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Absolutely indecomposable representations of a twisted group
algebra of a finite p-group over a field of characteristic p

By LEONID F. BARANNYK (Stupsk)

Abstract. Let G be a non-cyclic finite p-group and K an infinite field of characte-
ristic p. For every 2-cocycle A € Z%(G, K*) such that the twisted group algebra K*G is
not uniserial, we find the integers m > 1 for which K*G has infinitely many absolutely
indecomposable representations of dimension m. The main results of the paper imply
a solution of the second Brauer—Thrall conjecture for the twisted group algebras K*G,
under some assumption on G and K.

Introduction

Let A be a finite-dimensional algebra with identity over an infinite field K.
We say that A is of strongly unbounded representation type, if there exists an
infinite sequence of positive integers d; such that, for each i, the algebra A has
an infinite number of indecomposable representations of dimension d;.

Let p > 2 be a prime, G a finite group of order |G|, such that p divides |G|,
G, a Sylow p-subgroup of G and K a field of characteristic p. HIGMAN [14] proved
that if G, is a cyclic group then the group algebra KG is of finite representa-
tion type, and if G, is non-cyclic then KG is of unbounded representation type,
that is K'G has indecomposable representations of an arbitrary large dimension.
BONDARENKO and DROZD [8] have established that if G}, is non-cyclic then KG
is tame if and only if |G}, : G},| = 4 (see also the paper [7] which uses the method
of self-repeating matrix problems, first proposed in [20]). Let H be a non-cyclic
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abelian p-group and K be an infinite field of characteristic p. BASHEV [6] showed
that if |H| = 4 then K H has infinitely many absolutely indecomposable represen-
tations of dimension 2n for any integer n > 1, see also [1, Section V.5]. GUDIVOK
[13] and JANUSZ [16], [17] proved that in the case |H| # 4 the group algebra K H
has infinitely many absolutely indecomposable representations of each dimension
n > 2. It follows, by Higman’s theory of relative projectivity [14], that if K is
an infinite field and K'G is of infinite representation type then KG is of strongly
unbounded representation type. This result is the confirmation of the second
Brauer—Thrall conjecture for group algebras of finite groups (see [1, p. 138] and
[22, pp. 341-2] for a formulation and a discussion of the conjecture).

Given a 2-cocycle A € Z2(G, K*), we denote by K*G a twisted group algebra
of a finite group G over a field K of characteristic p corresponding to A (see [18,
p. 66]). We recall from [5] that K G is of finite representation type if and only if
K*G, is a uniserial algebra.

In the present work we find all positive integers m for which a non-uniserial
algebra K ’\Gp has infinitely many absolutely indecomposable representations of
dimension m.

Assume that K is an infinite field of characteristic p, G is a non-cyclic p-
group, K*G is a non-uniserial algebra and d = dimg(K*G/rad K*G). Since
K*G is a local algebra (see [18, p. 74]), the dimension of every indecomposable
representation of K*G is a multiple of d. Let G be an abelian p-group and

1 if 4d # |G|,
2 if 4d = |G|

We prove that the algebra K*G has infinitely many nonequivalent absolutely
indecomposable representations of dimension nld for any integer n > 2 (The-
orem 2.4). Suppose that G is a non-abelian p-group, G’ is the commutant of G
and

1 if p#£2,
2 if p=2.

t =

If G’ is non-cyclic or pd # |G : G'| then K*G has infinitely many nonequivalent
absolutely indecomposable representations of dimension nptd for any integer n>2
(Propositions 3.4, 4.1 and Theorem 3.5). If G’ is cyclic and pd = |G : G|, under
some assumptions on G or K, we prove in Propositions 4.4-4.9 that the algebra
K*G has infinitely many nonequivalent absolutely indecomposable representa-
tions of dimension 2nd, for any integer n > 1. Hence the result is valid if one of
the following conditions holds:
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(i) p#2and |G'] = p?,
(i) p=2and |G’ N Z(D)| > 4, where D is the subgroup of G such that G’ C D
and D/G’' = soc(G/G"), or
(iii) [K : KP] < p2.

Assume now that G is an arbitrary finite group and K is an infinite field
of characteristic p. By HIGMAN’s theory of relative projectivity [14], the algeb-
ras K*G and K )‘Gp are of the same representation type. Consequently, from
the results obtained in this paper it follows that K*G is of strongly unbounded
representation type if K )‘Gp is not a uniserial algebra and one of the following
conditions holds:

(a) Gy is an abelian group,

(b) G}, is a non-cyclic group,

(c) p # 2, Gy, is cyclic and |G}| > P2,

(d) p =2, Gy is cyclic and |Gy N Z(D)| > 4, where D is the subgroup of G such
that G4 C D and D/GY = soc(G2/GY), or

() [K : K?] < p?.

Hence, the second Brauer—Thrall conjecture (see Remark 4.10) is valid for twisted

group algebras of finite groups satisfying one of the conditions (a)-(d) and also

for twisted group algebras of arbitrary finite groups over an infinite field K of

characteristic p such that [K : K?] < p2.

Preliminaries

Throughout this paper, we use the following notations: K is an infinite field
of characteristic p; K* is the multiplicative group of K; K? = {a? : a € K}; G is
a finite p-group; G’ is the commutant of G and G” is the commutant of G’; Z(QG)
is the center of Gj e is the identity element of G; |g| is the order of g € G; soc B is
the socle of an abelian p-group B. Moreover, we denote by Z2(G, K*) the group
of all K*-valued normalized 2-cocycles of the group G, where we assume that G
acts trivially on K* (see [18, Chapter 1]).

Given a cocycle A : GxG — K*in Z?(G, K*), we denote by K*G the twisted
group algebra of the group G over the field K with the cocycle A and by rad K*G
the radical of K*G. We set K*G = K*G/rad K*G. We recall that in our case
K*@ is a finite purely inseparable field extension of K (see [18, p. 74]). A K-basis
{ug : g € G} of KX G satisfying uqup = Ao puap for all a,b € G is called natural

(corresponding to A). All K*G-modules are assumed to be finite-dimensional left
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modules. If H is a subgroup of G, we often use the same symbol for an element
A:G x G — K* of Z*(G,K*) and its restriction to H x H. In this case, K*H
is a subalgebra of K*G.

