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Two Schur-convex functions related to Hadamard-type
integral inequalities

By HUAN-NAN SHI (Beijing)

Abstract. The Schur-convexity, the Schur-geometric convexity and the Schur-
harmonic convexity of two mappings which related to Hadamard-type integral inequa-
lities are researched. And three refinements of Hadamard-type integral inequality are
obtained, as applications, some inequalities related to the arithmetic mean, the loga-
rithmic mean and the power mean are established.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on
real number field by R”, and R"} = {z = (z1,...,2,) €R" 12, >0, i =1,...,n}.
In particular, R' and R} denoted by R and R respectively.

Let f be a convex function defined on the interval I C R — R of real numbers
and a,b € I with a < b. Then

f(a—l—b)S 1 /a*’f(m)dmgf(GHf(b) (1)

2 b—a 2

is known as the Hadamard’s inequality for convex function [1]. For some recent
results which generalize, improve, and extend this classical inequality, see [2]—
[8land [15]-[17].

Mathematics Subject Classification: Primary: 26D15, 26A51; Secondary: B25, 26D15.
Key words and phrases: Schur-convex function, Schur-geometrical convex function and the

Schur-harmonic convex function,inequality, convex function Hadamard’s inequality; logarith-
mic mean, power mean.
The author was supported in part by the Scientific Research Common Program of Beijing

Municipal Commission of Education (KM201011417013).



394 Huan-Nan Shi

When f, —g both are convex functions satisfying f; g(z)dz >0 and f(‘%"b)zo,
S.-J. YANG in [5] generalized (1) as

G = G
o5 S L '
2 b—a Ja 9
To go further in exploring (2), LAN HE in [8] define two mappings L and F by
L:[a,b] X [a,b] — R,

Lo fo)=| [ 10a- =05 (T3] |- (25) - [Caral

and F': [a,b] X [a,b] = R,

et =a(250) [ rwac-1 (552 [awar

and established the following two theorems which are refinements of the inequality
of (2).

(2)

Theorem A ([8]). Let f,—g both are convex functions on [a,b]. Then we have
(i) L(a,y; f,g) is nonnegative increasing with y on [a,b], L(z,b; f,g) is nonne-
gative decreasing with x on [a, b].
(i) When [, g(z)dz > 0 and f(%%) > 0, for any z,y € (a,b) and o > 0 and
B > 0 such that a+ B =1, we have the following refinement of (2)
P 0o | [
g(%5%) = 2 [)g(t)at 2(b—a)9(“7+”)
b
b-a)f (43 Jf®dt  al(ay; f, 9) + AL (x b: f, 9)
27 g ) 2(b - a)g (GT-H)) 2(b g (%52) J,
atb
g 209 f
2/, g(t) dt 29 (*) J2 gt

Theorem B ([8]) Let f, —g both are nonnegative convex functions on [a, D]

3)

satisfying f g(z)dx > 0. Then we have the following two results:

(i) If f and —g both are increasing, then F(a,y; f,g) is nonnegative increasing
with y on [a, b], and we have the following refinement of (2)

Fe) f(5) - Flayf, > PIOL
g(3%) ~ 9(F) g (=) [2g(t) fgt

where y € (a,b).

(4)
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(ii) If f and —g both are decreasing, then F(a,y; f,g) is nonnegative decreasing
with y on [a,b], and we have the following refinement of (2)

F(45Y) () Fabifg) _ f f@adt
9(57) ~9(%5") g (=) [g@wydt — [Jg()dt

where z € (a,b).

()

The aim of this paper is to study the Schur-convexity of L(z,y; f,g) and
F(x,y; f,g) with variables (z,y) in [a,b] x [a,b] € R?, and study the Schur-
geometric convexity and the Schur-harmonic convexity of L(x,y; f, g) with varia-
bles (z,y) in [a,b] x [a,b] € R%. We obtain the following results.

