Two Schur-convex functions related to Hadamard-type integral inequalities

By HUAN-NAN SHI (Beijing)

Abstract

The Schur-convexity, the Schur-geometric convexity and the Schurharmonic convexity of two mappings which related to Hadamard-type integral inequalities are researched. And three refinements of Hadamard-type integral inequality are obtained, as applications, some inequalities related to the arithmetic mean, the logarithmic mean and the power mean are established.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on real number field by \mathbb{R}^{n}, and $\mathbb{R}_{+}^{n}=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0, i=1, \ldots, n\right\}$. In particular, \mathbb{R}^{1} and \mathbb{R}_{+}^{1} denoted by \mathbb{R} and \mathbb{R}_{+}respectively.

Let f be a convex function defined on the interval $I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ of real numbers and $a, b \in I$ with $a<b$. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

is known as the Hadamard's inequality for convex function [1]. For some recent results which generalize, improve, and extend this classical inequality, see [2][8]and [15]-[17].

Mathematics Subject Classification: Primary: 26D15, 26A51; Secondary: B25, 26D15.
Key words and phrases: Schur-convex function, Schur-geometrical convex function and the Schur-harmonic convex function, inequality, convex function Hadamard's inequality; logarithmic mean, power mean.
The author was supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201011417013).

When $f,-g$ both are convex functions satisfying $\int_{a}^{b} g(x) d x>0$ and $f\left(\frac{a+b}{2}\right) \geq 0$, S.-J. Yang in [5] generalized (1) as

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x}{\frac{1}{b-a} \int_{a}^{b} g(x) \mathrm{d} x} \tag{2}
\end{equation*}
$$

To go further in exploring (2), Lan He in [8] define two mappings L and F by $L:[a, b] \times[a, b] \rightarrow \mathbb{R}$,
$L(x, y ; f, g)=\left[\int_{x}^{y} f(t) \mathrm{d} t-(y-x) f\left(\frac{x+y}{2}\right)\right]\left[(y-x) g\left(\frac{x+y}{2}\right)-\int_{x}^{y} g(t) \mathrm{d} t\right]$ and $F:[a, b] \times[a, b] \rightarrow \mathbb{R}$,

$$
F(x, y ; f, g)=g\left(\frac{x+y}{2}\right) \int_{x}^{y} f(t) \mathrm{d} t-f\left(\frac{x+y}{2}\right) \int_{x}^{y} g(t) \mathrm{d} t
$$

and established the following two theorems which are refinements of the inequality of (2).

Theorem A ([8]). Let $f,-g$ both are convex functions on $[a, b]$. Then we have
(i) $L(a, y ; f, g)$ is nonnegative increasing with y on $[a, b], L(x, b ; f, g)$ is nonnegative decreasing with x on $[a, b]$.
(ii) When $\int_{b}^{a} g(x) \mathrm{d} x>0$ and $f\left(\frac{a+b}{2}\right) \geq 0$, for any $x, y \in(a, b)$ and $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha+\beta=1$, we have the following refinement of (2)

$$
\begin{align*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} & \leq \frac{(b-a) f\left(\frac{a+b}{2}\right)}{2 \int_{a}^{b} g(t) \mathrm{d} t}+\frac{\int_{a}^{b} f(t) \mathrm{d} t}{2(b-a) g\left(\frac{a+b}{2}\right)} \\
& \leq \frac{(b-a) f\left(\frac{a+b}{2}\right)}{2 \int_{a}^{b} g(t) \mathrm{d} t}+\frac{\int_{a}^{b} f(t) \mathrm{d} t}{2(b-a) g\left(\frac{a+b}{2}\right)}+\frac{\alpha L(a, y ; f, g)+\beta L(x, b ; f, g)}{2(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t} \\
& \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{2 \int_{a}^{b} g(t) \mathrm{d} t}+\frac{2 f\left(\frac{a+b}{2}\right)}{2 g\left(\frac{a+b}{2}\right)} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t} \tag{3}
\end{align*}
$$

Theorem B ([8]). Let $f,-g$ both are nonnegative convex functions on $[a, b]$ satisfying $\int_{a}^{b} g(x) d x>0$. Then we have the following two results:
(i) If f and $-g$ both are increasing, then $F(a, y ; f, g)$ is nonnegative increasing with y on $[a, b]$, and we have the following refinement of (2)

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)}+\frac{F(a, y ; f, g)}{g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t} \tag{4}
\end{equation*}
$$

where $y \in(a, b)$.