If M is a K*G-module, we denote by Myay the module M viewed as a
K*H-module. If N is a K*H-module, NEG = gAq ®Rgrg N is the induced
K*G-module. Let L be a field extension of K. If A is an L-algebra, we denote
by Ak the algebra A viewed as a K-algebra.

Given A € Z%(G, K*), the kernel Ker(\) of A is the union of all cyclic subgro-
ups (g) of G such that the restriction of A to (g) x (g) is a coboundary. We recall
from Lemma 1 of [4] that G’ C Ker(A), Ker()) is a normal subgroup of G and
the restriction of A to Ker(\) x Ker()) is a coboundary (see also [3, p. 197] for a
simple proof). Up to cohomology in Z%(G, K*), \g.a = Aoy = 1 for all g € G and
a € Ker(\). In what follows, we assume that every cocycle A € Z2(G, K*) under
consideration satisfies this condition.

Let H be a normal subgroup of G, H C Ker(\) and T = G/H. We set
UsHyH = Ay, for all z,y € G. Then pu € Z*(T, K*). Assume that {u, : g € G}
is a natural K-basis of K*G corresponding to A and {v,x : g € G} is a natural
K-basis of K*T corresponding to p. The formula

f(z o) = T aran

geG geqG

defines a K-algebra epimorphism f : K*G — K*T with the kernel U = K*G -
rad K*H (see [18, p. 88]). Hence K*G/U = K*T. We recall that

rad K*H = EB K(up — ue)
heH\{e}

is called the augmentation ideal of the group algebra K*H. If G’ C H then K*T
is a commutative algebra. We often identify u, + U with vgp.

Let V' be a finite-dimensional vector space over K and I' : G — GL(V) a
projective representation of G with a 2-cocycle A € Z2(G, K*). We refer to I’
as a A-representation of G over the field K (see [18, p. 106]). The dimension
of V is called the dimension of I'. If we view V as a module over K*G we say
that V is the underlying module of the A-representation I' (see [10, p. 74]). Let
PGL(V) = GL(V)/K* - 1y and 7 : GL(V) — PGL(V) be the canonical group
homomorphism. The kernel of the homomorphism 7 oI' : G — PGL(V) is called
the kernel of T" and is denoted by Ker(T"). If Ker(I') = {e}, the representation I’
is called faithful. Recall that if G is a finite p-group, K is a field of characteristic
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p and I is an irreducible A-representation of G over K then Ker(T') = Ker()) (see

[3, p. 198]).

Let R be a finite-dimensional algebra with identity over a field K. All R-
modules are assumed to be finite-dimensional left modules. We recall from [12,
p. 437] that an R-module V is defined to be absolutely indecomposable if for
every field extension L of K, L ® ¢ V is an indecomposable module over L ® i R.
Applying Lemma 18.7 from [10, p. 72], we can see immediately that an R-module
V' is absolutely indecomposable if for every finite field extension L of K, L®g V'
is an indecomposable module over L ® x R. If an absolutely indecomposable R-
module V' is the underlying module of a representation I" of R, we say that I is an
absolutely indecomposable representation of R. Denote by [M] the isomorphism
class of R-modules that contains M. We denote by AInd(R, s) the set of all [V],
where V' is an absolutely indecomposable R-module of K-dimension s. Moreover,
we denote by FAInd(K*G, s) the set of all [W], where W is the underlying K*G-
module of a faithful absolutely indecomposable A-representation of G over K of
dimension s.

Let G be an abelian p-group, K a field of characteristic p and A € Z2(G, K*).
We recall from [5, p. 175-176] that the following statements hold:

(i) The algebra K*G is uniserial if and only if G = H x B, where H is a cyclic
group and K*B is a field.

(ii) If G = H x B, where H is a cyclic group and K*H is not a field, then the
algebra K*G is not uniserial if and only if K*B is not a field.

(i) Let G = Bx {c1) X ---x {cs) and D; = Bx (¢;) for i = 1,...,s. Assume that
K?*B is a field and K*D; is not a field for every i € {1,...,s}. The algebra
K@ is not uniserial if and only if s > 2.

The reader is referred to [10], [18] and [19] for basic facts and notation from group

representation theory and to [1] and [9] for terminology, notation and introduction

to the representation theory of finite-dimensional algebras over a field.

1. On induced modules

Let R be an algebra with identity 1 # 0 over a field K, Autg(R) the group
of all K-automorphisms of R, U(R) the unit group of R and H a finite group
with the identity element e. By a crossed product of H over R we understand a
K-algebra R+ H which is a free left R-module with a basis {up : h € H} such
that

(rug) (sup) = 757D\, pugn
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forall m,s € R, g,h € H, where 0 : H — Autg(R) and o(e) =idr, A: H x H —
U(R) and Ay e = Ay =1 for any oz € H.

The element lu, = u. is the identity element of R* H. Every uy is a unit of
R x H. The embedding of R into R x H is given by r +— ru,.

Lemma 1.1. Let R be a finite-dimensional algebra with identity over a field
K of characteristic p, G a finite p-group and A = R* G.

(i) If V is an absolutely indecomposable R-module then the induced A-module
VA = A®pV is absolutely indecomposable of K-dimension |G| - dimg V.

(ii) If AInd(R,n) is an infinite set for some integer n > 1 then AInd(R * G, n|G|)

is infinite as well.

PRrROOF. (i) See [19, p. 538].

(ii) Let [V] € AInd(R,n). Then, by (i), [V4] € AInd(R * G, n|G|). Since
(VAr =2 V @ W, where W is an R-module, the set of all isomorphism classes
[V4] is infinite, in view of the Krull-Schmidt Theorem. O

Lemma 1.2. Let L be a finite purely inseparable field extension of a field
K of characteristic p, G a non-cyclic p-group and f, = nl[L : K], where

1 if |G: G| #4,
2 if |G:G| =4

Then AInd((LG)K, fn) is infinite for any integer n > 2.

PROOF. Let E,, be the identity matrix of order n, J,(u) the upper Jordan
block of order n with the eigenvalue p and

the n x l-matrix, where p € K is a parameter. Denote by H = (a) x (b) an
abelian group of order p2.
If p # 2 then, by [13], the group H has the indecomposable linear matrix
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representations over K of the form:

Fuza»—><0 n), bl—><0 Eﬂ);

E, 0 E, E, E, 0
Ay:a—= 1 0 E; 0|, b— | 0 E, B.w]|- (1)
0 0 E, 0 o0 By

Since K is an arbitrary field, these representations are absolutely indecomposable.

