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Two Schur-convex functions related to Hadamard-type
integral inequalities

By HUAN-NAN SHI (Beijing)

Abstract. The Schur-convexity, the Schur-geometric convexity and the Schur-

harmonic convexity of two mappings which related to Hadamard-type integral inequa-

lities are researched. And three refinements of Hadamard-type integral inequality are

obtained, as applications, some inequalities related to the arithmetic mean, the loga-

rithmic mean and the power mean are established.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on

real number field by Rn, and Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

In particular, R1 and R1
+ denoted by R and R+ respectively.

Let f be a convex function defined on the interval I ⊆ R→ R of real numbers

and a, b ∈ I with a < b. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
(1)

is known as the Hadamard’s inequality for convex function [1]. For some recent

results which generalize, improve, and extend this classical inequality, see [2]–

[8]and [15]–[17].
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When f,−g both are convex functions satisfying
∫ b

a
g(x)dx> 0 and f(a+b

2 )≥0,

S.-J. Yang in [5] generalized (1) as

f
(
a+b
2

)

g
(
a+b
2

) ≤
1

b−a

∫ b

a
f(x) dx

1
b−a

∫ b

a
g(x) dx

. (2)

To go further in exploring (2), Lan He in [8] define two mappings L and F by

L : [a, b]× [a, b] → R,

L(x, y; f, g)=

[∫ y

x

f(t) dt− (y − x)f

(
x+ y

2

)][
(y − x)g

(
x+ y

2

)
−
∫ y

x

g(t) dt

]

and F : [a, b]× [a, b] → R,

F (x, y; f, g) = g

(
x+ y

2

)∫ y

x

f(t) dt− f

(
x+ y

2

)∫ y

x

g(t) dt,

and established the following two theorems which are refinements of the inequality

of (2).

Theorem A ([8]). Let f,−g both are convex functions on [a, b]. Then we have

(i) L(a, y; f, g) is nonnegative increasing with y on [a, b], L(x, b; f, g) is nonne-

gative decreasing with x on [a, b].

(ii) When
∫ a

b
g(x) dx > 0 and f

(
a+b
2

) ≥ 0, for any x, y ∈ (a, b) and α ≥ 0 and

β ≥ 0 such that α+ β = 1, we have the following refinement of (2)

f
(
a+b
2

)

g
(
a+b
2

) ≤ (b− a)f
(
a+b
2

)

2
∫ b

a
g(t) dt

+

∫ b

a
f(t) dt

2(b− a)g
(
a+b
2

)

≤ (b− a)f
(
a+b
2

)

2
∫ b

a
g(t) dt

+

∫ b

a
f(t) dt

2(b− a)g
(
a+b
2

) +
αL(a, y; f, g) + βL(x, b; f, g)

2(b− a)g
(
a+b
2

) ∫ b

a
g(t) dt

≤
∫ b

a
f(t) dt

2
∫ b

a
g(t) dt

+
2f

(
a+b
2

)

2g
(
a+b
2

) ≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

. (3)

Theorem B ([8]). Let f , −g both are nonnegative convex functions on [a, b]

satisfying
∫ b

a
g(x)dx > 0. Then we have the following two results:

(i) If f and −g both are increasing, then F (a, y; f, g) is nonnegative increasing

with y on [a, b], and we have the following refinement of (2)

f
(
a+b
2

)

g
(
a+b
2

) ≤ f
(
a+b
2

)

g
(
a+b
2

) +
F (a, y; f, g)

g
(
a+b
2

) ∫ b

a
g(t) dt

≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

, (4)

where y ∈ (a, b).
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(ii) If f and −g both are decreasing, then F (a, y; f, g) is nonnegative decreasing

with y on [a, b], and we have the following refinement of (2)

f
(
a+b
2

)

g
(
a+b
2

) ≤ f
(
a+b
2

)

g
(
a+b
2

) +
F (x, b; f, g)

g
(
a+b
2

) ∫ b

a
g(t) dt

≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

, (5)

where x ∈ (a, b).

The aim of this paper is to study the Schur-convexity of L(x, y; f, g) and

F (x, y; f, g) with variables (x, y) in [a, b] × [a, b] ⊆ R2, and study the Schur-

geometric convexity and the Schur-harmonic convexity of L(x, y; f, g) with varia-

bles (x, y) in [a, b]× [a, b] ⊆ R2
+. We obtain the following results.