Two Schur-convex functions related to Hadamard-type integral inequalities 395
(ii) If f and $-g$ both are decreasing, then $F(a, y ; f, g)$ is nonnegative decreasing with y on $[a, b]$, and we have the following refinement of (2)

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)}+\frac{F(x, b ; f, g)}{g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t}, \tag{5}
\end{equation*}
$$

where $x \in(a, b)$.
The aim of this paper is to study the Schur-convexity of $L(x, y ; f, g)$ and $F(x, y ; f, g)$ with variables (x, y) in $[a, b] \times[a, b] \subseteq \mathbb{R}^{2}$, and study the Schurgeometric convexity and the Schur-harmonic convexity of $L(x, y ; f, g)$ with variables (x, y) in $[a, b] \times[a, b] \subseteq \mathbb{R}_{+}^{2}$. We obtain the following results.

Theorem 1. Let f and $-g$ both be convex function on $[a, b]$. Then
(i) $L(x, y ; f, g)$ is Schur-convex on $[a, b] \times[a, b] \subseteq \mathbb{R}^{2}$, and $L(x, y ; f, g)$ is Schurgeometrically convex and Schur-harmonic convex in $[a, b] \times[a, b] \subseteq \mathbb{R}_{+}^{2}$.
(ii) If $\frac{1}{2} \leq t_{2} \leq t_{1} \leq 1$ or $0 \leq t_{2} \leq t_{1} \leq \frac{1}{2}$, then for $a<b$, we have

$$
\begin{align*}
0 & \leq L\left(t_{1} a+\left(1-t_{1}\right) b, t_{1} b+\left(1-t_{1}\right) a ; f, g\right) \\
& \leq L\left(t_{2} a+\left(1-t_{2}\right) b, t_{2} b+\left(1-t_{2}\right) a ; f, g\right) \leq L(a, b ; f, g) \tag{6}
\end{align*}
$$

and for $0<a<b$, we have

$$
\begin{equation*}
0 \leq L\left(b^{t_{2}} a^{1-t_{2}}, a^{t_{2}} b^{1-t_{2}} ; f, g\right) \leq L\left(b^{t_{1}} a^{1-t_{1}}, a^{t_{1}} b^{1-t_{1}} ; f, g\right) \leq L(a, b ; f, g) \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
0 & \leq L\left(1 /\left(t_{2} b+\left(1-t_{2}\right) a\right), 1 /\left(t_{2} a+\left(1-t_{2}\right) b\right) ; f, g\right) \\
& \leq L\left(1 /\left(t_{1} b+\left(1-t_{1}\right) a\right), 1 /\left(t_{1} a+\left(1-t_{1}\right) b\right) ; f, g\right) \leq L(1 / a, 1 / b ; f, g) \tag{8}
\end{align*}
$$

Theorem 2. Let f and $-g$ both be nonnegative convex function on $[a, b]$. Then
(i) $F(x, y ; f, g)$ is Schur-convex on $[a, b] \times[a, b] \subseteq \mathbb{R}^{2}$;
(ii) If $\frac{1}{2} \leq t_{2} \leq t_{1} \leq 1$ or $0 \leq t_{2} \leq t_{1} \leq \frac{1}{2}$, then for $a<b$, we have

$$
\begin{align*}
0 & \leq F\left(t_{1} a+\left(1-t_{1}\right) b, t_{1} b+\left(1-t_{1}\right) a ; f, g\right) \\
& \leq F\left(t_{2} a+\left(1-t_{2}\right) b, t_{2} b+\left(1-t_{2}\right) a ; f, g\right) \leq F(a, b ; f, g) \tag{9}
\end{align*}
$$

Theorem 3. Let f and $-g$ both be convex function on $[a, b] \subseteq \mathbb{R}$. If $\int_{b}^{a} g(x) \mathrm{d} x>0$ and $f\left(\frac{a+b}{2}\right) \geq 0$, then

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t-\int_{t a+(1-t) b}^{t b+(1-t) a} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t-\int_{t a+(1-t) b}^{t b+(1-t) a} g(t) \mathrm{d} t} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t} \tag{10}
\end{equation*}
$$

where $\frac{1}{2} \leq t<1$ or $0 \leq t \leq \frac{1}{2}$.