The group G has a normal subgroup N such that G/N = H. Hence in the
case p # 2 the set AInd(K G, m) is infinite, for any integer m > 2.

Let p = 2. The group H = (a) x (b) has the absolutely indecomposable
matrix representations I', of dimension 2n over K of the form (1). Let D =
(a)x (b)x {c) and T' = {x) x (y) be abelian groups of order 8 with || = 4. GUDIVOK
in [13] established that these groups have the absolutely indecomposable matrix
representations of dimension 2n + 1 over K of the form:

E, 0 E, E, E, 0 E, pE, 0
a— |0 E 0], b—| 0 E, 0], c—| 0 E, 0 1;
E, 0 E, 0 0 E; 0 0 E
E, FE, 0 E, 0 E,

z— |10 E, Byuwl|, y—~]1 0 E 0],

0 0 By 0 0 E,

where p € K is a parameter.

If G is a non-cyclic 2-group and |G : G’| # 4 then G has a normal subgroup
N such that G/N is isomorphic to D or T. Hence in this case AInd(KG,m) is
infinite for any integer m > 2. In the case |G : G'| = 4 the set AInd(K G, 2n) is
infinite for any integer n > 1.

Suppose that [L : K] = p5>. Then L = K(b,,...,0s), where 07 € K, 65 €
K(Gl),,9§ S K(Gl,...,ﬁs_l). Let Lo = K and L; = K(Gl,...,ﬁi) for i €
{1,...,s}. The group algebra L;;1G is a crossed product of the cyclic group of
order p over the group algebra L;G for every i € {0,1,...,s — 1}. Let [V] €
AInd(KG,nl). Applying Lemma 1.1 and transitivity of induction, we establish
that V¢ is an absolutely indecomposable module over the K-algebra L;G and
dimg VL% = nip’ for any i € {1,...,s}. Since

(VLG)KG i~ V@...@V (p® times),
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we obtain
VG2 W o v W

Therefore AInd((LG)K, fn) is infinite for any n > 2, where f, =nl[L: K]. O

We note that |G : G'| = 4 if and only if G is a dihedral, semidihedral or
(generalized) quaternion group [15, p. 339].

Proposition 1.3. Let G be a finite p-group, T a non-cyclic subgroup of G
and

1 if |T:T'|#4,
2 if |T:7T'|=4.

If A€ Z*(G,K*) and T C Ker(\) then AInd(K*G, f,,) is infinite for every integer
n > 2, where f, =nl|G: T|.

PROOF. Apply Lemmas 1.1, 1.2 and transitivity of induction. (I

Lemma 1.4. Let R = K + Ku+ Kv be the algebra over an infinite field K
of characteristic p with the defining relations:

uw'=0, v“"=0, ww=vu=0. (2)

The set AInd(R, 2n) is infinite, for any integer n > 1.

PRrROOF. Denote by M, an underlying R-module of the matrix representation

I'y:1— En 0 , U 0 Ju(a) , U 0 En ,
0 E, 0 0 0 O

where E,, is the identity matrix of order n > 1 and J,(«) is the upper Jordan
block of order n with the eigenvalue a. By the proof of Lemma 1.2, M, is an
absolutely indecomposable R-module of K-dimension 2n. If a # 3, the modules
M, and Mg are non-isomorphic. 0

Proposition 1.5. Let G be a finite p-group and R the algebra over an infinite
field K of characteristic p with the defining relations (2). Then AInd(RxG, 2n|G))
is infinite for any integer n > 1.

PrOOF. Apply Lemmas 1.1 and 1.4. a
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2. On absolutely indecomposable representations
of a commutative twisted group algebra

The aim of this section is to prove Theorem 2.4 that is the first main result
of the paper. We use this theorem to obtain other main results.

Lemma 2.1. Let K be a non-perfect field of characteristic p and 6 a root of
the irreducible polynomial X?" —a € K[X]. If p € K(0), p*" € K and p* & K,
thenr <n,pe KO ") and p g K(6*" ).

PROOF. There is the chain of fields
KCK@O" YcK@O" )c---c K@) C K(0),

where, for every i € {0,1,...,n — 1}, K(@”i) is a field extension of K(epi“) of
degree p. Assume that p € K(67 ) and p & K (67 ), for some j € {0,1,...,n—1}.

Then
p—1 )
p = Z Ui@ip] B
i=0

where o; € K(G”Hl), for every i € {0,1,...,p — 1}, and 0, # 0 for some i €
{1,...,p — 1}. It follows that ppnfj € K. At the same time Uf’ni]il € K,
for every i € {0,1,...,p — 1}, and 0P" " is a root of the irreducible polynomial
XP — a over K. Hence, p?" '~ & K. Since p” and p"~ are degrees of minimal
polynomials of the element p over K, we conclude that r = n — j. Consequently,

pe KO ")andp¢ K(Op"f'r“). O

Lemma 2.2. Let K be a non-perfect field of characteristic p and L a finite
purely inseparable field extension of K. Suppose that o, € L* and o, & LP;
G = (a) x (b) is an abelian group of type (p**1,p™*) where k > 1 and m > 1
are integers; p € Z?(G,L*), {uy : g € G} is a natural L-basis of

pk‘+1 -1 p7n+1_1

. k41 m+1
_ i _ P _ .
LG = @ @ Luguy, ub  =aPue, = [Pu,;
i=0 j=0

d = dimy L*G and
- 1 if 4d # |G|,
2 if 4d =|G].

The set AInd((L"G), f») is infinite for any integer n > 2, where f, = nld[L : K].
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—~—

PRrROOF. We can suppose that k < m. Let U = L"G(ug’k —au.), LFrG =
LFG/U and w = w + U, for every w € L*G. Then

pk_l p7n+1_1

LG = Q% EDO Lk,
1= Jj=

where " = aii, and @ = BPil,.

Since a ¢ LP, F := L[t,] is a field. We can view L+G as a twisted group
algebra of the group (b) of order p”™** over the field F. Assume that fi, = p?’,
where r > 1, p € F and p & FP. We have r < k and

-7

LiG/rad LAG = F(0), 60°"  =p.