Theorem 1. Let f and —g both be convex function on [a,b]. Then
(i) L(z,y; f,g) is Schur-convex on [a,b] x [a,b] C R?, and L(z,y; f,g) is Schur-
geometrically convex and Schur-harmonic convex in [a,b] x [a,b] € R%.
(ii) If % <t <t1 <lor0<ty<t; < %, then for a < b, we have
0<L(tia+ (1 —t1)btib+ (1 —t1)a; f, 9)
< L(tQG‘ + (1 - t2)ba t2b + (1 - t2)a; f7 g) < L(aaba fvg)? (6)
and for 0 < a < b, we have
0<L(b=a'"",a"0 " f,9) < L (b"a'™",a"b" ™" f,9) < L(a,b; f,9)  (7)
and
0 < L(1/(t2b+ (1 —t2)a),1/(tza+ (1 — t2)b); f, 9)
<L(1/(tib+ (L —t1)a),1/(tia+ (1 —t1)b); f,9) < L(1/a,1/b; f,g).  (8)
Theorem 2. Let f and —g both be nonnegative convex function on [a,b]. Then
(i) F(x,y;f,g) is Schur-convex on [a,b] x [a,b] C R?;
(ii) If % <t <t1<lor0<ty<t; < %, then for a < b, we have
0 < F(tia+ (1 —t1)b,t1b+ (1 —t1)a; f, )
< F(tza+ (1 —t2)b, tob+ (1 — t2)a; f,g) < F(a,b; f, 9). 9)
Theorem 3. Let f and —g both be convex function on [a,b] CR. If [, g(x) dz >0
and f(“T*'b) > 0, then

P2 _ @t LT @A ) e

9(52) ~ [lgtyat— [t gwyat [ g dt

Where%§t<lor0§t§%.

; (10)
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Theorem 4. Let f, —g both are nonnegative convex functions on |[a, b] satisfying
f g(x)dz > 0, then for a < b, we have

F(8) _ J SOt Lo+ (= 0btb+ (= aifg)  fy FOAE
g (32 = [ g(t)d 2b—a)g (“£2) [Tg(tydt  — [Pg(t)dt’
and for 0 < a < b, we have
f (% ) f ft)d L (bta*~t a'dt~t f, ) f f)d

12
(55 = Patdr 20— (52 Patydt - o

where 3 <t <1lor0<t<i.

2. Definitions and lemmas

We need the following definitions and lemmas.

Definition 1 (]9, 10]). Let @ = (x1,...,2,) and y = (y1,...,yn) € R™
(i) x is said to be majorized by y (in symbols < y) if Zle rp) < Zle i)
for k=1,2,...,n—1and > & = > ;" yi, where x5 > --- > x},) and
Yj1] =+ = Ypp) are rearrangements of & and y in a descending order.
(ii) Let © € R™. The function ¢ : 2 — R be said to be a Schur-convex function
on Qif x < y on Q implies p(x) < p(y).p is said to be a Schur-concave
function on  if and only if —¢ is Schur-convex.

Definition 2 ([11, 12]). Let & = (x1,...,2,) and y = (y1,...,Yn) € R},

(i) © € RY is called a geometrical convex set if (x‘f‘yf, coxyB) € Q for all T
and y € Q, where a and 8 € [0,1] with o + § = 1.

(i) Let @ € R%. The function ¢ : @ — Ry is said to be Schur-geometrical
convex function on Q if (Inzq,...,Inz,) < (Inyy,...,lny,) on Q implies
o(x) < p(y). The function ¢ is said to be a Schur-geometrical concave on §2
if and only if —¢ is Schur-geometrical convex.

Definition 3 ([13]). Let © = (x1,...,2,) and y = (y1,...,Yn) € R},

(i) © CRY is called a harmonic convex set if (z1y1/(ax1 + By1), - . -,
Tnyn/(@xy + Byn)) € Q for all x and y € Q, where a and 8 € [0,1] with
a+ =1
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(ii) Let & C R%. The function ¢ : @ — R, is said to be Schur-harmonic
convex function on Q if (1/z1,...,1/x,) < (1/y1,...,1/y,) on Q implies
p(x < (>)¢(y). The function ¢ is said to be a Schur-harmonic concave on €
if and only if —¢ is Schur-harmonic convex.

Lemma 1 ([9, 10]). Let © C R™ be a symmetric set and with a nonempty
interior Q°, ¢ : O — R be a continuous on ) and differentiable in Q°. Then ¢
is the Schur-convex (Schur-concave) function, if and only if ¢ is symmetric on 2
and

(21 — 22) (g;; - g;) > 0(< 0) (13)

holds for any © = (x1,...,2,) € Q0.