Theorem 4. Let $f,-g$ both are nonnegative convex functions on $[a, b]$ satisfying $\int_{a}^{b} g(x) d x>0$, then for $a<b$, we have

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t}-\frac{L(t a+(1-t) b, t b+(1-t) a ; f, g)}{2(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t} \tag{11}
\end{equation*}
$$

and for $0<a<b$, we have

$$
\begin{equation*}
\frac{f\left(\frac{a+b}{2}\right)}{g\left(\frac{a+b}{2}\right)} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t}-\frac{L\left(b^{t} a^{1-t}, a^{t} b^{1-t} ; f, g\right)}{2(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t} \tag{12}
\end{equation*}
$$

where $\frac{1}{2} \leq t \leq 1$ or $0 \leq t \leq \frac{1}{2}$.

2. Definitions and lemmas

We need the following definitions and lemmas.
Definition $1([9,10])$. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) \boldsymbol{x} is said to be majorized by \boldsymbol{y} (in symbols $\boldsymbol{x} \prec \boldsymbol{y}$) if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k=1,2, \ldots, n-1$ and $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of \boldsymbol{x} and \boldsymbol{y} in a descending order.
(ii) Let $\Omega \subseteq \mathbb{R}^{n}$. The function $\varphi: \Omega \rightarrow \mathbb{R}$ be said to be a Schur-convex function on Ω if $\boldsymbol{x} \prec \boldsymbol{y}$ on Ω implies $\varphi(\boldsymbol{x}) \leq \varphi(\boldsymbol{y}) . \varphi$ is said to be a Schur-concave function on Ω if and only if $-\varphi$ is Schur-convex.

Definition $2([11,12])$. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}$.
(i) $\Omega \subseteq \mathbb{R}_{+}^{n}$ is called a geometrical convex set if $\left(x_{1}^{\alpha} y_{1}^{\beta}, \ldots, x_{n}^{\alpha} y_{n}^{\beta}\right) \in \Omega$ for all \boldsymbol{x} and $\boldsymbol{y} \in \Omega$, where α and $\beta \in[0,1]$ with $\alpha+\beta=1$.
(ii) Let $\Omega \subseteq \mathbb{R}_{+}^{n}$. The function $\varphi: \Omega \rightarrow \mathbb{R}_{+}$is said to be Schur-geometrical convex function on Ω if $\left(\ln x_{1}, \ldots, \ln x_{n}\right) \prec\left(\ln y_{1}, \ldots, \ln y_{n}\right)$ on Ω implies $\varphi(\boldsymbol{x}) \leq \varphi(\boldsymbol{y})$. The function φ is said to be a Schur-geometrical concave on Ω if and only if $-\varphi$ is Schur-geometrical convex.

Definition 3 ([13]). Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}$.
(i) $\Omega \subseteq \mathbb{R}_{+}^{n}$ is called a harmonic convex set if $\left(x_{1} y_{1} /\left(\alpha x_{1}+\beta y_{1}\right), \ldots\right.$,
$\left.x_{n} y_{n} /\left(\alpha x_{n}+\beta y_{n}\right)\right) \in \Omega$ for all \boldsymbol{x} and $\boldsymbol{y} \in \Omega$, where α and $\beta \in[0,1]$ with $\alpha+\beta=1$.

Two Schur-convex functions related to Hadamard-type integral inequalities 397
(ii) Let $\Omega \subseteq \mathbb{R}_{+}^{n}$. The function $\varphi: \Omega \rightarrow \mathbb{R}_{+}$is said to be Schur-harmonic convex function on Ω if $\left(1 / x_{1}, \ldots, 1 / x_{n}\right) \prec\left(1 / y_{1}, \ldots, 1 / y_{n}\right)$ on Ω implies $\varphi(\boldsymbol{x} \leq(\geq) \varphi(\boldsymbol{y})$. The function φ is said to be a Schur-harmonic concave on Ω if and only if $-\varphi$ is Schur-harmonic convex.