Hence d = pF - p™~" = pF+*™=" and, by Lemma 2.1,
p"—1
kT
p= E o] , oy € L.
t=0
Let
p"—1
k—r
z= g au'? .
t=0
Then
+1 il +1 k+1 Pl +1 rl P
Pt p T tpt T P pt, p’ ot _gp
z —E o ug —E o  aue = o o | ue = BPu..
t=0 t=0 t=0

Denote by H the subgroup of G generated by the elements h; = a?"" and

m—r

ho =P . Then

p'r+1_1
w _ 1 J
LVMH = @ Luy,, vy, ,
i,j=0
k—r pm=T
where up, =uf , up, =u, ,and we have
+1 r+1
p"t p’Tt
u,, =alue, wuy, = plue.
— -1
Let vy, = 27 up,. Then
pr+171

r41

" _ TV _ i .0 p —
'H=L"H= P Lujvj,, v =uec
4,5=0
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Denote by D the subgroup of H generated by the elements ¢ = h’fr and hso.
If we set v, = uj, , we get

p—1 pr+1_1
41

L”D:@ @ va:vflz, of = alue, v = Ue.
i=0 =0
Hence, in view of Lemmas 1.1, 1.2, the set AInd((L"H),n[L : K] - |H : D|)
is infinite, for every integer n > 2, because L”D is the group algebra of the
non-cyclic group D over L and |D| = p"*2 > 4. Evidently, |H : D| = p".
Applying again Lemma 1.1, we conclude that the set

AInd((L*G) g, n[L : K]p"|G : H))

is infinite. Since

. |G| pk+1 'pm+1 k+m—
PG Hl ZPTW :prprﬂ gt P "=,
the set AInd((L"G)k,n[L : K|d) is infinite, for any n > 2. We note that in this
case |G| = dp" 2, and therefore |G| # 4d.
Now we assume that fu. ¢ FP. Then

LiG/rad LG = F(0), 0" = Bii,.

It follows that d = p**™. We denote by H the subgroup of G generated by the
elements a?* and b . Because H is of type (p,p) and L*H is the group algebra of
H over L, we conclude, by Lemma 1.2, that Alnd((L"H)g,nl[L : K]) is infinite
for any n > 2. The algebra (L’LG)K is a crossed product of G/H over (L“H)K.
Now, Lemma 1.1 implies that the set AInd((L*G) g, nl[L : K]-|G : H|) is infinite
for any n > 2. Clearly, |G : H| =d. O

Remark 2.5. d-[L: K| =dimg L*G, where d = dim, L*G.
We are now able to prove the first main result of this paper.

Theorem 2.4. Let G be an abelian p-group, K an infinite field of characte-
ristic p, A € Z?(G, K*), K*G a non-uniserial algebra, d = dimx K*G and

1 d#|al,
|2 if 4d =G

The set AInd(K*G, nld) is infinite, for arbitrary integer n > 2.
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PROOF. There exists a direct product decomposition G = B x (c1) X+ - x (cs)
such that s > 2, F := K B is a field and the twisted group algebra K*D; of the
group D; := B x (¢;) is not a field for every ¢ € {1,...,s}. The field F is a finite
purely inseparable field extension of K. First we suppose that 4d = |G|. Then
p=2,s=2and

2"1—1 2721

A i1, io 2M _ 2 2"2 _ 2
K'G = @ @ Fulug, ug =0jUe, U, = Qle,

(&) Cc2
i1=0 i2=0

where |c;] = 2", a; € F* for i = 1,2 and d = [F : K] -2m*"2=2 Hence
K*G = FFH, where H = {c1) x (c2). Let
wi=c", o =o T i=12
and T = (z1) X (x2). Then v2 = u,, therefore F*T is the group algebra of the
group T of order 4 over F. Now, Lemmas 1.1 and 1.2 imply that Alnd(K*G,
2n[F : K] -|H : T|) is infinite for every n > 2. Since [F : K| - |H : T| = d, the set
AInd(K*G,2nd) is infinite, for any n > 2.
Now assume that 4d # |G| and let

B, if s=2,
D =
B x {e3) x -+ X {cg), if s#2.

Clearly, G = D x H with H = (¢;) x {¢3). Then V := K*G -rad K*D is an
ideal of K*G and K*G/V = L*H, where L is a finite purely inseparable field
extension of K and L = K*D/rad K*D. We have

n1_1 pn2_]

P
_ i i ny _ pml no _ pm2
L'H = @ @ Lugugz, ub =a ue, ub,” =ay u,
11 =0 i0=0
where p™ = |¢j|, a; € L* and m; > 0 for every j € {1,2}. If m; > n,, we can

assume that a; = 1. If m; < n;, we assume that a; ¢ LP. Since there exists a
K-algebra isomorphism K G = LrH = LFH/rad LMH, we get dimy LFH = d.
We start with the case |H| # 4 -dimy LF#H. If oy = ag = 1, then d = [L : K]
and, by Lemma 1.2, AInd((L“H)K,n[L : K]) is infinite, for any n > 2. Hence
AInd(K*G,nd) is infinite, for any n > 2. If ay = 1, ap € LP then KAG = L(6),

n2—ma

— g over L. It follows

ng—mo

where 6 is a root of the irreducible polynomial XP?

that d = [L : K]-p™~"™2. Since the order of the group (c1) x (ch ) is not equal
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to 4, then, by Lemmas 1.1 and 1.2, AInd((L“H)K,n[L : K]p"2_m2) is infinite for
every n > 2. Hence Alnd(K*G,nd) is infinite, for any integer n > 2.
Let oy € LP and as € LP. Denote by 6; a root of the irreducible polynomial

ng—my

XP — Oy
over L for i = 1,2. If [L(01,03) : L] = p™—™1tn2=m2_then

d=[L: K] pm—mitna=ms,

—mq no—m

Since the order of the group (czfnl ) x (b *) is not equal to 4, then, by
Lemmas 1.1 and 1.2, the set AInd((L“H)K7 nd) is infinite for every n > 2. Con-
sequently AInd(K*G, nd) is infinite for arbitrary n > 2.

Now, let [L(6;,602) : L] < pm~™+n2=m2 and X = (1) X (x2) be a group

of type (pm1—miHt pr2=m2F1)  There exists an L-algebra epimorphism L*H —
L” X, where
primmitl_y pra—matl_g
S o n-mitl no-maotl
L'X = @ @ Lvlt vl  vh =aqve, VY, = Q5.