Theorem 1. Let f and −g both be convex function on [a, b]. Then

(i) L(x, y; f, g) is Schur-convex on [a, b] × [a, b] ⊆ R2, and L(x, y; f, g) is Schur-

geometrically convex and Schur-harmonic convex in [a, b]× [a, b] ⊆ R2
+.

(ii) If 1
2 ≤ t2 ≤ t1 ≤ 1 or 0 ≤ t2 ≤ t1 ≤ 1

2 , then for a < b, we have

0 ≤ L(t1a+ (1− t1)b, t1b+ (1− t1)a; f, g)

≤ L(t2a+ (1− t2)b, t2b+ (1− t2)a; f, g) ≤ L(a, b; f, g), (6)

and for 0 < a < b, we have

0 ≤ L
(
bt2a1−t2 , at2b1−t2 ; f, g

) ≤ L
(
bt1a1−t1 , at1b1−t1 ; f, g

) ≤ L(a, b; f, g) (7)

and

0 ≤ L (1/(t2b+ (1− t2)a), 1/(t2a+ (1− t2)b); f, g)

≤ L (1/(t1b+ (1− t1)a), 1/(t1a+ (1− t1)b); f, g) ≤ L(1/a, 1/b; f, g). (8)

Theorem 2. Let f and −g both be nonnegative convex function on [a, b]. Then

(i) F (x, y; f, g) is Schur-convex on [a, b]× [a, b] ⊆ R2;

(ii) If 1
2 ≤ t2 ≤ t1 ≤ 1 or 0 ≤ t2 ≤ t1 ≤ 1

2 , then for a < b, we have

0 ≤ F (t1a+ (1− t1)b, t1b+ (1− t1)a; f, g)

≤ F (t2a+ (1− t2)b, t2b+ (1− t2)a; f, g) ≤ F (a, b; f, g). (9)

Theorem 3. Let f and−g both be convex function on [a, b]⊆R. If ∫ a

b
g(x) dx> 0

and f
(
a+b
2

) ≥ 0, then

f
(
a+b
2

)

g
(
a+b
2

) ≤
∫ b

a
f(t) dt− ∫ tb+(1−t)a

ta+(1−t)b
f(t) dt

∫ b

a
g(t) dt− ∫ tb+(1−t)a

ta+(1−t)b
g(t) dt

≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

, (10)

where 1
2 ≤ t < 1 or 0 ≤ t ≤ 1

2 .
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Theorem 4. Let f , −g both are nonnegative convex functions on [a, b] satisfying∫ b

a
g(x)dx > 0, then for a < b, we have

f
(
a+b
2

)

g
(
a+b
2

) ≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

− L(ta+ (1− t)b, tb+ (1− t)a; f, g)

2(b− a)g
(
a+b
2

) ∫ b

a
g(t) dt

≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

, (11)

and for 0 < a < b, we have

f
(
a+b
2

)

g
(
a+b
2

) ≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

− L
(
bta1−t, atb1−t; f, g

)

2(b− a)g
(
a+b
2

) ∫ b

a
g(t) dt

≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

, (12)

where 1
2 ≤ t ≤ 1 or 0 ≤ t ≤ 1

2 .

2. Definitions and lemmas

We need the following definitions and lemmas.

Definition 1 ([9, 10]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i]
for k = 1, 2, . . . , n − 1 and

∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ · · · ≥ x[n] and

y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.

(ii) Let Ω ⊆ Rn. The function ϕ : Ω → R be said to be a Schur-convex function

on Ω if x ≺ y on Ω implies ϕ(x) ≤ ϕ(y).ϕ is said to be a Schur-concave

function on Ω if and only if −ϕ is Schur-convex.

Definition 2 ([11, 12]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn
+.

(i) Ω ⊆ Rn
+ is called a geometrical convex set if (xα

1 y
β
1 , . . . , x

α
ny

β
n) ∈ Ω for all x

and y ∈ Ω, where α and β ∈ [0, 1] with α+ β = 1.

(ii) Let Ω ⊆ Rn
+. The function ϕ : Ω → R+ is said to be Schur-geometrical

convex function on Ω if (lnx1, . . . , lnxn) ≺ (ln y1, . . . , ln yn) on Ω implies

ϕ(x) ≤ ϕ(y). The function ϕ is said to be a Schur-geometrical concave on Ω

if and only if −ϕ is Schur-geometrical convex.