Lemma 1 ($[9,10]$). Let $\Omega \subseteq \mathbb{R}^{n}$ be a symmetric set and with a nonempty interior $\Omega^{0}, \varphi: \Omega \rightarrow \mathbb{R}$ be a continuous on Ω and differentiable in Ω^{0}. Then φ is the Schur-convex (Schur-concave) function, if and only if φ is symmetric on Ω and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(\frac{\partial \varphi}{\partial x_{1}}-\frac{\partial \varphi}{\partial x_{2}}\right) \geq 0(\leq 0) \tag{13}
\end{equation*}
$$

holds for any $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Omega^{0}$.
Lemma 2 ([11]). Let $\Omega \subseteq \mathbb{R}_{+}^{n}$ be symmetric with a nonempty interior geometrically convex set. Let $\varphi: \Omega \rightarrow \mathbb{R}_{+}$be continuous on Ω and differentiable in Ω^{0}. If φ is symmetric on Ω and

$$
\begin{equation*}
\left(\ln x_{1}-\ln x_{2}\right)\left(x_{1} \frac{\partial \varphi}{\partial x_{1}}-x_{2} \frac{\partial \varphi}{\partial x_{2}}\right) \geq 0(\leq 0) \tag{14}
\end{equation*}
$$

holds for any $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Omega^{0}$, then φ is a Schur-geometrical convex (Schurgeometrical concave) function.
Lemma 3 ([13]). Let $\Omega \subseteq \mathbb{R}_{+}^{n}$ be symmetric with a nonempty interior harmonic convex set. Let $\varphi: \Omega \rightarrow \mathbb{R}_{+}$be continuous on Ω and differentiable in Ω^{0}. If φ is symmetric on Ω and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(x_{1}^{2} \frac{\partial \varphi}{\partial x_{1}}-x_{2}^{2} \frac{\partial \varphi}{\partial x_{2}}\right) \geq 0(\leq 0) \tag{15}
\end{equation*}
$$

holds for any $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Omega^{0}$, then φ is a Schur-harmonic convex (Schurharmonic concave) function.

Lemma 4 ([14]). Let $a \leq b, u(t)=t a+(1-t) b, v(t)=t b+(1-t) a$. If $1 / 2 \leq$ $t_{2} \leq t_{1} \leq 1$ or $0 \leq t_{1} \leq t_{2} \leq 1 / 2$, then

$$
\begin{equation*}
\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \prec\left(u\left(t_{2}\right), v\left(t_{2}\right)\right) \prec\left(u\left(t_{1}\right), v\left(t_{1}\right)\right) \prec(a, b) . \tag{16}
\end{equation*}
$$

Lemma 5 ([18]). Let I be an interval with nonempty interior on \mathbb{R} and f be a continuous function on I. Then

$$
\Phi(a, b)=\left\{\begin{array}{l}
\frac{1}{b-a} \int_{a}^{b} f(t) d t, \quad a, b \in I, a \neq b \\
f(a), a=b
\end{array}\right.
$$

Schur-convex (Schur-concave) on I^{2} if and if f is convex(concave) on I.

Lemma 6. Let f and $-g$ both be convex function on $[a, b] \subseteq \mathbb{R}$. If $\int_{b}^{a} g(x) \mathrm{d} x \geq 0$ and $f\left(\frac{a+b}{2}\right) \geq 0$, then

$$
\begin{equation*}
L(a, b ; f, g) \leq 2(b-a)\left[g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(t) \mathrm{d} t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t\right] \tag{17}
\end{equation*}
$$

Proof.

$$
\begin{align*}
& L(a, b ; f, g)=\left[\int_{a}^{b} f(t) \mathrm{d} t-(b-a) f\left(\frac{a+b}{2}\right)\right]\left[(b-a) g\left(\frac{a+b}{2}\right)-\int_{a}^{b} g(t) \mathrm{d} t\right] \\
& \quad=(b-a) g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(t) \mathrm{d} t-\int_{a}^{b} f(t) \mathrm{d} t \int_{a}^{b} g(t) \mathrm{d} t \\
& \quad-(b-a)^{2} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)+(b-a) f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t . \tag{18}
\end{align*}
$$

Combining (18) with (3.6) and (3.7) in [10], it following that (17) is hold.