Lemma 2 ([11]). Let Q@ C R} be symmetric with a nonempty interior geometri-
cally convex set. Let ¢ : Q — R, be continuous on € and differentiable in Q°. If
@ Is symmetric on ) and

0 0
(Inzy —Inxzg) (mla;pl - m2652> >0(<0) (14)
holds for any & = (x1,...,,) € QU, then ¢ is a Schur-geometrical convex (Schur-

geometrical concave) function.

Lemma 3 ([13]). Let Q C R" be symmetric with a nonempty interior harmonic
convex set. Let ¢ : 0 — R be continuous on  and differentiable in Q°. If ¢ is
symmetric on ) and

Op Op
(z1 — 22) (ﬁaxl - x%%) > 0(<0) (15)
holds for any = (x1,...,2,) € Q°, then ¢ is a Schur-harmonic convex (Schur-

harmonic concave) function.

Lemma 4 ([14]). Let a < b,u(t) =ta+ (1 —t)b,v(t) = tb+ (1 —t)a. If 1/2 <
t2§t1§10r0§t1§t2§1/2, then

(a-l— b a+b> =< (u(t2),v(t2)) < (u(ty),v(t1)) < (a,b). (16)

2 72
Lemma 5 ([18]). Let I be an interval with nonempty interior on R and f be a

continuous function on I. Then
1

®(a,b) = b—a
fla), a=b

Schur-convex (Schur-concave) on I? if and if f is convex(concave) on I.

fabf(t)dt? a,bel, a#b
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Lemma 6. Let f and —g both be convex function on [a,b] C R. If [ g(x)dz >0

and f(“E2) >0, then
gG;ﬂLUmeC§§Lme} (")
PROOF.

mwmm:MUwM—w—@dffj<meC;ﬂ—AZm§

(ba)g(a;rb> /abf(t)dt/:f(t)dt/abg(t)dt
_(b—a)2f<a;b>g(a;b>+(b—a)f(a—2'—b> /abg(t)dt. (18)

Combining (18) with (3.6) and (3.7) in [10], it following that (17) is hold. O

L(aab; f?g) < 2(67 a’)

3. Proofs of the main results

PrROOF OF THEOREM 1. (i) It is clear that L(x,y; f, g) is symmetric with x,
y. Without loss of generality, we may assume y > z. Directly calculating yields

-1 (=) 5 (2o (52) -0
0w (5 (52)- £ (252
b ()5 ()l () Lo
(o (<5 (252 ()]

By Lagrange mean value theorem, there is £ € ((x + y)/2,y) such that
Tty Tty y—x
fy) —f =|y- f(€ = 1.
2 2 2
Since f is convex, f’ is increasing, we have f’(§) > f’(%), S0

zT+y y—z,(x+y
r -1 (50) - () 2o
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By the same arguments, we have
z+y y—x z+y
(22 57 (29 <o

Similarly, since —g is convex, we have
o(51)+ 157 (57)
g 5 -
() () e =

and

And by Hadamard s inequality (1), it follows that (y —z)g(%5¥) — [Y g(t)dt >0
andf: (y—m)f(+)20. SO%ZO daé’go further (y —
x)(gz - gi) > 0 and (z — y)(2?%L - yz%) > 0. Notice that from y > =z,
we have Inz —Iny < 0, and then (Inz — lny)( & ya L) > 0. According to

Lemma 1, Lemma 2 and Lemma 3, it follows that L(z,y; f,g) is Schur-convex
in [a,b] x [a,b] € R?, and L(x,y; f,g) is Schur-geometrical convex and Schur-
harmonic convex in [a,b] X [a,b] C R?.

