) If % < ¢ < 2, then by Lemma 6 we obtain that z € S([Z%, Z—ll])
Since % < Z—ll is a Bézout sequence, by Lemma 2 we get that z €

<%,n1>. As we are assuming that € S, this implies that = ¢ {%,b}

and so x = AZ 4+ pn; with A, p € Nand (A, 1) € {(1,0), (2,0)}. By using

parts (5) and (6) we obtain that = € <n1, Ce, N, % +ny,b+ n1>.
Hence we have that S C (n1,...,ny, %—i—nl, b+n1). Note that b+n; € S and
consequently S = <n1, cey N, ngnl, b+n1>. To conclude the proof, we show
that b + n; is not a minimal generator of S. By proceeding as in the proof
of (8) we deduce that n, —n; ¢ S. From this we get either b— (n, —ny) € S
or np, —ng = g. The equality n, —n; = g contradicts the fact that n, is
a minimal generator of S. Thus b+ ny —n, € S and we see from this that

b+ n1 cannot be a minimal generator of .S. O

Lemma 18 ([5, Theorem 7]). The following conditions are equivalent:
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(1)
(2)

the integer g(S) is even and x =

Jose Carlos Rosales and Juan Manuel Urbano-Blanco

S is an irreducible numerical semigroup with m(S) = e(S) = 3,

S is generated by {3,z + 3,2x + 3} with x not a multiple of 3.

Remark 19. Under the notation of the previous Lemma, we point out that
8(5)
R

b

a—1

Theorem 20. Let % < Z—ll << Z—: < be a proper Bézout sequence.

Ifp=1, then {3, %—i—i%7 b—|—3} is the minimal generating system of S(] b _b [)

a’a—1
If p > 2, then {nq,... ,np,g + ny} is the minimal generating system of
(]2 2=
a’a—1
PrOOF.

Let S = S(]%, -2 [) and suppose that p = 1. From parts (7) and (4) in
Lemma 17 it follows that n; = 3 and {3,243} C S. We know from Theorem
7 that g(S) =band so b+3 € S. Hence (3,2 +3,b+3) C S. As % <=
is a Bézout sequence, we have gcd(g,3) = 1. From this observation and
the fact that 2(% + 3) > b+ 3, it is straightforward to check that the set
{3,% +3,b+ 3} is independent. This in particular implies that e(S) = 3.

Now the conclusion follows by applying Lemma 18 and Remark 19.

We first prove that {ni,...,n,, ¥ +n1} is an independent set. Note that by
Lemma 17 (2), 2 # n;. We distinguish two cases:

(a) Suppose that ny > g Then by Lemma 4 we have g <ng <o <my < b
Note that as a consequence of part (2) in Lemma 17 the set {n1,...,n,}
is independent. Thus it is enough to show that g +n1 & (n1,...,mp).

b <

ny < --- <mn, <bwe get that %—i—m =n; for some j € {2,...,p}. But

If g +n1 € (n1,...,ny), then taking into account the inequalities

this is impossible because g +mny > b, so the set {nl, ey My % + nl} is
independent.
(b) Assume now that 2 > n;. We show that % <B << Z—; < Lois
a proper Bézout sequence with adjacent ends. To see that this sequence
is proper, it is enough to check that (£ + c1)n; — (3 +ni)e; > 2 for
all 7 > 2 and (% + cl)b — (% + nl)(a — 1) > 2. As by hypothesis we

have $n; — %ci > 2 and cin; — nic; > 1 for all i > 2, we get that

(% +cl)n¢ — (% +n1)ci = gn; — gci +cin; —nyc; > 2 for all i > 2. The
inequality (% + cl)b — (g + nl) (a — 1) > 2 follows easily by taking into
b

account that Z—ll < and so that bc; +ny —any; > 1.
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Now we prove the condition on adjacent ends. We know from assump-
i b2 omy ‘s impli b/2 bt ony

tion that arz < o This implies that a2 < 2%+Cl <& and so that
b(% + cl) < a(% + nl).

Now we check that a—fl <

b
§+77«1

e that is, b(§ + 1) —b<a(3+n) —
(g + nl). But this is clear from the hypothesis % > n;p and from the
inequality b(% + cl) < a(g + nl).