3. Proofs of the main results

Proof of Theorem 1. (i) It is clear that $L(x, y ; f, g)$ is symmetric with x, y. Without loss of generality, we may assume $y \geq x$. Directly calculating yields

$$
\begin{aligned}
\frac{\partial L}{\partial y}= & {\left[f(y)-f\left(\frac{x+y}{2}\right)-\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right)\right]\left[(y-x) g\left(\frac{x+y}{2}\right)-\int_{x}^{y} g(t) \mathrm{d} t\right] } \\
& +\left[\int_{x}^{y} f(t) \mathrm{d} t-(y-x) f\left(\frac{x+y}{2}\right)\right]\left[g\left(\frac{x+y}{2}\right)+\frac{y-x}{2} g^{\prime}\left(\frac{x+y}{2}\right)-g(y)\right], \\
\frac{\partial L}{\partial x}= & {\left[-f(x)+f\left(\frac{x+y}{2}\right)-\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right)\right]\left[(y-x) g\left(\frac{x+y}{2}\right)-\int_{x}^{y} g(t) \mathrm{d} t\right] } \\
& +\left[\int_{x}^{y} f(t) \mathrm{d} t-(y-x) f\left(\frac{x+y}{2}\right)\right]\left[-g\left(\frac{x+y}{2}\right)+\frac{y-x}{2} g^{\prime}\left(\frac{x+y}{2}\right)+g(x)\right] .
\end{aligned}
$$

By Lagrange mean value theorem, there is $\xi \in((x+y) / 2, y)$ such that

$$
f(y)-f\left(\frac{x+y}{2}\right)=\left(y-\frac{x+y}{2}\right) f^{\prime}(\xi)=\frac{y-x}{2} f^{\prime}(\xi)
$$

Since f is convex, f^{\prime} is increasing, we have $f^{\prime}(\xi) \geq f^{\prime}\left(\frac{x+y}{2}\right)$, so

$$
f(y)-f\left(\frac{x+y}{2}\right)-\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right) \geq 0
$$

By the same arguments, we have

$$
-f(x)+f\left(\frac{x+y}{2}\right)-\frac{y-x}{2} f^{\prime}\left(\frac{x+y}{2}\right) \leq 0 .
$$

Similarly, since $-g$ is convex, we have

$$
g\left(\frac{x+y}{2}\right)+\frac{y-x}{2} g^{\prime}\left(\frac{x+y}{2}\right)-g(y) \geq 0
$$

and

$$
-g\left(\frac{x+y}{2}\right)+\frac{y-x}{2} g^{\prime}\left(\frac{x+y}{2}\right)+g(x) \leq 0
$$

And by Hadamard's inequality (1), it follows that $(y-x) g\left(\frac{x+y}{2}\right)-\int_{x}^{y} g(t) \mathrm{d} t \geq 0$ and $\int_{x}^{y} f(t) \mathrm{d} t-(y-x) f\left(\frac{x+y}{2}\right) \geq 0$. So $\frac{\partial L}{\partial y} \geq 0$ and $\frac{\partial L}{\partial x} \leq 0$, further $(y-$ $x)\left(\frac{\partial L}{\partial y}-\frac{\partial L}{\partial x}\right) \geq 0$ and $(x-y)\left(x^{2} \frac{\partial L}{\partial x}-y^{2} \frac{\partial L}{\partial y}\right) \geq 0$. Notice that from $y \geq x$, we have $\ln x-\ln y \leq 0$, and then $(\ln x-\ln y)\left(x \frac{\partial L}{\partial x}-y \frac{\partial L}{\partial y}\right) \geq 0$. According to Lemma 1, Lemma 2 and Lemma 3, it follows that $L(x, y ; f, g)$ is Schur-convex in $[a, b] \times[a, b] \subseteq \mathbb{R}^{2}$, and $L(x, y ; f, g)$ is Schur-geometrical convex and Schurharmonic convex in $[a, b] \times[a, b] \subseteq \mathbb{R}_{+}^{2}$.
(ii) From Lemma 4, we have