Definition 3 ([13]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn
+.

(i) Ω ⊆ Rn
+ is called a harmonic convex set if (x1y1/(αx1 + βy1), . . . ,

xnyn/(αxn + βyn)) ∈ Ω for all x and y ∈ Ω, where α and β ∈ [0, 1] with

α+ β = 1.
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(ii) Let Ω ⊆ Rn
+. The function ϕ : Ω → R+ is said to be Schur-harmonic

convex function on Ω if (1/x1, . . . , 1/xn) ≺ (1/y1, . . . , 1/yn) on Ω implies

ϕ(x ≤ (≥)ϕ(y). The function ϕ is said to be a Schur-harmonic concave on Ω

if and only if −ϕ is Schur-harmonic convex.

Lemma 1 ([9, 10]). Let Ω ⊆ Rn be a symmetric set and with a nonempty

interior Ω0, ϕ : Ω → R be a continuous on Ω and differentiable in Ω0. Then ϕ

is the Schur-convex (Schur-concave) function, if and only if ϕ is symmetric on Ω

and

(x1 − x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(≤ 0) (13)

holds for any x = (x1, . . . , xn) ∈ Ω0.

Lemma 2 ([11]). Let Ω ⊆ Rn
+ be symmetric with a nonempty interior geometri-

cally convex set. Let ϕ : Ω → R+ be continuous on Ω and differentiable in Ω0. If

ϕ is symmetric on Ω and

(lnx1 − lnx2)

(
x1

∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0(≤ 0) (14)

holds for any x = (x1, . . . , xn) ∈ Ω0, then ϕ is a Schur-geometrical convex (Schur-

geometrical concave) function.

Lemma 3 ([13]). Let Ω ⊆ Rn
+ be symmetric with a nonempty interior harmonic

convex set. Let ϕ : Ω → R+ be continuous on Ω and differentiable in Ω0. If ϕ is

symmetric on Ω and

(x1 − x2)

(
x2
1

∂ϕ

∂x1
− x2

2

∂ϕ

∂x2

)
≥ 0(≤ 0) (15)

holds for any x = (x1, . . . , xn) ∈ Ω0, then ϕ is a Schur-harmonic convex (Schur-

harmonic concave) function.

Lemma 4 ([14]). Let a ≤ b, u(t) = ta + (1 − t)b, v(t) = tb + (1 − t)a. If 1/2 ≤
t2 ≤ t1 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1/2, then

(
a+ b

2
,
a+ b

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b). (16)

Lemma 5 ([18]). Let I be an interval with nonempty interior on R and f be a

continuous function on I. Then

Φ(a, b) =





1

b− a

∫ b

a
f(t)dt, a, b ∈ I, a 6= b

f(a), a = b

Schur-convex (Schur-concave) on I2 if and if f is convex(concave) on I.
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Lemma 6. Let f and −g both be convex function on [a, b] ⊆ R. If ∫ a

b
g(x) dx ≥ 0

and f
(
a+b
2

) ≥ 0, then

L(a, b; f, g) ≤ 2(b− a)

[
g

(
a+ b

2

)∫ b

a

f(t) dt− f

(
a+ b

2

)∫ b

a

g(t) dt

]
. (17)

Proof.

L(a, b; f, g)=

[∫ b

a

f(t) dt− (b− a)f

(
a+ b

2

)][
(b− a)g

(
a+ b

2

)
−
∫ b

a

g(t) dt

]

= (b− a)g

(
a+ b

2

)∫ b

a

f(t) dt−
∫ b

a

f(t) dt

∫ b

a

g(t) dt

− (b− a)2f

(
a+ b

2

)
g

(
a+ b

2

)
+ (b− a)f

(
a+ b

2

)∫ b

a

g(t) dt. (18)

Combining (18) with (3.6) and (3.7) in [10], it following that (17) is hold. ¤

3. Proofs of the main results

Proof of Theorem 1. (i) It is clear that L(x, y; f, g) is symmetric with x,

y. Without loss of generality, we may assume y ≥ x. Directly calculating yields

∂L

∂y
=

[
f(y)− f

(
x+ y

2

)
− y − x

2
f ′

(
x+ y

2

)][
(y − x)g

(
x+ y

2

)
−
∫ y

x

g(t) dt

]

+

[∫ y

x

f(t) dt− (y − x)f

(
x+ y

2

)][
g

(
x+ y

2

)
+

y − x

2
g′
(
x+ y

2

)
−g(y)

]
,

∂L

∂x
=

[
−f(x) + f

(
x+ y

2

)
− y − x

2
f ′

(
x+ y

2

)][
(y−x)g

(
x+ y

2

)
−
∫ y

x

g(t) dt

]

+

[∫ y

x

f(t) dt− (y−x)f

(
x+ y

2

)][
−g

(
x+ y

2

)
+

y−x

2
g′
(
x+ y

2

)
+ g(x)

]
.