é . ’ .
Thus ;TZ < Z—ll < < % < % is a proper Bézout sequence with
2 P

adjacent ends. By applying Lemma 5 we deduce that the set {g + nq,
ni,...,Np, b} is independent, and so also is the set {g +ni,ny,. .., np}.

Finally, in view of assertion (9) in Lemma 17, the conclusion follows.

Remark 21. Given integers 2 < a < b such that ged(a,b) = 2 and
ged(a — 1,0) = 1, and in view of Lemma 3 we can apply [3, Algorithm 5] to
get the only proper Bézout sequence with ends % and a—ﬁl Hence by using
Theorem 20 we obtain directly the minimal generating system of the pseudo-

symmetric proportionally modular numerical semigroup S(]%, % [)

Remark 22. As a consequence of Theorem 20, Lemma 2 and assertion (3)

. ¢ b/2 n b
in Lemma 17, 1fai/2 < ’Z—ll < e < 7;’ < -H

then we have S(]2,-5[) = (n1,...,np, 5 + my) = S([%Ml1 “2]). By using

a’a—1 %-{-cl’cp
b b
s(Jeasl)
a b a b
z{xeN:np<2+cl>x mod n,, <2—|—n1)§(np (§+cl)—cp (2+n1)>a:}.

Ezample 23. Let S =S(]2t, L[). Since ged(4,14) = 2 and ged(4—1,14) =

1, by Theorems 7 and 9 we know that S is a pseudo-symmetric proportionally

modular numerical semigroup with Frobenius number 14. Note that % < % <

% < % is a proper Bézout sequence. By Theorem 20 we obtain that {4, 9, 12—4 +4}
is the minimal generating system of S and so S = (4,9,11). Finally by Remark

22 we get S = S([LL, 9]) = {z € N | 27z mod 99 < 5z} = S(27,99,5).

302

is a proper Bézout sequence,

Proposition 1 we get that

5. The number of irreducible proportionally modular numerical
semigroups with a given Frobenius number

In [11] it is presented an easy algorithm to compute the number of symmetric
proportionally modular numerical semigroups with a given Frobenius number. In
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this section we obtain a similar method to get the number of pseudo-symmetric
proportionally modular numerical semigroups with a given Frobenius number.
Hence we have an algorithm to compute the number of irreducible proportion-
ally modular numerical semigroups with a given Frobenius number. In view of
Theorem 7, this procedure also counts the number of irreducible proportionally
modular numerical semigroups with a given genus or singularity degree.

For two positive integers z, y such that ged(z,y) = 1, we denote by z~1
mod y the least positive integer u such that zu =1 mod y.

Given a numerical semigroup S, if {n1,ng,...,n,} is the minimal generating
system of .S, with ny <mng <--- <np and p > 2, we will denote ny by r(5).

The next result is an easy consequence of the definitions and Lemmas 3 and 4
and is the key to prove Proposition 26.

Lemma 24. Let {ni,ng,...,n,} be the minimal generating system of a
proportionally modular numerical semigroup S with n; < ng < --- < np. Then
ged(ng,n2) = 1. Moreover, if u € {1,...,ny —1} and v € {1,...,n2 — 1} are
such that ung — vn; = 1, then any proper Bézout sequence for n,...,n,, with
fractions greater than one, is an extension of either ™ < 22 or 22 n

u v no—v ni—u

Under the same setting as in Lemma 24, we note that u = ny ' mod nj.

The next result is an immediate consequence of Lemma 24.

Lemma 25. Let n; < ny < --- < n, be positive integers, let o be a per-

mutation of the set {1,...,p} and let n"—i” < oo < 2@ be a proper Bézout
P

[

sequence with 1 < n“c—(ln Then

ny ny No(1) N (p)
, N s 0.
{ngl mod ny ny — (ny' mod ny) } { €1 Cp } #

Proposition 26. Let b > 3 be an integer and let a,a’ € {2,...,b—1}. Let
S=5(]%,-2]) and & = S(] L, 5 [). If m(S) = m(S’) and r(S) = r(5"),

a’a—1

then either a = a’ ora+a =b+ 1.

PROOF. Suppose that {ni,...,n,} is the minimal generating system of S.