$$
\begin{align*}
(\ln \sqrt{a b}, \ln \sqrt{a b}) & \prec\left(\ln \left(b^{t_{2}} a^{1-t_{2}}\right), \ln \left(a^{t_{2}} b^{1-t_{2}}\right)\right) \\
& \prec\left(\ln \left(b^{t_{1}} a^{1-t_{1}}\right), \ln \left(a^{t_{1}} b^{1-t_{1}}\right)\right) \prec(\ln a, \ln b) . \tag{19}
\end{align*}
$$

By (i) in Theorem 1, from (16) and (19) it follows that (6), (8) and (7) are hold.
The proof of Theorem 1 is completed.
Proof of Theorem 2. (i) It is clear that $F(x, y ; f, g)$ is symmetric. Without loss of generality, we may assume $y \geq x$. Directly calculating yields

$$
\begin{aligned}
\frac{\partial F}{\partial y}= & \frac{1}{2} g^{\prime}\left(\frac{x+y}{2}\right) \int_{x}^{y} f(t) \mathrm{d} t+g\left(\frac{x+y}{2}\right) f(y) \\
& -\frac{1}{2} f^{\prime}\left(\frac{x+y}{2}\right) \int_{x}^{y} g(t) \mathrm{d} t-f\left(\frac{x+y}{2}\right) g(y), \\
\frac{\partial F}{\partial x}= & \frac{1}{2} g^{\prime}\left(\frac{x+y}{2}\right) \int_{x}^{y} f(t) \mathrm{d} t-g\left(\frac{x+y}{2}\right) f(x) \\
& -\frac{1}{2} f^{\prime}\left(\frac{x+y}{2}\right) \int_{x}^{y} g(t) \mathrm{d} t+f\left(\frac{x+y}{2}\right) g(x),
\end{aligned}
$$

and then

$$
\begin{aligned}
& (y-x)\left(\frac{\partial F}{\partial y}-\frac{\partial F}{\partial x}\right) \\
& \quad=(y-x)\left[g\left(\frac{x+y}{2}\right)(f(x)+f(y))-f\left(\frac{x+y}{2}\right)(g(x)+g(y))\right]
\end{aligned}
$$

Since f and $-g$ both be convex function on $[a, b], f(x)+f(y) \geq 2 f\left(\frac{x+y}{2}\right)$ and $g\left(\frac{x+y}{2}\right) \geq \frac{g(x)+g(y)}{2}$, and then $g\left(\frac{x+y}{2}\right)(f(x)+f(y))-f\left(\frac{x+y}{2}\right)(g(x)+g(y)) \geq 0$, so $(y-x)\left(\frac{\partial F}{\partial y}-\frac{\partial F}{\partial x}\right) \geq 0$. From Lemma 1, it follows that $F(x, y ; f, g)$ is Schur-convex on $[a, b] \times[a, b]$.
(ii) By (i) in Theorem 2, from (16) it follows that the (9) is hold.

The proof of Theorem 2 is completed.
Proof of Theorem 3. By the Theorem 2, for $\frac{1}{2} \leq t<1$ or $0 \leq t \leq \frac{1}{2}$, we have

$$
\begin{aligned}
F(t a & +(1-t) b, t b+(1-t) a ; f, g) \\
& =g\left(\frac{a+b}{2}\right) \int_{t a+(1-t) b}^{t b+(1-t) a} f(t) \mathrm{d} t-f\left(\frac{a+b}{2}\right) \int_{t a+(1-t) b}^{t b+(1-t) a} g(t) \mathrm{d} t \\
& \leq g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(t) \mathrm{d} t-f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(t) \mathrm{d} t=F(a, b ; f, g) .
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& f\left(\frac{a+b}{2}\right)\left[\int_{a}^{b} g(t) \mathrm{d} t-\int_{t a+(1-t) b}^{t b+(1-t) a} g(t) \mathrm{d} t\right] \\
& \quad \leq g\left(\frac{a+b}{2}\right)\left[\int_{a}^{b} f(t) \mathrm{d} t-\int_{t a+(1-t) b}^{t b+(1-t) a} f(t) \mathrm{d} t\right]
\end{aligned}
$$