By Lagrange mean value theorem, there is ξ ∈ ((x+ y)/2, y) such that

f(y)− f

(
x+ y

2

)
=

(
y − x+ y

2

)
f ′(ξ) =

y − x

2
f ′(ξ).

Since f is convex, f ′ is increasing, we have f ′(ξ) ≥ f ′(x+y
2

)
, so

f(y)− f

(
x+ y

2

)
− y − x

2
f ′

(
x+ y

2

)
≥ 0.
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By the same arguments, we have

−f(x) + f

(
x+ y

2

)
− y − x

2
f ′

(
x+ y

2

)
≤ 0.

Similarly, since −g is convex, we have

g

(
x+ y

2

)
+

y − x

2
g′
(
x+ y

2

)
− g(y) ≥ 0

and

−g

(
x+ y

2

)
+

y − x

2
g′
(
x+ y

2

)
+ g(x) ≤ 0.

And by Hadamard’s inequality (1), it follows that (y− x)g
(
x+y
2

)− ∫ y

x
g(t) dt ≥ 0

and
∫ y

x
f(t) dt − (y − x)f

(
x+y
2

) ≥ 0. So ∂L
∂y ≥ 0 and ∂L

∂x ≤ 0, further (y −
x)
(
∂L
∂y − ∂L

∂x

) ≥ 0 and (x − y)
(
x2 ∂L

∂x − y2 ∂L
∂y

) ≥ 0. Notice that from y ≥ x,

we have lnx − ln y ≤ 0, and then (lnx − ln y)
(
x∂L

∂x − y ∂L
∂y

) ≥ 0. According to

Lemma 1, Lemma 2 and Lemma 3, it follows that L(x, y; f, g) is Schur-convex

in [a, b] × [a, b] ⊆ R2, and L(x, y; f, g) is Schur-geometrical convex and Schur-

harmonic convex in [a, b]× [a, b] ⊆ R2
+.

(ii) From Lemma 4, we have

(
ln
√
ab, ln

√
ab

) ≺ (
ln(bt2a1−t2), ln(at2b1−t2)

)

≺ (
ln(bt1a1−t1), ln(at1b1−t1)

) ≺ (ln a, ln b). (19)

By (i) in Theorem 1, from (16) and (19) it follows that (6), (8) and (7) are hold.

The proof of Theorem 1 is completed. ¤

Proof of Theorem 2. (i) It is clear that F (x, y; f, g) is symmetric. Wit-

hout loss of generality, we may assume y ≥ x. Directly calculating yields

∂F

∂y
=

1

2
g′
(
x+ y

2

)∫ y

x

f(t) dt+ g

(
x+ y

2

)
f(y)

− 1

2
f ′

(
x+ y

2

)∫ y

x

g(t) dt− f

(
x+ y

2

)
g(y),

∂F

∂x
=

1

2
g′
(
x+ y

2

)∫ y

x

f(t) dt− g

(
x+ y

2

)
f(x)

− 1

2
f ′

(
x+ y

2

)∫ y

x

g(t) dt+ f

(
x+ y

2

)
g(x),



400 Huan-Nan Shi

and then

(y − x)

(
∂F

∂y
− ∂F

∂x

)

= (y − x)

[
g

(
x+ y

2

)
(f(x) + f(y))− f

(
x+ y

2

)
(g(x) + g(y))

]
.

Since f and −g both be convex function on [a, b], f(x)+f(y) ≥ 2f
(
x+y
2

)
and

g
(
x+y
2

) ≥ g(x)+g(y)
2 , and then g

(
x+y
2

)
(f(x)+ f(y))− f

(
x+y
2

)
(g(x)+ g(y)) ≥ 0, so

(y−x)
(
∂F
∂y − ∂F

∂x

) ≥ 0. From Lemma 1, it follows that F (x, y; f, g) is Schur-convex

on [a, b]× [a, b].