(ii) From Lemma 4, we have

(Invab,InvVab) < (In(b?a’~*2), In(a'2b'~12))
< (In(b"a="),In(a"b' ")) < (Ina,Ind). (19)

By (i) in Theorem 1, from (16) and (19) it follows that (6), (8) and (7) are hold.
The proof of Theorem 1 is completed. O

PROOF OF THEOREM 2. (i) It is clear that F(x,y; f,g) is symmetric. Wit-
hout loss of generality, we may assume y > x. Directly calculating yields

o (230 [ 1o (25)
3 (52) L2

1) [ 1005 (22)

(52) e ()

OF 1, (a

8:5_2
1
_2f
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and then
w-o (0 -
4 dy Ox

:(y_m)[g(“g“’)w()w( (”y) ]

Since f and —g both be convex function on [a,b], f(z)+ f(y ) > 2f( ) and
g(5Y) > 290 Cand then g(552)(f(x) + f(y) — f(554) (9(2) + 9(y)) = 0, 50
(y—=x) (%—5 - 7) > 0. From Lemma 1, it follows that F(z,y; f, ) is Schur-convex

on [a,b] X [a,b].
(ii) By (i) in Theorem 2, from (16) it follows that the (9) is hold.
The proof of Theorem 2 is completed. (I

Proor orF THEOREM 3. By the Theorem 2, for s<t<lor0<t< %, we

have

F(ta+ (1 —t)b,tb+ (1 —t)a; f, 9)

ath th+(1—t)a atb th+(1—t)a
=g( )/ f(t)dt—f( )/ g(t)dt
2 ta+(1—t)b 2 tat+(1—t)b

<o(“F0) [rwar—1(“5) [ o ar=rans)

i.e.

b tb+(1—t)a
/ g(t)dt — / g(t)dt
a ta+(1—¢)b

atb b th+(1—t)a
<o(“) | s /M_t)b f(t)dt],

which is equivalent to left inequality in (10).

Since f is convex on [a,b] , by Lemma 5, it follows that ;= L [V ft)dt is
Schur convex on [a,b] x [a,b] , and smce —g is convex on [a, b] , 1. e g is concave on
[a, ], by Lemma 5, it follows that L [V g(t)dt is Schur concave on [a, b] x [a, b],
and then

2 L F)dt L ryat
A [Tayat [T g(t)dt
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is Schur convex on [a, b] X [a,b]. Therefore, from (16) we have

th+(1—t)a
Jiari—op f(B)d f f(t)d
th+(1—t)a
Ji ta+(1— t)b g(t)d f g(t)d
The above inequality equivalent to the right inequality in (10).
The proof of Theorem 3 is completed. O

PROOF OF THEOREM 4. By the Theorem 1, for a < b, we have
Lta+ (1 —=t)b,tb+ (1 —t)a; f,9) < L(a,b; f,9), (20)
and for 0 < a < b, we have
L('a'"a'b" ™" f,9) < L(a,b; f, 9). (21)

Combining (17) with (20) and (21) respectively, it is deduced that (11) and (12)
are hold.

The proof of Theorem 4 is completed. O

4. Applications

Corollary 1. Let a,b € Ry with a < b, and let u = tb+ (1 —t)a,v = ta+ (1 —1)b,
%§t<1or0§t§%. Then for 1 < r < 2, we have

2 \" _r[(lnb—Ina)— (Inu—Inv)] _ r(lnb—Ina)
(a+b>§ 20— a)(1 1) ST %—a

(22)

PROOF. For 1 <r < 2, taking f(z) = 27! and g(x) = 2"}, then f and —g
both be convex function on [a,b]. From Theorem 3, it follows that (22) is hold.
The proof of Corollary 1 is completed. O

Remark 1. Taking r = 1, from (22), we have

2 (Inb—Ina) — (lnu—1nv) Inb—Ina
< <

23
a+b~ 2(b—a)(1—1) - b-a (23)

(23) is a refinement of the following OSTLE-TERWILLIGER inequality [19]:
lnb—lna> 2 (24)

b—a “a+b
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Corollary 2. Let a,b € Ry with a < b, and let u = tb+ (1 —t)a,v = ta+ (1 —1)b,
%§t<1or0§t§%. Then for 1 <r < 2, we have

a+b< (b2r_a2r)_(u2r_v2r) %< ar+br %
2 T 20 —a") =2 —v") | — 2 '

(25)

PROOF. For 1 < r < 2, taking f(z) = 2*~! and g(z) = 2”71, then f and
—g both be convex function on [a,b], from Theorem 3, it is easy to prove that
(25) is hold.

The proof of Corollary 2 is completed. O
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