which is equivalent to left inequality in (10).
Since f is convex on $[a, b]$, by Lemma 5, it follows that $\frac{1}{y-x} \int_{x}^{y} f(t) \mathrm{d} t$ is Schur convex on $[a, b] \times[a, b]$, and since $-g$ is convex on $[a, b]$, i.e. g is concave on $[a, b]$, by Lemma 5, it follows that $\frac{1}{y-x} \int_{x}^{y} g(t) \mathrm{d} t$ is Schur concave on $[a, b] \times[a, b]$, and then

$$
\frac{\frac{1}{y-x} \int_{x}^{y} f(t) \mathrm{d} t}{\frac{1}{y-x} \int_{x}^{y} g(t) \mathrm{d} t}=\frac{\int_{x}^{y} f(t) \mathrm{d} t}{\int_{x}^{y} g(t) \mathrm{d} t}
$$

Two Schur-convex functions related to Hadamard-type integral inequalities 401 is Schur convex on $[a, b] \times[a, b]$. Therefore, from (16) we have

$$
\frac{\int_{t a+(1-t) b}^{t b+(1-t) a} f(t) \mathrm{d} t}{\int_{t a+(1-t) b}^{t b+(1-t) a} g(t) \mathrm{d} t} \leq \frac{\int_{a}^{b} f(t) \mathrm{d} t}{\int_{a}^{b} g(t) \mathrm{d} t}
$$

The above inequality equivalent to the right inequality in (10).
The proof of Theorem 3 is completed.
Proof of Theorem 4. By the Theorem 1 , for $a<b$, we have

$$
\begin{equation*}
L(t a+(1-t) b, t b+(1-t) a ; f, g) \leq L(a, b ; f, g), \tag{20}
\end{equation*}
$$

and for $0<a<b$, we have

$$
\begin{equation*}
L\left(b^{t} a^{1-t}, a^{t} b^{1-t} ; f, g\right) \leq L(a, b ; f, g) . \tag{21}
\end{equation*}
$$

Combining (17) with (20) and (21) respectively, it is deduced that (11) and (12) are hold.

The proof of Theorem 4 is completed.

4. Applications

Corollary 1. Let $a, b \in \mathbb{R}_{+}$with $a<b$, and let $u=t b+(1-t) a, v=t a+(1-t) b$, $\frac{1}{2} \leq t<1$ or $0 \leq t \leq \frac{1}{2}$. Then for $1 \leq r \leq 2$, we have

$$
\begin{equation*}
\left(\frac{2}{a+b}\right)^{r} \leq \frac{r[(\ln b-\ln a)-(\ln u-\ln v)]}{2(b-a)(1-t)} \leq \frac{r(\ln b-\ln a)}{b-a} \tag{22}
\end{equation*}
$$

Proof. For $1 \leq r \leq 2$, taking $f(x)=x^{-1}$ and $g(x)=x^{r-1}$, then f and $-g$ both be convex function on $[a, b]$. From Theorem 3, it follows that (22) is hold.

The proof of Corollary 1 is completed.
Remark 1. Taking $r=1$, from (22), we have

$$
\begin{equation*}
\frac{2}{a+b} \leq \frac{(\ln b-\ln a)-(\ln u-\ln v)}{2(b-a)(1-t)} \leq \frac{\ln b-\ln a}{b-a} \tag{23}
\end{equation*}
$$

(23) is a refinement of the following Ostle-Terwilliger inequality [19]:

$$
\begin{equation*}
\frac{\ln b-\ln a}{b-a} \geq \frac{2}{a+b} . \tag{24}
\end{equation*}
$$