By [9, Lemma 22 and Theorem 23], there exist positive integers ci, ..., ¢, such

that =2 < ... < 2e ig a proper Bézout sequence with adjacent ends and & < ™M <
1 cp a c1

- < % < ﬁfl. In view of Lemma 25 we consider the following cases:
“P

(1) 1t g < m < ﬁ, since these inequalities are equivalent to

b(r(S)~! mod m(S)) <a< b(r(S)~! mod m(S))

m(S) m(S

+ 1, it follows that there is at

most one positive integer a such that 3 < m < TL
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(2) If & < m(S)f(r(S;n*(ls)mod =@y < —L_, as these inequalities are equivalent to
b(m(S)—(r(S)~! mod m(9))) <a< b(m(S)—(r(S)~! mod m(9)))
m(S) m(S)
there is at most one positive integer a such that g <
b

a—1"

+ 1, it follows that

m(S)
S =) T mod m(5)) <

Hence, if m(S) = m(95’), r(S) = r(5’) and a # @', we can assume without any
loss of generality that

b(r(S)~t mod m(9)) b(r(S)™! mod m(S))
m(S) <a< m(S) +1 and
b(m(S) — (x(S)"! mod m(S))) _ , _ b(m(S) — (x(S)"" mod m(S)))
m(S) <a < m(S) + L

By adding the corresponding parts in the inequalities above we get that b <
a+a <b+2,andsoa+a =b+1. O

Theorem 27. Let b and b’ be integers both greater than or equal to 3.
Let a € {2,...,b—1} and @’ € {2,...,0/ — 1} and let S = S(]%, -2 [) and
S = S(] Z—/,, a,b—il [) The following statements are equivalent:
(1) 5=,
(2) 8(5) = g(S"), m(S) = m(S") and x(S) = r(S"),
(

3) b=V and eithera=da' ora+a =b+1.
PRrROOF. The equivalence of assertions (1) and (2) is proved in [11, Corol-

lary 24]. The equivalence of assertions (2) and (3) is a consequence of Theorem 7,
Proposition 26 and Lemma 15. (I

Given a set A, we denote by #A its cardinality. The following corollaries
follow from Theorem 27.

Corollary 28. Let b > 3 be an integer.

(1) Ifb is odd, then the number of symmetric proportionally modular numerical
semigroups with Frobenius number b is equal to

#{ae {2,...,b;1} :gcd(a,b):gcd(a—l,b)zl}.

(2) If b is even, then the number of pseudo-symmetric proportionally modular
numerical semigroups with Frobenius number b is equal to

#{a €{2,...,b—1}: ged(a,b) = 2, ged(a — 1,b) = 1}.
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Assertion (1) in Corollary 28 is [11, Corollary 25]. The proof of (2) in Corol-
lary 28 is an easy consequence of Theorems 7, 9 and 27, and Proposition 16. Note
that the case a +a’ = b+ 1 is not possible when b is even.

Corollary 29. Let b > 3 be an odd integer. Then b is prime if and only if
b+l
=
with Frobenius number b.

there are exactly —1 symmetric proportionally modular numerical semigroups

For any positive integer b we define the set

0 {a €{1,...,b} | ged(a,b) = gcd(a — 1,b) = 1} if b is odd,
X(b) =
{a € {1,...,b} | ged(a,b) =2, ged(a — 1,b) =1} if b is even,

and the function x(b) = #X(b).
By using this notation Corollary 28 can be reformulated as follows.
Corollary 30. Let b > 3 be an integer.

(1) Ifb is odd, then the number of symmetric proportionally modular numerical
semigroups with Frobenius number b is equal to %.

(2) If b is even, then the number of pseudo-symmetric proportionally modular
numerical semigroups with Frobenius number b is equal to x(b).

Assertion (1) in Corollary 30 is [11, Corollary 26].
We now study some properties of the function y which determine it com-
pletely.

Lemma 31.

(1) x(1) =x(2) =x(4) = 1.

(2) x(2¥) = 2*=2 for any integer k > 3.

(3) If p is an odd prime number, then x(p*) = p*~!(p — 2) for any positive
integer k.

(4) If b is an odd positive integer, then x(b) = x(2b) = x(4b).