Jj1=0 J2=0

Let d = dimy L*X. By assumption, d’ < p™t~™*nm2=mz  According to
Lemma 2.2, AInd ((L¥ X ) g, nd'[L : K]) is infinite for every n > 2, because | X| #
4d’. But d'[L : K] = d. Hence Alnd(K*G,nd) is infinite for any n > 2.

We may suppose that in previous reasonings H = {(¢;;) X {(¢;,) and |H| #

4dimy, L*H, where i1 < ig and 41,12 € {1,...,s}. Let us consider the case where
p=2, H=/{c,) x{c,) and |H| =4dimy, L*H for all distinct i1,i2 € {1,...,s}.
Since 4d # |G/, there exists a K-algebra homomorphism of K*G onto

gni+l_q gna+l_q gnz+l_jq

. . . n;+1 .
MYC = @ @ @ Multv2os, ol’ =ajve for j=1,2,3,

11=0 i2=0 i3=0

where M is a finite purely inseparable field extension of K, C' = (c1) x {c2) X {(c3),
nj >0, a;j € M* and dimy MVC = 2"1+"2+ns The algebra M C' contains the
group algebra MT, where

T= (") x (7)) x (&™)

is of type (2,2,2). By Lemmas 1.1 and 1.2, AInd((M"C)k,n[M : K] -|C : T))
is infinite for any n > 2. Since [M : K] - |C : T| = d, the set AInd(K*G,nd) is
infinite for any n > 2. (|
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Let us remark that SOBOLEWSKA in [23] has found some infinite subsets of
the set of all integers m > 1 for which a non-uniserial twisted group algebra of a
finite abelian p-group over an infinite field of characteristic p has infinitely many
indecomposable representations of dimension m.

Corollary 2.5. Let G be an abelian p-group, K a non-perfect field of cha-
racteristic p, A € Z*(G,K*), d = dimg K*G and

,_ 1 i d#al,
)2 if 4d=G)

If Ker(\) = {e} and K G is not uniserial, then the set FAInd(K*G,nld) is
infinite for any integer n > 2.
Note that Corollary 2.5 generalizes Corollary 2.4 in [2].

Corollary 2.6. Let G be a finite p-group, K an infinite field of characteristic
p, A € Z*(G,K*), d = dimyg K*G and

Uit ad#|G G,
|2 if4d=1G: @)

If K*G/K*G-rad K*G' is not a uniserial algebra then AInd(K*G, nld) is infinite
for every integer n > 2.

Remark 2.7. If we assume in Corollary 2.6 that the cocycle A is trivial, then
K?G is the group algebra, d = 1, and we obtain the result of GUDIVOK [13].

3. On absolutely indecomposable representations
of a non-commutative twisted group algebra K*G
with pdimg K*2G # |G : G/|

First we prove two useful lemmas that can be used to reduce a general case
to the case of a p-group G such that G’ is an elementary abelian group of type
(p,p) or a group of order p.

Lemma 3.1. Let G be a non-abelian p-group with non-cyclic commutant G’.
Then G contains a normal subgroup H such that H C G’ and (G/H) = G'/H
is an elementary abelian group of type (p,p).
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PROOF. Let ®(G’) be the Frattini subgroup of G’. Then ®(G’) < G and
G'/®(G") is anon-cyclic elementary abelian p-group. Since (G/@(G’)),:G’/CI)(G'),
in what follows, we assume that G’ is a non-cyclic elementary abelian p-group.

Let |G'| = p™ and n > 2. Let us choose an element a # e in G’ such
that ¢ € Z(G). Then the commutant of the factor group G/(a) is a non-cyclic
elementary abelian group of order p"~!. If n — 1 > 2, we inductively continue the
above construction. ]

Lemma 3.2. Let G be a non-abelian p-group, G' = {(c), H = (cP), X €
Z2(G,K*) and V = K*G(uP — u.). Then V is an ideal of K*G and K*G |V =
K*T, whereT = G/H and pipaym = Mgy forallz,y € G. If K*G is not uniserial
then K*T' is not uniserial either.

PrOOF. Since G’ C Ker(\) and H is a normal subgroup of G, V is an ideal
of K*G and K*G/V = KFT. Let K*G = K*G/V and @ = w + V for every
w € K*G. Because V is a nilpotent ideal of the algebra K G, we have

rad K2G = (rad K*G + V) /V = (rad K*G) /V.

Assume that m is a uniserial algebra. Then rad@ = m . é, for some
0 € rad K*G (see [9, p. 170]). Consequently, for every w € rad K*G there is
z € K G such that w+V = (z+V)(0+V). It follows that w — 20 € (rad K*G)?,
because

Ul — ue = (ue — ue)? € (rad K*G)2.

This yields
w+ (rad K*G)? = [z + (rad K*G)?] - [0 + (rad K*G)?].

Hence the radical of the algebra K*G/(rad K*G)? is a principal left ideal; thus
K G/(rad K*G)? is uniserial. But K*G/(rad K*G)? is uniserial if and only if
KG is uniserial (see [9, p. 172]). Therefore K*G is a uniserial algebra. O

Lemma 3.3. Let G be a non-abelian p-group with G’ = (c) of order p,
H an abelian subgroup of G such that G’ C H and G' # H. Assume that
A € Z%(G,K*), K*G is not uniserial and K*G/K*G(u. — u,) is uniserial. If
K H/K*H (u, — u.) is not a field then K*H is not a uniserial algebra.

PrROOF. If H = A x (c) then K*A = K H/K*H (u. — u,) is not a field.
Hence K*H is not uniserial.
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Now let {(¢) not be a direct factor of H. Then (see [11, p. 119]) there exists a
decomposition of H into a direct product H = (hy) x - -+ x (hy,), where ¢ € (h,,)
and |c| < |hy|. If K H is a uniserial algebra, |h,| = p'*! and ¢ = k2, then

Arr i1 in
K*H = @ Kuj ...up,
ilw--ain
where

ulh};jlz§jue, d; e K* for j=1,...,n—1,

t
“Zn =au., a€K*

and 4
L:= @ Kuy! oup
11,0yl —1
is a field. Since K*H/K*H (u. — u.) is not a field, we have au, = 6P for some
0 € L. From the equality

(Gfluf;ﬁl — ue)p = Ue — Ue

it follows that u. — u, € (rad K*H)?2. Because K G is a local algebra, we conc-
lude that rad K*H C rad K G, consequently K*G(u. — u.) C (rad K*G)2. By
hypothesis, the algebra K*G/K*G (u. — u.) is uniserial. Arguing as in the proof
of Lemma 3.2, we show that K*G/(rad K*G)? is a uniserial algebra. Then K*G
is also uniserial and we get a contradiction. Therefore, K*H is not uniserial. [

Proposition 3.4. Let G be a non-abelian p-group, K an infinite field of
characteristic p, A € Z*(G, K*), d = dimyx K*G and

LG
)2 if |67 G| =4

If K*G is not a uniserial algebra and d = |G : G'| then the set Alnd(K*G, nld)
is infinite, for any integer n > 2.