Corollary 2. Let $a, b \in \mathbb{R}_{+}$with $a<b$, and let $u=t b+(1-t) a, v=t a+(1-t) b$, $\frac{1}{2} \leq t<1$ or $0 \leq t \leq \frac{1}{2}$. Then for $1 \leq r \leq 2$, we have

$$
\begin{equation*}
\frac{a+b}{2} \leq\left[\frac{\left(b^{2 r}-a^{2 r}\right)-\left(u^{2 r}-v^{2 r}\right)}{2\left(b^{r}-a^{r}\right)-2\left(u^{r}-v^{r}\right)}\right]^{\frac{1}{r}} \leq\left(\frac{a^{r}+b^{r}}{2}\right)^{\frac{1}{r}} \tag{25}
\end{equation*}
$$

Proof. For $1 \leq r \leq 2$, taking $f(x)=x^{2 r-1}$ and $g(x)=x^{r-1}$, then f and $-g$ both be convex function on $[a, b]$, from Theorem 3, it is easy to prove that (25) is hold.

The proof of Corollary 2 is completed.
Acknowledgements The author is indebted to the referees for their helpful suggestions.

References

[1] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
[2] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), 489-501.
[3] G.-S. Yang and K.-L. Tseng, Inequalities of Hadamard's type for Lipschitzian mappings, J. Math. Anal. Appl. 260 (2001), 230-238.
[4] M. Matić and J. Pečarić, Note on inequalities of Hadamard's type for Lipschitzian mappings, Tamkang J. Math. 32 (2) (2001), 127-130.
[5] S.-J. Yang, A direct proof and extensions of an inequality, J. Math. Res. Exposit. 24(4) (2004), 649-652.
[6] S. S. Dragomir and R. P. Agarwal, Two new mappings associated with Hadamard's inequalities for convex functions, Appl. Math. Lett. 11(3) (1998), 33-38.
[7] L.-C. Wang, Some refinements of Hermite-Hadamard inequalities for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 15 (2004), 40-45.
[8] L. He, Two new mappings associated with inequalities of Hadamard-type for convex functions, J. Inequal. Pure and Appl. Math. 10(3) (2009), Art. 81, 5 pp. http://jipam.vu.edu.au/.
[9] A. M. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Application, Academies Press, New York, 1979.
[10] B.-Y. Wang, Foundations of Majorization Inequalities, (Kong Zhi Bu Deng Shi Ji Chu, eds.), Beijing Normal Univ. Press, Beijing, China, 1990 (in Chinese).
[11] X.-M. Zhang, Geometrically Convex Functions, An'hui University Press, Hefei, 2004 (in Chinese).
[12] Constantin P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3, no. 2 (2000), 155-167.
[13] Y.-M. Chu and Y.-P. Lv, The Schur harmonic convexity of the Hamy symmetric function and its applications, J. Inequal. Appl., Volume 2009, Article ID 838529, 10 pages doi:10.1155/2009/838529.

Two Schur-convex functions related to Hadamard-type integral inequalities 403
[14] H.-N. Shi, Y.-M. Jiang and W.-D. Jiang, Schur-convexity and Schur-geometrically concavity of gini mean, Comput. Math. Appl. 57 (2009), 266-274.
[15] H.-N. Shi, Schur-convex functions relate to Hadamard-type inequalities, J. Math. Inequal. 1, no. 1 (2007), 127-136
[16] H.-N. Shi, D.-M. Li and C. Gu, Schur-convexity of a mean of convex function, Appl. Math Lett. 22 (2009), 932-937.
[17] X.-M. Zhang, Geometric convexity of integral of a geometrically concave function, Int. J Math. Inequal. Appl. 1, no. 1 (2007), 121-130.
[18] N. Elezović and J. E. Pečarić, Note on Schur-convex functions, Rocky Mountain J. Math. 29 (1998), 853-856
[19] B. Ostle and H. L. Terwilliger, A companion of two means, Proc. Montana Acad. Sci. 17, no. 1 (1957), 69-70.

HUAN-NAN SHI
DEPARTMENT OF ELECTRONIC INFORMATION
TEACHER'S COLLEGE
BEIJING UNION UNIVERSITY
BEIJING CITY, 100011
CHINA
E-mail: shihuannan@yahoo.com.cn, sfthuannan@buu.edu.cn
(Received November 27, 2009; revised September 21, 2010)