(ii) By (i) in Theorem 2, from (16) it follows that the (9) is hold.

The proof of Theorem 2 is completed. ¤

Proof of Theorem 3. By the Theorem 2, for 1
2 ≤ t < 1 or 0 ≤ t ≤ 1

2 , we

have

F (ta+ (1− t)b, tb+ (1− t)a; f, g)

= g

(
a+ b

2

)∫ tb+(1−t)a

ta+(1−t)b

f(t) dt− f

(
a+ b

2

)∫ tb+(1−t)a

ta+(1−t)b

g(t) dt

≤ g

(
a+ b

2

)∫ b

a

f(t) dt− f

(
a+ b

2

)∫ b

a

g(t) dt = F (a, b; f, g).

i.e.

f

(
a+ b

2

)[∫ b

a

g(t) dt−
∫ tb+(1−t)a

ta+(1−t)b

g(t) dt

]

≤ g

(
a+ b

2

)[∫ b

a

f(t) dt−
∫ tb+(1−t)a

ta+(1−t)b

f(t) dt

]
,

which is equivalent to left inequality in (10).

Since f is convex on [a, b] , by Lemma 5, it follows that 1
y−x

∫ y

x
f(t) dt is

Schur convex on [a, b]× [a, b] , and since −g is convex on [a, b] , i.e. g is concave on

[a, b], by Lemma 5, it follows that 1
y−x

∫ y

x
g(t) dt is Schur concave on [a, b]× [a, b],

and then
1

y−x

∫ y

x
f(t) dt

1
y−x

∫ y

x
g(t) dt

=

∫ y

x
f(t) dt∫ y

x
g(t) dt
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is Schur convex on [a, b]× [a, b]. Therefore, from (16) we have

∫ tb+(1−t)a

ta+(1−t)b
f(t) dt

∫ tb+(1−t)a

ta+(1−t)b
g(t) dt

≤
∫ b

a
f(t) dt

∫ b

a
g(t) dt

.

The above inequality equivalent to the right inequality in (10).

The proof of Theorem 3 is completed. ¤

Proof of Theorem 4. By the Theorem 1, for a < b, we have

L(ta+ (1− t)b, tb+ (1− t)a; f, g) ≤ L(a, b; f, g), (20)

and for 0 < a < b, we have

L
(
bta1−t, atb1−t; f, g

) ≤ L(a, b; f, g). (21)

Combining (17) with (20) and (21) respectively, it is deduced that (11) and (12)

are hold.

The proof of Theorem 4 is completed. ¤

4. Applications

Corollary 1. Let a, b ∈ R+ with a < b, and let u = tb+(1− t)a, v = ta+(1− t)b,
1
2 ≤ t < 1 or 0 ≤ t ≤ 1

2 . Then for 1 ≤ r ≤ 2, we have

(
2

a+ b

)r

≤ r[(ln b− ln a)− (lnu− ln v)]

2(b− a)(1− t)
≤ r(ln b− ln a)

b− a
. (22)

Proof. For 1 ≤ r ≤ 2, taking f(x) = x−1 and g(x) = xr−1, then f and −g

both be convex function on [a, b]. From Theorem 3, it follows that (22) is hold.

The proof of Corollary 1 is completed. ¤

Remark 1. Taking r = 1, from (22), we have

2

a+ b
≤ (ln b− ln a)− (lnu− ln v)

2(b− a)(1− t)
≤ ln b− ln a

b− a
(23)

(23) is a refinement of the following Ostle–Terwilliger inequality [19]:

ln b− ln a

b− a
≥ 2

a+ b
. (24)
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Corollary 2. Let a, b ∈ R+ with a < b, and let u = tb+(1− t)a, v = ta+(1− t)b,
1
2 ≤ t < 1 or 0 ≤ t ≤ 1

2 . Then for 1 ≤ r ≤ 2, we have

a+ b

2
≤

[
(b2r − a2r)− (u2r − v2r)

2(br − ar)− 2(ur − vr)

] 1
r

≤
(
ar + br

2

) 1
r

. (25)

Proof. For 1 ≤ r ≤ 2, taking f(x) = x2r−1 and g(x) = xr−1, then f and

−g both be convex function on [a, b], from Theorem 3, it is easy to prove that

(25) is hold.

The proof of Corollary 2 is completed. ¤
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