PrOOF. We have K \G = K*G/K*G -rad KG'. Hence rad K*G = K*G -
rad KG'. Since K*G is not uniserial, G’ is non-cyclic. By Proposition 1.3,
AInd(K*G,nld) is infinite for any integer n > 2. O

Our second main result of this paper is the following theorem.
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Theorem 3.5. Let G be a non-abelian p-group, K an infinite field of cha-
racteristic p, A € Z*(G,K*), d = dimg K*G and

- 1 if p#£2,
2 if p=2.

Assume that K*G is not a uniserial algebra and pd < |G : G'|. Then the set
Alnd(K*G,nlpd) is infinite, for any integer n > 2.
PROOF. Let {u, : g € G} be a natural K-basis of K*G, U = K*G-rad KG',

K G = K G/U and @ = w + U for every w € K*G. Assume that G/G' =
(a1G") x -+ x (amG"), where |a;G'| =p* for j =1,...,m. Then

A — ~1 ~im
K G = @ Kiag, ...a5™,

L150eytm

where agjf = Yjle, 74 € K*. The algebra I/(}E? is a twisted group algebra of
the non-cyclic abelian p-group G/G’ over K.

If I?:\_é is not uniserial, then, by Corollary 2.6, AInd(K*G,nld) is infinite
for every n > 2.

Assume now that K*G is uniserial and the K-algebra
Fe= @@ Kal.. i
ila-nﬂimfl

is a field. We have F' = (K*D + U)/U, where D is the subgroup of G generated
by G’ and the elements a1, ...,a,,_1. Evidently

p*m—1
KXG= @ Fil.
i =0

Since dimKI?S‘_é =|G: G, dimK(I?:\_(/;/radI?X(/}’) =d and pd < |G : G'|, we

conclude that K*G is not a field. There exists an element

p°l—1 pim—1_-1

_ § E ) ) i1 Tm—1
p= e Ay ., lm—lual s ua7;:,,_1’ (3)

i1=0 tm—1=0

where oy, ... ;. , € K, such that ﬁpr = 'y;llﬂe with 2 < r < s,, and p & FP, if
r < $m. We have d = |D : G'| - p>»~", and hence dp” = |G : G'|.
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In view of Lemmas 3.1 and 3.2, we can suppose that G’ is an elementary
abelian group of type (p,p) or a group of order p. Denote by H the subgroup
of G generated by G’ and the elements

p p psm -+l
al,...,am_l,am .

Now we show that H is abelian. Assume that G’ = (¢1) X (¢3), where |¢;| =
|ea] = p and ¢; € Z(G). Since the center of the factor group G/(c1) contains
ca{c1), we have g~ lcog = cocl for any g € G. This implies cog? = gPcy for every
g € G. If h € G then g~'hg = hclc§ for some r,s € {0,1,...,p — 1}. Tt follows
that g7 PhgP = hcﬁlc?, where t; = pr + is@, to = ps. Hence, if p # 2 then
hg? = gPh. If p = 2 then g=2hg? = hci®, g=2h2%g? = h?%. In the case G’ = (¢1),
le1| = p we obtain g~ le1g = ¢1, g thg = he}, g PhgP = h for arbitrary g, h € G.

Let S be the subgroup of H generated by G” and the elements a¥,...,a? _;
T =5/G and

psl_l psmfl_l

w= Y "l Bl (see (3)).

11 =0 tm—1=0

Then w € K*S and
Sy pr—l
(wugm +1) =u, (mod K*H -rad KG').

It follows that K*H/K*H - rad KG' is the group algebra of the cyclic group of
order p"~! over the field

L:=(K*S+ K H -rad KG')/K*H - rad KG'.
Clearly,
L= K*S/K*SNK*H -rad KG' 2 K*S/K*S -rad KG' = K"T,

where fizqr yar = Agy for all z,y € S. Thus, dimg K H = IT|.

If G’ is the group of type (p,p), then, by Proposition 1.3, K*H is of in-
finite representation type. Hence K*H is not uniserial. If G’ is the group
of order p, then K*H is not uniserial either, by Lemma 3.3. By Theorem 2.4,
Alnd(K*H,nl|T|) is infinite for every n > 2. Since H is a normal subgroup of G,
the algebra K*G is a crossed product of G/H over K*H. Applying Lemma 1.1,
we conclude that AInd(K*G,nl|T| - |G : H|) is infinite for every integer n > 2.
This completes the proof, because
|G:G| |G:G
I -

711G : H| =
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4. On absolutely indecomposable representations
of a non-commutative twisted group algebra K*G
with p - dimg K2G = |G : G|

Assume that G is a non-abelian p-group, K is a field of characteristic p,
A € Z2(G,K*) and d = dimg K*G. If K is perfect then K*G is the group
algebra of G over K (see [18, p. 43]). In this case K G = K. Since G/G’ is
non-cyclic, |G : G'| # p. Therefore, if pd = |G : G'| then K is a non-perfect field.

The subalgebra K*G’ of K*G is the group algebra of G’ over K. Let {u, :
g € G} be a natural K-basis of K’\G, U = K*G - rad K&, KNG = K G/U
and @ = w4+ U for every w € K*G. We have I% = K"T, where T =
G/G" and pacryar = Mgy for all x,y € G. Suppose that pd = |G : G’|. Since
I?XZ?/ radl% >~ K@, there exists a direct product decomposition T = A x
(bG") such that F := K*A is a field and

p—1
E'T = (P Fay, @ =,
i=0
where p" = |bG'|, p € F* and p ¢ FP for n > 1. Moreover, d = |A| - p"~1. The
algebra K*T' is uniserial.