5) If b is an odd positive integer, then x(2¥b) = 2 - x(2¥~1b) for any integer

( g X X y integ:
k> 3.
ProOF.

(1) These equalities are immediate from definitions.

(2) The number of integers a such that 1 < a < 2¥ and a = 2t with t odd is
the same that the number of odd integers ¢ such that 1 < ¢ < 2k=1 The
conclusion follows.
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(4)

Irreducible proportionally modular numerical semigroups 373

See the proof of [11, Proposition 27].

Let b be an odd positive integer. First we show that x(b) = x(2b). To achieve
this, we define a map f from X(b) to X(2b) as follows:

a if a is even,
fla) = L
a+b if ais odd.

One can easily check that f is well-defined. It is also immediate to show that
the map ¢ from X(2b) to X(b) given by

a if a’ <b,
gla') =14, .
a’ —b otherwise,

is well-defined and is the inverse of f. This implies that f is bijective and in
particular that x(b) = x(2b).

Now we prove that x(2b) = x(4b). To attain this, we define a map f
from X(2b) to X(4b) as follows:

a if @ is not a multiple of 4,
fla) =

a -+ 2b otherwise

It is easy to see that f is well-defined and that the map g from X(4b) to

X(2b) given by
a if a < 2b,
gla) = {

a — 2b otherwise,

is well-defined and is the inverse of f. Hence f is bijective and as a conse-
quence we have x(2b) = x(4b).

Let b be an odd positive integer and let £k > 3 be an integer. First of all
we show that X(2¢716) C X(2%b). If a € X(2"71b), then 1 < a < 2K~ 1p,
ged(a,28710) = 2 and ged(a — 1,287'h) = 1. As we are assuming that
bis odd and k > 3, it is clear that 1 < a < 2Fb, ged(a,2Fb) = 2 and
ged(a — 1,2%b) = 1. This means that a € X(2*b).

Next we show that {a + 2*71b | a € X(28~1b)} C X(2%b). To see this,
consider an element a such that 1 < a < 271, ged(a,2'b) = 2 and
ged(a —1,2571b) = 1. Note that ged(a +28~1b, 2%b) = ged(a + 28~ 1b, 28~ 1)
because a + 271 is an integer of the form 2t with ¢ odd. Moreover we
have ged(a + 2%~1b,28=1b) = ged(a, 287 1b) = 2. Thus we get that ged(a +
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2k=1p 2kp) = 2. Similarly as a+2%"1b—1 is odd, we have that gcd(a+25"1b—
1,2%b) = ged(a+2%"1b—1,2%1b) and this is equal to ged(a —1,2F~1b) = 1.
Thus ged(a + 2871 — 1,2%p) = 1.

Hence we have that

X(2F ) U f{a + 2510 | a € X(2871b)} C X(2%D).

Now we show the opposite inclusion. Suppose that a’ € X(2%b). If a’ < 2¢~1b,
since we are assuming that ged(a’, 2Fb) = 2 and ged(a’ — 1,2Fb) = 1, we get
that ged(a’, 2871b) = 2 and ged(a’ —1,2F~1b) = 1, and so that o’ € X(2871b).
If @’ > 2F=1b, then we call a = a’ — 2~ 1'b. Analogously it is immediate to
see that a € X(2¥71b). Hence we have

X(25 ) U f{a + 2510 | a € X(281b)} = X(2%D).

To conclude the proof, we note that X(2*~1b)N{a+2*"1b | a € X (2~ 1b)} = 0.
O

A multiplicative number theoretic function is a function whose domain is the
set of positive integers and such that f(m -n) = f(m) - f(n) for all pairs of
relatively prime positive integers m and n.

The following result extends [11, Proposition 28] and is a consequence of the
Chinese Remainder Theorem and Lemma 31.

Corollary 32. x is a multiplicative number theoretic function.

Taking into account Corollary 30, Lemma 31 and Corollary 32 we can easily
compute the number of irreducible proportionally modular numerical semigroups
with a given Frobenius number.

Example 33. The number of irreducible proportionally modular numerical
semigroups with Frobenius number 1000 is equal to x(1000) = x(2353) =
x(23)x(5%) = 215%(5 — 2) = 150.
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