Proposition 4.1. Let G be a non-abelian p-group, K a non-perfect field of
characteristic p, A € Z*(G,K*) and d = dimyx K*G. Assume that G’ is non-
cyclic, pd = |G : G'| and

L riear £,
2 if |G': G| =4

Then Alnd(K*G,nlpd) is infinite for any n > 2.
PROOF. Apply Proposition 1.3. [

Lemma 4.2. Let p # 2 and G be a non-abelian p-group with cyclic commu-
tant G'. Then [a,b]? = e for all a,b € G such that a?, b € G'.

PROOF. Let G’ = (¢), || = p™ and m > 2. If g € G and ¢g? € G’ then
g tcg = c", where r =1 (mod p™~1). It follows that g~ 'cPg = cP. Let a,b € G
and aP,b? € G'. Suppose that a~'ca = ¢” and b~'ab = ac’. Then b~'aPb = aPc',
where t = 1 +r + ---7P71 It is easy to see that t = p (mod p™). Hence,
b~laPb = aPc'P.
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Let H = (cP). If a? € H, then b='aPb = a? and we conclude that ip = 0
(mod p™). If aP ¢ H, then we may assume that a? = ¢. This implies that
b~ lab = a' TP, We have bP = a?’ for some 7, since b? € G’. Therefore, b Pab? = a.
At the same time

b Pab? = q(1+P)",

From this we deduce that (1+pi)? =1 (mod p™*!). Thus pi =0 (mod p™) and
[a,b]P = e. O

Lemma 4.3. Let G be a non-abelian 2-group with cyclic commutant G’ and
D the subgroup of G such that G’ C D and D/G" = soc(G/G").

(i) If |G' N Z(D)| > 4, then [a,b]* = e, for all a,b € D.
(ii) If G’ C Z(D), then [a,b]? = e, for all a,b € D.

PrROOF. (i) Let G' = (¢) and |c| = 2™. If m = 2 then G’ C Z(D). At first
let us investigate the case m > 2. If g € D, then g 'cg = ¢", where r = 1
(mod 2m~1). Tt follows that g~ 'c?g = ¢2. Assume that a,b € D, a"'ca = "
and b~'ab = ac’. Then b~'a?b = a?c+7). Let H = (c?). If a®> € H then
b=ta?b = a?, hence i(14+r) =0 (mod 2™). From this we obtain 2i = 0 (mod 2™).
If a®> ¢ H, then we may suppose that a? = c and r = 1. We get b~ 'c?b = ¢? and
b~ 1e2b = ?c*, thus ¥ =e.

(ii) Now assume that G’ C Z(D). Then b~ la?b = a%c* and b~ la%b = a?.

Hence ¢ = e. O

We are now able to prove the third main result of this paper.

Proposition 4.4. Let p # 2, G be a non-abelian p-group with cyclic com-
mutant G', K a non-perfect field of characteristic p, A\ € Z*(G,K*) and d =
dimg KAG. Asssume that K G is not uniserial, pd = |G : G'| and |G'| > p.
Then the set AInd(K G, nd) is infinite, for any integer n > 2.

PROOF. Denote by D the subgroup of G such that G' C D and D/G’ =
soc(G/G"). Let G' = (¢) and T = (c?). By Lemma 4.2, D/T is abelian. In
view of Lemma 3.2, we can assume that |G’| = p and D is an abelian group. By
Lemma 3.3, K*D is not uniserial, since K*D/K*D -rad KG’ is not a field. Let
d, = dimg K*D. Then pd, = |D : G'|. By Theorem 2.4, Alnd(K*D,nd;) is
infinite for every n > 2. Consequently, by Lemma 1.1, AInd(K*G,nd; |G : D|)
is infinite. Hence AInd(K*G,nd) is infinite, for any n > 2, because d;|G : D| =
p i D:G|-|G:D|l=ptG: G| =d. O

Proposition 4.5. Let G be a non-abelian 2-group with cyclic commutant
G’, K a non-perfect field of characteristic 2, A € Z*(G,K*), d = dimg K G
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and 2d = |G : G'|. Denote by D the subgroup of G such that G’ C D and
D/G' = soc(G/G"). If |G' N Z(D)| > 4 and K*G is not a uniserial algebra, the
set Alnd(K*G,2nd) is infinite, for any integer n > 1.

PROOF. Apply Lemma 4.3 and modify the arguments used in the proof of
Proposition 4.4. ([l

Proposition 4.6. Let G be a non-abelian p-group, K a non-perfect field of
characteristic p, A € Z?(G,K*), H = Ker(\) and d = dimg K*G. Suppose also
that K*G is not uniserial, pd = |G : G'|, H # G’ and let

[ £
2 if |H:H'|=4.

Then the set AInd(K*G, nld) is infinite, for arbitrary integer n > 2.

PROOF. Let U = K G -rad KH and K G = K G/U. Since G' C H,
G # H, dimg K*G = |G : H| and K*G/rad K*G = K*G, we get |G : H| =d
and U = rad K*G. By the hypothesis, K*G is not uniserial, hence U is not a

principal left ideal of K*G. It follows that H is a non-cyclic p-group, and, by
Proposition 1.3, AInd(K*G,nld) is infinite, for arbitrary n > 2. a

Proposition 4.7. Let G be a non-abelian p-group with cyclic commutant

G', K a non-perfect field of characteristic p, A € Z*(G, K*) and d = dimg KXG.

Assume also that K*G is not uniserial, pd = |G : G'| and soc(G/G") = (a1G") x

- x (amG"), where [a;,a;] = e, for all i,j € {1,...,m — 1}. Then the set
AInd(K*G,2nd) is infinite, for any integer n > 1.

PROOF. In view of Lemma 3.2, we may suppose that G’ = (¢} is of order p.
Denote by H the subgroup of G generated by the elements ¢, a1, ..., a,,. First,
assume that H is abelian. By Lemma 3.3, K*H is not a uniserial algebra, since
K H/K*H (u, — u.) is not a field. We also have dimg K>XH = p™~! and |G :
H| = dp'~™. By Theorem 2.4 and Lemma 1.1, AInd(K*G,2nd) is infinite for
any integer n > 1.

In what follows, we may assume that [aj,a,] = eforall j =1,...,m —2
and [am—1,am] = ¢. Let D be the subgroup of H generated by the elements
ai,...,Qm_1, c¢. If K*D/K*D(u, — u,) is not a field, then, by Lemma 3.3, K*D
is not a uniserial algebra. By Theorem 2.4 and Lemma 1.1, Alnd(K*G, 2nd)

m—2

is infinite for any integer m > 1, since in this case dimxg K*D = p and

|G : D| = dp*~™.
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Now we investigate the case when K*D/K*D(u. — uc) is a field. Let uf, =
Yz, where v € K* and x € G'. Since K*H/K*H (u. — u.) is not a field, there
exists an element v € K*D such that

P = ”y*lue(modK)‘D(uc — up))
Put w = v, — te. Then w? =0 (mod K*H (u. — ue)). It is easy to verify that
rad K*H = K*H (u, — u.) + K*Huw. (4)

Let V = K Grad K*H. Because H is a normal subgroup of G, V is a
nilpotent ideal of the algebra K*G. The K-dimension of the quotient algebra
K*G/V is equal to p™~! - |G : H| = p~YG : G'| = d. Tt follows that V is the
radical of K*G. Since K*G is not uniserial, rad K*G is not a principal left ideal
of K*G. This implies that rad K*H is not a principal left ideal of K*H, and
K*H is not a uniserial algebra.

Let KM = K*H/(rad K*H)? and ) = y + (rad K*H)? for every y € K*H.
Since K*H is not uniserial, KM is not uniserial either (see [9, p. 172]). The
radical of K MH is equal to rad K*H/(rad K*H)?. Hence, in view of equation (4),
we get . o

rad KXH = KM (i — a0) + KM Hab,

and (e — 6)?> = 0, w2 =0, (le— o) = W(te — ) = 0. Since K*H =
KD +rad K*H, the algebra K*H is the K-linear span of the elements
a1

QA GG (4, — @), @

Alm—1 )
U w
ay A —17 ai Am—1

ai Am—1 """

where i,. = 0,1,...,p— 1, forall r =1,...,m — 1. We prove that these elements
are K-linearly independent.
Let

p—1 p—1
_ § E . . 1L bme1 . .
S = Ay ., im—1Uay ua’;:,,_l QG im_1 € K.

11=0 tm—1=0

Since K*D/K*D(u.—wu.) is a field, rad K* D = K*D(u.—u.) and SNrad K*D =
{0}. If

&+ Gt — Ge) + 20 =0 (5)
for some x,y,2 € S, then © € rad K*H. Thus x is a nilpotent element and
x € rad K*D. Hence x = 0. If y # 0, then there exists y; € S such that y;y = u.
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(mod K*D(u. — ue)). It follows that 19 = e + §2(ti. — 1) for some yp € S.
Hence, in view of (5), we get @, — G, + 210 = 0 for some z; € S. It follows
that radﬂ is a principal left ideal of the algebra ﬁ This contradiction
proves that y = 0. If z # 0, then from 2@ = 0 we obtain @ = 0. Therefore,
r=y=2z2=0.

From u,,, ,Uq,, = UclUq,,Uq,, , We deduce i,,, W = (w + U. — ue)uamfl.
—_—
It is clear that g, = Wi, for j = 1,...,m — 2. Hence KX H is a crossed

product of D/G’ over the K-algebra R = K, + K (i, — G.) + Kw. By Propo-
sition 1.5, AInd(f)‘E7 2n|D/G'|) is infinite, for any integer n > 1, and, hence,
the set Alnd(K*H,2n|D/G’|) is infinite. It follows, by applying Lemma 1.1, that
AInd(K*G,2nd) is infinite, since |D/G’| - |G : H| = d. O

Proposition 4.8. Let G be a non-abelian p-group with cyclic commutant
G', K a non-perfect field of characteristic p, A € Z*(G, K*) and d = dimg KXG.
Assume also that G/G’' has at most three invariants that equal p, K*G is not
a uniserial algebra and pd = |G : G'|. Then Alnd(K*G,2nd) is infinite, for any
integer n > 1.

PROOF. In view of Lemma 3.2, we may suppose that G’ = (¢} is of order p.
Let G/G' = (a1G') x - - - x (a,, G'), where m > 3 and |a;G’| = p*i for j =1,...,m.
Assume also that ky,—2 = ky—1 = ki, = 1, [am—1,am] = c and [apm—2, apm—1] = c".

k;—1
If we set b; = aé’ " forj=1,....,m—3,and by_2 = Gm_2aL,, b1 = Qpm_1,
bm = @y, then

soc(G/G') = (1 G') x -+ x (b G")

and [b,., bs]=e for r, sc{1,...,m—1}. By Proposition 4.7, the set AInd(K*G, 2nd)
is infinite, for any integer n > 1. O

Our final main result of this paper is the following proposition.

Proposition 4.9. Let G be a non-abelian p-group with cyclic commutant
G', K a non-perfect field of characteristic p, A € Z*(G, K*) and d = dimg KG.
Assume also that [K : KP] < p?, K*G is not a uniserial algebra and pd = |G : G'|.
Then the set AInd(K*G, 2nd) is infinite, for any integer n > 1.

PrOOF. Let G/G' = (a1G') X -+ X (amG') and G’ = (c¢). There is an
isomorphism K*G/K*G(u, —u.) = KHT, where T = G/G’ and jiz6/ y6' = Aays
for all z,y € G. Renumbering the set {ai,...,a,}, if necessary, the algebra
KHT is a twisted group algebra of the cyclic group (a,,G’) over the field K*D,
where D = (a1G’) X -+ X (@, —1G’). We recall that if K is a non-perfect field of
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characteristic p and [K : K?] = p’, then ¢ is the largest element of the set that
consists of all integers r > 1 such that a K-algebra of the form

KIX]/(XP — 1) @k -~ @r K[X]/(X? = ar)

is a field, for some aq,...,a, € K (see [3, p. 200]). Thus, if [K : KP] = p then
m = 2, and if [K : KP] = p? then m € {2,3}. By Proposition 4.8, the set
AInd(K*G, 2nd) is infinite, for any integer n > 1. a

Remark 4.10. The second Brauer—Thrall conjecture is discussed in the paper
[21]. The reader is referred to [22, Section XIX.3] for a discussion of the second
Brauer—Thrall conjecture and the tame-wild problem for algebras, that is related
to the problems discussed in the paper (see [22, pp. 3414, 355-6]).
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